// SPDX-License-Identifier: GPL-2.0-only /* * cpc925_edac.c, EDAC driver for IBM CPC925 Bridge and Memory Controller. * * Copyright (c) 2008 Wind River Systems, Inc. * * Authors: Cao Qingtao <qingtao.cao@windriver.com> */ #include <linux/module.h> #include <linux/init.h> #include <linux/io.h> #include <linux/edac.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/gfp.h> #include "edac_module.h" #define CPC925_EDAC_REVISION " Ver: 1.0.0" #define CPC925_EDAC_MOD_STR "cpc925_edac" #define cpc925_printk(level, fmt, arg...) \ edac_printk(level, "CPC925", fmt, ##arg) #define cpc925_mc_printk(mci, level, fmt, arg...) \ edac_mc_chipset_printk(mci, level, "CPC925", fmt, ##arg) /* * CPC925 registers are of 32 bits with bit0 defined at the * most significant bit and bit31 at that of least significant. */ #define CPC925_BITS_PER_REG 32 #define CPC925_BIT(nr) (1UL << (CPC925_BITS_PER_REG - 1 - nr)) /* * EDAC device names for the error detections of * CPU Interface and Hypertransport Link. */ #define CPC925_CPU_ERR_DEV "cpu" #define CPC925_HT_LINK_DEV "htlink" /* Suppose DDR Refresh cycle is 15.6 microsecond */ #define CPC925_REF_FREQ 0xFA69 #define CPC925_SCRUB_BLOCK_SIZE 64 /* bytes */ #define CPC925_NR_CSROWS 8 /* * All registers and bits definitions are taken from * "CPC925 Bridge and Memory Controller User Manual, SA14-2761-02". */ /* * CPU and Memory Controller Registers */ /************************************************************ * Processor Interface Exception Mask Register (APIMASK) ************************************************************/ #define REG_APIMASK_OFFSET 0x30070 enum apimask_bits { APIMASK_DART = CPC925_BIT(0), /* DART Exception */ APIMASK_ADI0 = CPC925_BIT(1), /* Handshake Error on PI0_ADI */ APIMASK_ADI1 = CPC925_BIT(2), /* Handshake Error on PI1_ADI */ APIMASK_STAT = CPC925_BIT(3), /* Status Exception */ APIMASK_DERR = CPC925_BIT(4), /* Data Error Exception */ APIMASK_ADRS0 = CPC925_BIT(5), /* Addressing Exception on PI0 */ APIMASK_ADRS1 = CPC925_BIT(6), /* Addressing Exception on PI1 */ /* BIT(7) Reserved */ APIMASK_ECC_UE_H = CPC925_BIT(8), /* UECC upper */ APIMASK_ECC_CE_H = CPC925_BIT(9), /* CECC upper */ APIMASK_ECC_UE_L = CPC925_BIT(10), /* UECC lower */ APIMASK_ECC_CE_L = CPC925_BIT(11), /* CECC lower */ CPU_MASK_ENABLE = (APIMASK_DART | APIMASK_ADI0 | APIMASK_ADI1 | APIMASK_STAT | APIMASK_DERR | APIMASK_ADRS0 | APIMASK_ADRS1), ECC_MASK_ENABLE = (APIMASK_ECC_UE_H | APIMASK_ECC_CE_H | APIMASK_ECC_UE_L | APIMASK_ECC_CE_L), }; #define APIMASK_ADI(n) CPC925_BIT(((n)+1)) /************************************************************ * Processor Interface Exception Register (APIEXCP) ************************************************************/ #define REG_APIEXCP_OFFSET 0x30060 enum apiexcp_bits { APIEXCP_DART = CPC925_BIT(0), /* DART Exception */ APIEXCP_ADI0 = CPC925_BIT(1), /* Handshake Error on PI0_ADI */ APIEXCP_ADI1 = CPC925_BIT(2), /* Handshake Error on PI1_ADI */ APIEXCP_STAT = CPC925_BIT(3), /* Status Exception */ APIEXCP_DERR = CPC925_BIT(4), /* Data Error Exception */ APIEXCP_ADRS0 = CPC925_BIT(5), /* Addressing Exception on PI0 */ APIEXCP_ADRS1 = CPC925_BIT(6), /* Addressing Exception on PI1 */ /* BIT(7) Reserved */ APIEXCP_ECC_UE_H = CPC925_BIT(8), /* UECC upper */ APIEXCP_ECC_CE_H = CPC925_BIT(9), /* CECC upper */ APIEXCP_ECC_UE_L = CPC925_BIT(10), /* UECC lower */ APIEXCP_ECC_CE_L = CPC925_BIT(11), /* CECC lower */ CPU_EXCP_DETECTED = (APIEXCP_DART | APIEXCP_ADI0 | APIEXCP_ADI1 | APIEXCP_STAT | APIEXCP_DERR | APIEXCP_ADRS0 | APIEXCP_ADRS1), UECC_EXCP_DETECTED = (APIEXCP_ECC_UE_H | APIEXCP_ECC_UE_L), CECC_EXCP_DETECTED = (APIEXCP_ECC_CE_H | APIEXCP_ECC_CE_L), ECC_EXCP_DETECTED = (UECC_EXCP_DETECTED | CECC_EXCP_DETECTED), }; /************************************************************ * Memory Bus Configuration Register (MBCR) ************************************************************/ #define REG_MBCR_OFFSET 0x2190 #define MBCR_64BITCFG_SHIFT 23 #define MBCR_64BITCFG_MASK (1UL << MBCR_64BITCFG_SHIFT) #define MBCR_64BITBUS_SHIFT 22 #define MBCR_64BITBUS_MASK (1UL << MBCR_64BITBUS_SHIFT) /************************************************************ * Memory Bank Mode Register (MBMR) ************************************************************/ #define REG_MBMR_OFFSET 0x21C0 #define MBMR_MODE_MAX_VALUE 0xF #define MBMR_MODE_SHIFT 25 #define MBMR_MODE_MASK (MBMR_MODE_MAX_VALUE << MBMR_MODE_SHIFT) #define MBMR_BBA_SHIFT 24 #define MBMR_BBA_MASK (1UL << MBMR_BBA_SHIFT) /************************************************************ * Memory Bank Boundary Address Register (MBBAR) ************************************************************/ #define REG_MBBAR_OFFSET 0x21D0 #define MBBAR_BBA_MAX_VALUE 0xFF #define MBBAR_BBA_SHIFT 24 #define MBBAR_BBA_MASK (MBBAR_BBA_MAX_VALUE << MBBAR_BBA_SHIFT) /************************************************************ * Memory Scrub Control Register (MSCR) ************************************************************/ #define REG_MSCR_OFFSET 0x2400 #define MSCR_SCRUB_MOD_MASK 0xC0000000 /* scrub_mod - bit0:1*/ #define MSCR_BACKGR_SCRUB 0x40000000 /* 01 */ #define MSCR_SI_SHIFT 16 /* si - bit8:15*/ #define MSCR_SI_MAX_VALUE 0xFF #define MSCR_SI_MASK (MSCR_SI_MAX_VALUE << MSCR_SI_SHIFT) /************************************************************ * Memory Scrub Range Start Register (MSRSR) ************************************************************/ #define REG_MSRSR_OFFSET 0x2410 /************************************************************ * Memory Scrub Range End Register (MSRER) ************************************************************/ #define REG_MSRER_OFFSET 0x2420 /************************************************************ * Memory Scrub Pattern Register (MSPR) ************************************************************/ #define REG_MSPR_OFFSET 0x2430 /************************************************************ * Memory Check Control Register (MCCR) ************************************************************/ #define REG_MCCR_OFFSET 0x2440 enum mccr_bits { MCCR_ECC_EN = CPC925_BIT(0), /* ECC high and low check */ }; /************************************************************ * Memory Check Range End Register (MCRER) ************************************************************/ #define REG_MCRER_OFFSET 0x2450 /************************************************************ * Memory Error Address Register (MEAR) ************************************************************/ #define REG_MEAR_OFFSET 0x2460 #define MEAR_BCNT_MAX_VALUE 0x3 #define MEAR_BCNT_SHIFT 30 #define MEAR_BCNT_MASK (MEAR_BCNT_MAX_VALUE << MEAR_BCNT_SHIFT) #define MEAR_RANK_MAX_VALUE 0x7 #define MEAR_RANK_SHIFT 27 #define MEAR_RANK_MASK (MEAR_RANK_MAX_VALUE << MEAR_RANK_SHIFT) #define MEAR_COL_MAX_VALUE 0x7FF #define MEAR_COL_SHIFT 16 #define MEAR_COL_MASK (MEAR_COL_MAX_VALUE << MEAR_COL_SHIFT) #define MEAR_BANK_MAX_VALUE 0x3 #define MEAR_BANK_SHIFT 14 #define MEAR_BANK_MASK (MEAR_BANK_MAX_VALUE << MEAR_BANK_SHIFT) #define MEAR_ROW_MASK 0x00003FFF /************************************************************ * Memory Error Syndrome Register (MESR) ************************************************************/ #define REG_MESR_OFFSET 0x2470 #define MESR_ECC_SYN_H_MASK 0xFF00 #define MESR_ECC_SYN_L_MASK 0x00FF /************************************************************ * Memory Mode Control Register (MMCR) ************************************************************/ #define REG_MMCR_OFFSET 