.. SPDX-License-Identifier: GPL-2.0

============================================================
Linux kernel driver for Elastic Network Adapter (ENA) family
============================================================

Overview
========

ENA is a networking interface designed to make good use of modern CPU
features and system architectures.

The ENA device exposes a lightweight management interface with a
minimal set of memory mapped registers and extendible command set
through an Admin Queue.

The driver supports a range of ENA devices, is link-speed independent
(i.e., the same driver is used for 10GbE, 25GbE, 40GbE, etc), and has
a negotiated and extendible feature set.

Some ENA devices support SR-IOV. This driver is used for both the
SR-IOV Physical Function (PF) and Virtual Function (VF) devices.

ENA devices enable high speed and low overhead network traffic
processing by providing multiple Tx/Rx queue pairs (the maximum number
is advertised by the device via the Admin Queue), a dedicated MSI-X
interrupt vector per Tx/Rx queue pair, adaptive interrupt moderation,
and CPU cacheline optimized data placement.

The ENA driver supports industry standard TCP/IP offload features such as
checksum offload. Receive-side scaling (RSS) is supported for multi-core
scaling.

The ENA driver and its corresponding devices implement health
monitoring mechanisms such as watchdog, enabling the device and driver
to recover in a manner transparent to the application, as well as
debug logs.

Some of the ENA devices support a working mode called Low-latency
Queue (LLQ), which saves several more microseconds.

ENA Source Code Directory Structure
===================================

=================   ======================================================
ena_com.[ch]        Management communication layer. This layer is
                    responsible for the handling all the management
                    (admin) communication between the device and the
                    driver.
ena_eth_com.[ch]    Tx/Rx data path.
ena_admin_defs.h    Definition of ENA management interface.
ena_eth_io_defs.h   Definition of ENA data path interface.
ena_common_defs.h   Common definitions for ena_com layer.
ena_regs_defs.h     Definition of ENA PCI memory-mapped (MMIO) registers.
ena_netdev.[ch]     Main Linux kernel driver.
ena_ethtool.c       ethtool callbacks.
ena_pci_id_tbl.h    Supported device IDs.
=================   ======================================================

Management Interface:
=====================

ENA management interface is exposed by means of:

- PCIe Configuration Space
- Device Registers
- Admin Queue (AQ) and Admin Completion Queue (ACQ)
- Asynchronous Event Notification Queue (AENQ)

ENA device MMIO Registers are accessed only during driver
initialization and are not used during further normal device
operation.

AQ is used for submitting management commands, and the
results/responses are reported asynchronously through ACQ.

ENA introduces a small set of management commands with room for
vendor-specific extensions. Most of the management operations are
framed in a generic Get/Set feature command.

The following admin queue commands are supported:

- Create I/O submission queue
- Create I/O completion queue
- Destroy I/O submission queue
- Destroy I/O completion queue
- Get feature
- Set feature
- Configure AENQ
- Get statistics

Refer to ena_admin_defs.h for the list of supported Get/Set Feature
properties.

The Asynchronous Event Notification Queue (AENQ) is a uni-directional
queue used by the ENA device to send to the driver events that cannot
be reported using ACQ. AENQ events are subdivided into groups. Each
group may have multiple syndromes, as shown below

The events are:

====================    ===============
Group                   Syndrome
====================    ===============
Link state change       **X**
Fatal error             **X**
Notification            Suspend traffic
Notification            Resume traffic
Keep-Alive              **X**
====================    ===============

ACQ and AENQ share the same MSI-X vector.

Keep-Alive is a special mechanism that allows monitoring the device's health.
A Keep-Alive event is delivered by the device every second.
The driver maintains a watchdog (WD) handler which logs the current state and
statistics. If the keep-alive events aren't delivered as expected the WD resets
the device and the driver.

Data Path Interface
===================

I/O operations are based on Tx and Rx Submission Queues (Tx SQ and Rx
SQ correspondingly). Each SQ has a completion queue (CQ) associated
with it.

The SQs and CQs are implemented as descriptor rings in contiguous
physical memory.

The ENA driver supports two Queue Operation modes for Tx SQs:

- **Regular mode:**
  In this mode the Tx SQs reside in the host's memory. The ENA
  device fetches the ENA Tx descriptors and packet data from host
  memory.

- **Low Latency Queue (LLQ) mode or "push-mode":**
  In this mode the driver pushes the transmit descriptors and the
  first 96 bytes of the packet directly to the ENA device memory
  space. The rest of the packet payload is fetched by the
  device. For this operation mode, the driver uses a dedicated PCI
  device memory BAR, which is mapped with write-combine capability.

  **Note that** not all ENA devices support LLQ, and this feature is negotiated
  with the device upon initialization. If the ENA device does not
  support LLQ mode, the driver falls back to the regular mode.

The Rx SQs support only the regular mode.

The driver supports multi-queue for both Tx and Rx. This has various
benefits:

- Reduced CPU/thread/process contention on a given Ethernet interface.
- Cache miss rate on completion is reduced, particularly for data
  cache lines that hold the sk_buff structures.
- Increased process-level parallelism when handling received packets.
- Increased data cache hit rate, by steering kernel processing of
  packets to the CPU, where the application thread consuming the
  packet is running.
- In hardware interrupt re-direction.

Interrupt Modes
===============

The driver assigns a single MSI-X vector per queue pair (for both Tx
and Rx directions). The driver assigns an additional dedicated MSI-X vector
for management (for ACQ and AENQ).