0x2500 enum mmcr_bits { MMCR_REG_DIMM_MODE = CPC925_BIT(3), }; /* * HyperTransport Link Registers */ /************************************************************ * Error Handling/Enumeration Scratch Pad Register (ERRCTRL) ************************************************************/ #define REG_ERRCTRL_OFFSET 0x70140 enum errctrl_bits { /* nonfatal interrupts for */ ERRCTRL_SERR_NF = CPC925_BIT(0), /* system error */ ERRCTRL_CRC_NF = CPC925_BIT(1), /* CRC error */ ERRCTRL_RSP_NF = CPC925_BIT(2), /* Response error */ ERRCTRL_EOC_NF = CPC925_BIT(3), /* End-Of-Chain error */ ERRCTRL_OVF_NF = CPC925_BIT(4), /* Overflow error */ ERRCTRL_PROT_NF = CPC925_BIT(5), /* Protocol error */ ERRCTRL_RSP_ERR = CPC925_BIT(6), /* Response error received */ ERRCTRL_CHN_FAL = CPC925_BIT(7), /* Sync flooding detected */ HT_ERRCTRL_ENABLE = (ERRCTRL_SERR_NF | ERRCTRL_CRC_NF | ERRCTRL_RSP_NF | ERRCTRL_EOC_NF | ERRCTRL_OVF_NF | ERRCTRL_PROT_NF), HT_ERRCTRL_DETECTED = (ERRCTRL_RSP_ERR | ERRCTRL_CHN_FAL), }; /************************************************************ * Link Configuration and Link Control Register (LINKCTRL) ************************************************************/ #define REG_LINKCTRL_OFFSET 0x70110 enum linkctrl_bits { LINKCTRL_CRC_ERR = (CPC925_BIT(22) | CPC925_BIT(23)), LINKCTRL_LINK_FAIL = CPC925_BIT(27), HT_LINKCTRL_DETECTED = (LINKCTRL_CRC_ERR | LINKCTRL_LINK_FAIL), }; /************************************************************ * Link FreqCap/Error/Freq/Revision ID Register (LINKERR) ************************************************************/ #define REG_LINKERR_OFFSET 0x70120 enum linkerr_bits { LINKERR_EOC_ERR = CPC925_BIT(17), /* End-Of-Chain error */ LINKERR_OVF_ERR = CPC925_BIT(18), /* Receive Buffer Overflow */ LINKERR_PROT_ERR = CPC925_BIT(19), /* Protocol error */ HT_LINKERR_DETECTED = (LINKERR_EOC_ERR | LINKERR_OVF_ERR | LINKERR_PROT_ERR), }; /************************************************************ * Bridge Control Register (BRGCTRL) ************************************************************/ #define REG_BRGCTRL_OFFSET 0x70300 enum brgctrl_bits { BRGCTRL_DETSERR = CPC925_BIT(0), /* SERR on Secondary Bus */ BRGCTRL_SECBUSRESET = CPC925_BIT(9), /* Secondary Bus Reset */ }; /* Private structure for edac memory controller */ struct cpc925_mc_pdata { void __iomem *vbase; unsigned long total_mem; const char *name; int edac_idx; }; /* Private structure for common edac device */ struct cpc925_dev_info { void __iomem *vbase; struct platform_device *pdev; char *ctl_name; int edac_idx; struct edac_device_ctl_info *edac_dev; void (*init)(struct cpc925_dev_info *dev_info); void (*exit)(struct cpc925_dev_info *dev_info); void (*check)(struct edac_device_ctl_info *edac_dev); }; /* Get total memory size from Open Firmware DTB */ static void get_total_mem(struct cpc925_mc_pdata *pdata) { struct device_node *np = NULL; const unsigned int *reg, *reg_end; int len, sw, aw; unsigned long start, size; np = of_find_node_by_type(NULL, "memory"); if (!np) return; aw = of_n_addr_cells(np); sw = of_n_size_cells(np); reg = (const unsigned int *)of_get_property(np, "reg", &len); reg_end = reg + len/4; pdata->total_mem = 0; do { start = of_read_number(reg, aw); reg += aw; size = of_read_number(reg, sw); reg += sw; edac_dbg(1, "start 0x%lx, size 0x%lx\n", start, size); pdata->total_mem += size; } while (reg < reg_end); of_node_put(np); edac_dbg(0, "total_mem 0x%lx\n", pdata->total_mem); } static void cpc925_init_csrows(struct mem_ctl_info *mci) { struct cpc925_mc_pdata *pdata = mci->pvt_info; struct csrow_info *csrow; struct dimm_info *dimm; enum dev_type dtype; int index, j; u32 mbmr, mbbar, bba, grain; unsigned long row_size, nr_pages, last_nr_pages = 0; get_total_mem(pdata); for (index = 0; index < mci->nr_csrows; index++) { mbmr = __raw_readl(pdata->vbase + REG_MBMR_OFFSET + 0x20 * index); mbbar = __raw_readl(pdata->vbase + REG_MBBAR_OFFSET + 0x20 + index); bba = (((mbmr & MBMR_BBA_MASK) >> MBMR_BBA_SHIFT) << 8) | ((mbbar & MBBAR_BBA_MASK) >> MBBAR_BBA_SHIFT); if (bba == 0) continue; /* not populated */ csrow = mci->csrows[index]; row_size = bba * (1UL << 28); /* 256M */ csrow->first_page = last_nr_pages; nr_pages = row_size >> PAGE_SHIFT; csrow->last_page = csrow->first_page + nr_pages - 1; last_nr_pages = csrow->last_page + 1; switch (csrow->nr_channels) { case 1: /* Single channel */ grain = 32; /* four-beat burst of 32 bytes */ break; case 2: /* Dual channel */ default: grain = 64; /* four-beat burst of 64 bytes */ break; } switch ((mbmr & MBMR_MODE_MASK) >> MBMR_MODE_SHIFT) { case 6: /* 0110, no way to differentiate X8 VS X16 */ case 5: /* 0101 */ case 8: /* 1000 */ dtype = DEV_X16; break; case 7: /* 0111 */ case 9: /* 1001 */ dtype = DEV_X8; break; default: dtype = DEV_UNKNOWN; break; } for (j = 0; j < csrow->nr_channels; j++) { dimm = csrow->channels[j]->dimm; dimm->nr_pages = nr_pages / csrow->nr_channels; dimm->mtype = MEM_RDDR; dimm->edac_mode = EDAC_SECDED; dimm->grain = grain; dimm->dtype = dtype; } } } /* Enable memory controller ECC detection */ static void cpc925_mc_init(struct mem_ctl_info *mci) { struct cpc925_mc_pdata *pdata = mci->pvt_info; u32 apimask; u32 mccr; /* Enable various ECC error exceptions */ apimask = __raw_readl(pdata->vbase + REG_APIMASK_OFFSET); if ((apimask & ECC_MASK_ENABLE) == 0) { apimask |= ECC_MASK_ENABLE; __raw_writel(apimask, pdata->vbase + REG_APIMASK_OFFSET); } /* Enable ECC detection */ mccr = __raw_readl(pdata->vbase + REG_MCCR_OFFSET); if ((mccr & MCCR_ECC_EN) == 0) { mccr |= MCCR_ECC_EN; __raw_writel(mccr, pdata->vbase + REG_MCCR_OFFSET); } } /* Disable memory controller ECC detection */ static void cpc925_mc_exit(struct mem_ctl_info *mci) { /* * WARNING: * We are supposed to clear the ECC error detection bits, * and it will be no problem to do so. However, once they * are cleared here if we want to re-install CPC925 EDAC * module later, setting them up in cpc925_mc_init() will * trigger machine check exception. * Also, it's ok to leave ECC error detection bits enabled, * since they are reset to 1 by default or by boot loader. */ return; } /* * Revert DDR column/row/bank addresses into page frame number and * offset in page. * * Suppose memory mode is 0x0111(128-bit mode, identical DIMM pairs), * physical address(PA) bits to column address(CA) bits mappings are: * CA 0 1 2 3 4 5 6 7 8 9 10 * PA 59 58 57 56 55 54 53 52 51 50 49 * * physical address(PA) bits to bank address(BA) bits mappings are: * BA 0 1 * PA 43 44 * * physical address(PA) bits to row address(RA) bits mappings are: * RA 0 1 2 3 4 5 6 7 8 9 10 11 12 * PA 36 35 34 48 47 46 45 40 41 42 39 38 37 */ static void cpc925_mc_get_pfn(struct mem_ctl_info *mci, u32 mear, unsigned long *pfn, unsigned long *offset, int *csrow) { u32 bcnt, rank, col, bank, row; u32 c; unsigned long pa; int i; bcnt = (mear & MEAR_BCNT_MASK) >> MEAR_BCNT_SHIFT; rank = (mear & MEAR_RANK_MASK) >> MEAR_RANK_SHIFT; col = (mear & MEAR_COL_MASK) >> MEAR_COL_SHIFT; bank = (mear & MEAR_BANK_MASK) >> MEAR_BANK_SHIFT; row = mear & MEAR_ROW_MASK; *csrow = rank; #ifdef CONFIG_EDAC_DEBUG if (mci->csrows[rank]->first_page == 0) { cpc925_mc_printk(mci, KERN_ERR, "ECC occurs in a " "non-populated csrow, broken hardware?\n"); return; } #endif /* Revert csrow number */ pa = mci->csrows[rank]->first_page << PAGE_SHIFT; /* Revert column address */ col += bcnt; for (i = 0; i < 11; i++) { c = col & 0x1; col >>= 1; pa |= c << (14 - i); } /* Revert bank address */ pa |= bank << 19; /* Revert row address, in 4 steps */ for (i = 0; i < 3; i++) { c = row & 0x1; row >>= 1; pa |= c << (26 - i); } for (i = 0; i < 3; i++) { c = row & 0x1; row >>= 1; pa |= c << (21 + i); } for (i = 0; i < 4; i++) { c = row & 0x1; row >>= 1; pa |= c << (18 - i); } for (i = 0; i < 3; i++) { c = row & 0x1; row >>= 1; pa |= c << (29 - i); } *offset = pa & (PAGE_SIZE - 1); *pfn = pa >> PAGE_SHIFT; edac_dbg(0, "ECC physical address 0x%lx\n", pa); } static int cpc925_mc_find_channel(struct mem_ctl_info *mci, u16 syndrome) { if ((syndrome & MESR_ECC_SYN_H_MASK) == 0) return 0; if ((syndrome & MESR_ECC_SYN_L_MASK) == 0) return 1; cpc925_mc_printk(mci, KERN_INFO, "Unexpected syndrome value: 0x%x\n", syndrome); return 1; } /* Check memory controller registers for ECC errors */ static void cpc925_mc_check(struct mem_ctl_info *mci) { struct cpc925_mc_pdata *pdata = mci->pvt_info; u32 apiexcp; u32 mear; u32 mesr; u16 syndrome; unsigned long pfn = 0, offset = 0; int csrow = 0, channel = 0; /* APIEXCP is cleared when read */ apiexcp = __raw_readl(pdata->vbase + REG_APIEXCP_OFFSET); if ((apiexcp & ECC_EXCP_DETECTED) == 0) return; mesr = __raw_readl(pdata->vbase + REG_MESR_OFFSET); syndrome = mesr | (MESR_ECC_SYN_H_MASK | MESR_ECC_SYN_L_MASK); mear = __raw_readl(pdata->vbase + REG_MEAR_OFFSET); /* Revert column/row addresses into page frame number, etc */ cpc925_mc_get_pfn(mci, mear, &pfn, &offset, &csrow); if (apiexcp & CECC_EXCP_DETECTED) { cpc925_mc_printk(mci, KERN_INFO, "DRAM CECC Fault\n"); channel = cpc925_mc_find_channel(mci, syndrome); edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, pfn, offset, syndrome, csrow, channel, -1, mci->ctl_name, ""); } if (apiexcp & UECC_EXCP_DETECTED) { cpc925_mc_printk(mci, KERN_INFO, "DRAM UECC Fault\n"); edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, pfn, offset, 0, csrow, -1, -1, mci->ctl_name, ""); } cpc925_mc_printk(mci, KERN_INFO, "Dump registers:\n"); cpc925_mc_printk(mci, KERN_INFO, "APIMASK 0x%08x\n", __raw_readl(pdata->vbase + REG_APIMASK_OFFSET)); cpc925_mc_printk(mci, KERN_INFO, "APIEXCP 0x%08x\n", apiexcp); cpc925_mc_printk(mci, KERN_INFO, "Mem Scrub Ctrl 0x%08x\n", __raw_readl(pdata->vbase + REG_MSCR_OFFSET)); cpc925_mc_printk(mci, KERN_INFO, "Mem Scrub Rge Start 0x%08x\n", __raw_readl(pdata->vbase + REG_MSRSR_OFFSET)); cpc925_mc_printk(mci, KERN_INFO, "Mem Scrub Rge End 0x%08x\n", __raw_readl(pdata->vbase + REG_MSRER_OFFSET)); cpc925_mc_printk(mci, KERN_INFO, "Mem Scrub Pattern 0x%08x\n", __raw_readl(pdata->vbase + REG_MSPR_OFFSET)); cpc925_mc_printk(mci, KERN_INFO, "Mem Chk Ctrl 0x%08x\n", __raw_readl(pdata->vbase + REG_MCCR_OFFSET)); cpc925_mc_printk(mci, KERN_INFO, "Mem Chk Rge End 0x%08x\n", __raw_readl(pdata->vbase + REG_MCRER_OFFSET)); cpc925_mc_printk(mci, KERN_INFO, "Mem Err Address 0x%08x\n", mesr); cpc925_mc_printk(mci, KERN_INFO, "Mem Err Syndrome 0x%08x\n", syndrome); } /******************** CPU err device********************************/ static u32 cpc925_cpu_mask_disabled(void) { struct device_node *cpunode; static u32 mask = 0; /* use cached value if available */ if (mask != 0) return mask; mask = APIMASK_ADI0 | APIMASK_ADI1; for_each_of_cpu_node(cpunode) { const u32 *reg = of_get_property(cpunode, "reg", NULL); if (reg == NULL || *reg > 2) { cpc925_printk(KERN_ERR, "Bad reg value at %pOF\n", cpunode); continue; } mask &= ~APIMASK_ADI(*reg); } if (mask != (APIMASK_ADI0 | APIMASK_ADI1)) { /* We assume that each CPU sits on it's own PI and that * for present CPUs the reg property equals to the PI * interface id */ cpc925_printk(KERN_WARNING, "Assuming PI id is equal to CPU MPIC id!\n"); } return mask; } /* Enable CPU Errors detection */ static void cpc925_cpu_init(struct cpc925_dev_info *dev_info) { u32 apimask; u32 cpumask; apimask = __raw_readl(dev_info->vbase + REG_APIMASK_OFFSET); cpumask = cpc925_cpu_mask_disabled(); if (apimask & cpumask) { cpc925_printk(KERN_WARNING, "CPU(s) not present, " "but enabled in APIMASK, disabling\n"); apimask &= ~cpumask; } if ((apimask & CPU_MASK_ENABLE) == 0) apimask |= CPU_MASK_ENABLE; __raw_writel(apimask, dev_info->vbase + REG_APIMASK_OFFSET); } /* Disable CPU Errors detection */ static void cpc925_cpu_exit(struct cpc925_dev_info *dev_info) { /* * WARNING: * We are supposed to clear the CPU error detection bits, * and it will be no problem to do so. However, once they * are cleared here if we want to re-install CPC925 EDAC * module later, setting them up in cpc925_cpu_init() will * trigger machine check exception. * Also, it's ok to leave CPU error detection bits enabled, * since they are reset to 1 by default. */ return; } /* Check for CPU Errors */ static void cpc925_cpu_check(struct edac_device_ctl_info *edac_dev) { struct cpc925_dev_info *dev_info = edac_dev->pvt_info; u32 apiexcp; u32 apimask; /* APIEXCP is cleared when read */ apiexcp = __raw_readl(dev_info->vbase + REG_APIEXCP_OFFSET); if ((apiexcp & CPU_EXCP_DETECTED) == 0) return; if ((apiexcp & ~cpc925_cpu_mask_disabled()) == 0) return; apimask = __raw_readl(dev_info->vbase + REG_APIMASK_OFFSET); cpc925_printk(KERN_INFO, "Processor Interface Fault\n" "Processor Interface register dump:\n"); cpc925_printk(KERN_INFO, "APIMASK 0x%08x\n", apimask); cpc925_printk(KERN_INFO, "APIEXCP 0x%08x\n", apiexcp); edac_device_handle_ue(edac_dev, 0, 0, edac_dev->ctl_name); } /******************** HT Link err device****************************/ /* Enable HyperTransport Link Error detection */ static void cpc925_htlink_init(struct cpc925_dev_info *dev_info) { u32 ht_errctrl; ht_errctrl = __raw_readl(dev_info->vbase + REG_ERRCTRL_OFFSET); if ((ht_errctrl & HT_ERRCTRL_ENABLE) == 0) { ht_errctrl |= HT_ERRCTRL_ENABLE; __raw_writel(ht_errctrl, dev_info->vbase + REG_ERRCTRL_OFFSET); } } /* Disable HyperTransport Link Error detection */ static void cpc925_htlink_exit(struct cpc925_dev_info *dev_info) { u32 ht_errctrl; ht_errctrl = __raw_readl(dev_info->vbase + REG_ERRCTRL_OFFSET); ht_errctrl &= ~HT_ERRCTRL_ENABLE; __raw_writel(ht_errctrl, dev_info->vbase + REG_ERRCTRL_OFFSET); } /* Check for HyperTransport Link errors */ static void cpc925_htlink_check(struct edac_device_ctl_info *edac_dev) { struct cpc925_dev_info *dev_info = edac_dev->pvt_info; u32 brgctrl = __raw_readl(dev_info->vbase + REG_BRGCTRL_OFFSET); u32 linkctrl = __raw_readl(dev_info->vbase + REG_LINKCTRL_OFFSET); u32 errctrl = __raw_readl(dev_info->vbase + REG_ERRCTRL_OFFSET); u32 linkerr = __raw_readl(dev_info->vbase + REG_LINKERR_OFFSET); if (!((brgctrl & BRGCTRL_DETSERR) || (linkctrl & HT_LINKCTRL_DETECTED) || (errctrl & HT_ERRCTRL_DETECTED) || (linkerr & HT_LINKERR_DETECTED))) return; cpc925_printk(KERN_INFO, "HT Link Fault\n" "HT register dump:\n"); cpc925_printk(KERN_INFO, "Bridge Ctrl 0x%08x\n", brgctrl); cpc925_printk(KERN_INFO, "Link Config Ctrl 0x%08x\n", linkctrl); cpc925_printk(KERN_INFO, "Error Enum and Ctrl 0x%08x\n", errctrl); cpc925_printk(KERN_INFO, "Link Error 0x%08x\n", linkerr); /* Clear by write 1 */ if (brgctrl & BRGCTRL_DETSERR) __raw_writel(BRGCTRL_DETSERR, dev_info->vbase + REG_BRGCTRL_OFFSET); if (linkctrl & HT_LINKCTRL_DETECTED) __raw_writel(HT_LINKCTRL_DETECTED, dev_info->vbase + REG_LINKCTRL_OFFSET); /* Initiate Secondary Bus Reset to clear the chain failure */ if (errctrl & ERRCTRL_CHN_FAL) __raw_writel(BRGCTRL_SECBUSRESET, dev_info->vbase + REG_BRGCTRL_OFFSET); if (errctrl & ERRCTRL_RSP_ERR) __raw_writel(ERRCTRL_RSP_ERR, dev_info->vbase + REG_ERRCTRL_OFFSET); if (linkerr & HT_LINKERR_DETECTED) __raw_writel(HT_LINKERR_DETECTED, dev_info->vbase + REG_LINKERR_OFFSET); edac_device_handle_ce(edac_dev, 0, 0, edac_dev->ctl_name); } static struct cpc925_dev_info cpc925_devs[] = { { .ctl_name = CPC925_CPU_ERR_DEV, .init = cpc925_cpu_init, .exit = cpc925_cpu_exit, .check = cpc925_cpu_check, }, { .ctl_name = CPC925_HT_LINK_DEV, .init = cpc925_htlink_init, .exit = cpc925_htlink_exit, .check = cpc925_htlink_check, }, { } }; /* * Add CPU Err detection and HyperTransport Link Err detection * as common "edac_device", they have no corresponding device * nodes in the Open Firmware DTB and we have to add platform * devices for them. Also, they will share the MMIO with that * of memory controller. */ static void cpc925_add_edac_devices(void __iomem *vbase) { struct cpc925_dev_info *dev_info; if (!vbase) { cpc925_printk(KERN_ERR, "MMIO not established yet\n"); return; } for (dev_info = &cpc925_devs[0]; dev_info->init; dev_info++) { dev_info->vbase = vbase; dev_info->pdev = platform_device_register_simple( dev_info->ctl_name, 0, NULL, 0); if (IS_ERR(dev_info->pdev)) { cpc925_printk(KERN_ERR, "Can't register platform device for %s\n", dev_info->ctl_name); continue; } /* * Don't have to allocate private structure but * make use of cpc925_devs[] instead. */ dev_info->edac_idx = edac_device_alloc_index(); dev_info->edac_dev = edac_device_alloc_ctl_info(0, dev_info->ctl_name, 1, NULL, 0, 0, NULL, 0, dev_info->edac_idx); if (!dev_info->edac_dev) { cpc925_printk(KERN_ERR, "No memory for edac device\n"); goto err1; } dev_info->edac_dev->pvt_info = dev_info; dev_info->edac_dev->dev = &dev_info->pdev->dev; dev_info->edac_dev->ctl_name = dev_info->ctl_name; dev_info->edac_dev->mod_name = CPC925_EDAC_MOD_STR; dev_info->edac_dev->dev_name = dev_name(&dev_info->pdev->dev); if (edac_op_state == EDAC_OPSTATE_POLL) dev_info->edac_dev->edac_check = dev_info->check; if (dev_info->init) dev_info->init(dev_info); if (edac_device_add_device(dev_info->edac_dev) > 0) { cpc925_printk(KERN_ERR, "Unable to add edac device for %s\n", dev_info->ctl_name); goto err2; } edac_dbg(0, "Successfully added edac device for %s\n", dev_info->ctl_name); continue; err2: if (dev_info->exit) dev_info->exit(dev_info); edac_device_free_ctl_info(dev_info->edac_dev); err1: platform_device_unregister(dev_info->pdev); } } /* * Delete the common "edac_device" for CPU Err Detection * and HyperTransport Link Err Detection */ static void cpc925_del_edac_devices(void) { struct cpc925_dev_info *dev_info; for (dev_info = &cpc925_devs[0]; dev_info->init; dev_info++) { if (dev_info->edac_dev) { edac_device_del_device(dev_info->edac_dev->dev); edac_device_free_ctl_info(dev_info->edac_dev); platform_device_unregister(dev_info->pdev); } if (dev_info->exit) dev_info->exit(dev_info); edac_dbg(0, "Successfully deleted edac device for %s\n", dev_info->ctl_name); } } /* Convert current back-ground scrub rate into byte/sec bandwidth */ static int cpc925_get_sdram_scrub_rate(struct mem_ctl_info *mci) { struct cpc925_mc_pdata *pdata = mci->pvt_info; int bw; u32 mscr; u8 si; mscr = __raw_readl(pdata->vbase + REG_MSCR_OFFSET); si = (mscr & MSCR_SI_MASK) >> MSCR_SI_SHIFT; edac_dbg(0, "Mem Scrub Ctrl Register 0x%x\n", mscr); if (((mscr & MSCR_SCRUB_MOD_MASK) != MSCR_BACKGR_SCRUB) || (si == 0)) { cpc925_mc_printk(mci, KERN_INFO, "Scrub mode not enabled\n"); bw = 0; } else bw = CPC925_SCRUB_BLOCK_SIZE * 0xFA67 / si; return bw; } /* Return 0 for single channel; 1 for dual channel */ static int cpc925_mc_get_channels(void __iomem *vbase) { int dual = 0; u32 mbcr; mbcr = __raw_readl(vbase + REG_MBCR_OFFSET); /* * Dual channel only when 128-bit wide physical bus * and 128-bit configuration. */ if (((mbcr & MBCR_64BITCFG_MASK) == 0) && ((mbcr & MBCR_64BITBUS_MASK) == 0)) dual = 1; edac_dbg(0, "%s channel\n", (dual > 0) ? "Dual" : "Single"); return dual; } static int cpc925_probe(struct platform_device *pdev) { static int edac_mc_idx; struct mem_ctl_info *mci; struct edac_mc_layer layers[2]; void __iomem *vbase; struct cpc925_mc_pdata *pdata; struct resource *r; int res = 0, nr_channels; edac_dbg(0, "%s platform device found!\n", pdev->name); if (!devres_open_group(&pdev->dev, cpc925_probe, GFP_KERNEL)) { res = -ENOMEM; goto out; } r = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!r) { cpc925_printk(KERN_ERR, "Unable to get resource\n"); res = -ENOENT; goto err1; } if (!devm_request_mem_region(&pdev->dev, r->start, resource_size(r), pdev->name)) { cpc925_printk(KERN_ERR, "Unable to request mem region\n"); res = -EBUSY; goto err1; } vbase = devm_ioremap(&pdev->dev, r->start, resource_size(r)); if (!vbase) { cpc925_printk(KERN_ERR, "Unable to ioremap device\n"); res = -ENOMEM; goto err2; } nr_channels = cpc925_mc_get_channels(vbase) + 1; layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; layers[0].size = CPC925_NR_CSROWS; layers[0].is_virt_csrow = true; layers[1].type = EDAC_MC_LAYER_CHANNEL; layers[1].size = nr_channels; layers[1].is_virt_csrow = false; mci = edac_mc_alloc(edac_mc_idx, ARRAY_SIZE(layers), layers, sizeof(struct cpc925_mc_pdata)); if (!mci) { cpc925_printk(KERN_ERR, "No memory for mem_ctl_info\n"); res = -ENOMEM; goto err2; } pdata = mci->pvt_info; pdata->vbase = vbase; pdata->edac_idx = edac_mc_idx++; pdata->name = pdev->name; mci->pdev = &pdev->dev; platform_set_drvdata(pdev, mci); mci->dev_name = dev_name(&pdev->dev); mci->mtype_cap = MEM_FLAG_RDDR | MEM_FLAG_DDR; mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED; mci->edac_cap = EDAC_FLAG_SECDED; mci->mod_name = CPC925_EDAC_MOD_STR; mci->ctl_name = pdev->name; if (edac_op_state == EDAC_OPSTATE_POLL) mci->edac_check = cpc925_mc_check; mci->ctl_page_to_phys = NULL; mci->scrub_mode = SCRUB_SW_SRC; mci->set_sdram_scrub_rate = NULL; mci->get_sdram_scrub_rate = cpc925_get_sdram_scrub_rate; cpc925_init_csrows(mci); /* Setup memory controller registers */ cpc925_mc_init(mci); if (edac_mc_add_mc(mci) > 0) { cpc925_mc_printk(mci, KERN_ERR, "Failed edac_mc_add_mc()\n"); goto err3; } cpc925_add_edac_devices(vbase); /* get this far and it's successful */ edac_dbg(0, "success\n"); res = 0; goto out; err3: cpc925_mc_exit(mci); edac_mc_free(mci); err2: devm_release_mem_region(&pdev->dev, r->start, resource_size(r)); err1: devres_release_group(&pdev->dev, cpc925_probe); out: return res; } static int cpc925_remove(struct platform_device *pdev) { struct mem_ctl_info *mci = platform_get_drvdata(pdev); /* * Delete common edac devices before edac mc, because * the former share the MMIO of the latter. */ cpc925_del_edac_devices(); cpc925_mc_exit(mci); edac_mc_del_mc(&pdev->dev); edac_mc_free(mci); return 0; } static struct platform_driver cpc925_edac_driver = { .probe = cpc925_probe, .remove = cpc925_remove, .driver = { .name = "cpc925_edac", } }; static int __init cpc925_edac_init(void) { int ret = 0; printk(KERN_INFO "IBM CPC925 EDAC driver " CPC925_EDAC_REVISION "\n"); printk(KERN_INFO "\t(c) 2008 Wind River Systems, Inc\n"); /* Only support POLL mode so far */ edac_op_state = EDAC_OPSTATE_POLL; ret = platform_driver_register(&cpc925_edac_driver); if (ret) { printk(KERN_WARNING "Failed to register %s\n", CPC925_EDAC_MOD_STR); } return ret; } static void __exit cpc925_edac_exit(void) { platform_driver_unregister(&cpc925_edac_driver); } module_init(cpc925_edac_init); module_exit(cpc925_edac_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Cao Qingtao <qingtao.cao@windriver.com>"); MODULE_DESCRIPTION("IBM CPC925 Bridge and MC EDAC kernel module");