Management interrupt registration is performed when the Linux kernel
probes the adapter, and it is de-registered when the adapter is
removed. I/O queue interrupt registration is performed when the Linux
interface of the adapter is opened, and it is de-registered when the
interface is closed.

The management interrupt is named::

   ena-mgmnt@pci:<PCI domain:bus:slot.function>

and for each queue pair, an interrupt is named::

   <interface name>-Tx-Rx-<queue index>

The ENA device operates in auto-mask and auto-clear interrupt
modes. That is, once MSI-X is delivered to the host, its Cause bit is
automatically cleared and the interrupt is masked. The interrupt is
unmasked by the driver after NAPI processing is complete.

Interrupt Moderation
====================

ENA driver and device can operate in conventional or adaptive interrupt
moderation mode.

**In conventional mode** the driver instructs device to postpone interrupt
posting according to static interrupt delay value. The interrupt delay
value can be configured through `ethtool(8)`. The following `ethtool`
parameters are supported by the driver: ``tx-usecs``, ``rx-usecs``

**In adaptive interrupt** moderation mode the interrupt delay value is
updated by the driver dynamically and adjusted every NAPI cycle
according to the traffic nature.

Adaptive coalescing can be switched on/off through `ethtool(8)`'s
:code:`adaptive_rx on|off` parameter.

More information about Adaptive Interrupt Moderation (DIM) can be found in
Documentation/networking/net_dim.rst

.. _`RX copybreak`:

RX copybreak
============
The rx_copybreak is initialized by default to ENA_DEFAULT_RX_COPYBREAK
and can be configured by the ETHTOOL_STUNABLE command of the
SIOCETHTOOL ioctl.

Statistics
==========

The user can obtain ENA device and driver statistics using `ethtool`.
The driver can collect regular or extended statistics (including
per-queue stats) from the device.

In addition the driver logs the stats to syslog upon device reset.

MTU
===

The driver supports an arbitrarily large MTU with a maximum that is
negotiated with the device. The driver configures MTU using the
SetFeature command (ENA_ADMIN_MTU property). The user can change MTU
via `ip(8)` and similar legacy tools.

Stateless Offloads
==================

The ENA driver supports:

- IPv4 header checksum offload
- TCP/UDP over IPv4/IPv6 checksum offloads

RSS
===

- The ENA device supports RSS that allows flexible Rx traffic
  steering.
- Toeplitz and CRC32 hash functions are supported.
- Different combinations of L2/L3/L4 fields can be configured as
  inputs for hash functions.
- The driver configures RSS settings using the AQ SetFeature command
  (ENA_ADMIN_RSS_HASH_FUNCTION, ENA_ADMIN_RSS_HASH_INPUT and
  ENA_ADMIN_RSS_INDIRECTION_TABLE_CONFIG properties).
- If the NETIF_F_RXHASH flag is set, the 32-bit result of the hash
  function delivered in the Rx CQ descriptor is set in the received
  SKB.
- The user can provide a hash key, hash function, and configure the
  indirection table through `ethtool(8)`.

DATA PATH
=========

Tx
--

:code:`ena_start_xmit()` is called by the stack. This function does the following:

- Maps data buffers (``skb->data`` and frags).
- Populates ``ena_buf`` for the push buffer (if the driver and device are
  in push mode).
- Prepares ENA bufs for the remaining frags.
- Allocates a new request ID from the empty ``req_id`` ring. The request
  ID is the index of the packet in the Tx info. This is used for
  out-of-order Tx completions.
- Adds the packet to the proper place in the Tx ring.
- Calls :code:`ena_com_prepare_tx()`, an ENA communication layer that converts
  the ``ena_bufs`` to ENA descriptors (and adds meta ENA descriptors as
  needed).

  * This function also copies the ENA descriptors and the push buffer
    to the Device memory space (if in push mode).

- Writes a doorbell to the ENA device.
- When the ENA device finishes sending the packet, a completion
  interrupt is raised.
- The interrupt handler schedules NAPI.
- The :code:`ena_clean_tx_irq()` function is called. This function handles the
  completion descriptors generated by the ENA, with a single
  completion descriptor per completed packet.

  * ``req_id`` is retrieved from the completion descriptor. The ``tx_info`` of
    the packet is retrieved via the ``req_id``. The data buffers are
    unmapped and ``req_id`` is returned to the empty ``req_id`` ring.
  * The function stops when the completion descriptors are completed or
    the budget is reached.

Rx
--

- When a packet is received from the ENA device.
- The interrupt handler schedules NAPI.
- The :code:`ena_clean_rx_irq()` function is called. This function calls
  :code:`ena_com_rx_pkt()`, an ENA communication layer function, which returns the
  number of descriptors used for a new packet, and zero if
  no new packet is found.
- :code:`ena_rx_skb()` checks packet length:

  * If the packet is small (len < rx_copybreak), the driver allocates
    a SKB for the new packet, and copies the packet payload into the
    SKB data buffer.

    - In this way the original data buffer is not passed to the stack
      and is reused for future Rx packets.

  * Otherwise the function unmaps the Rx buffer, sets the first
    descriptor as `skb`'s linear part and the other descriptors as the
    `skb`'s frags.

- The new SKB is updated with the necessary information (protocol,
  checksum hw verify result, etc), and then passed to the network
  stack, using the NAPI interface function :code:`napi_gro_receive()`.

Dynamic RX Buffers (DRB)
------------------------

Each RX descriptor in the RX ring is a single memory page (which is either 4KB
or 16KB long depending on system's configurations).
To reduce the memory allocations required when dealing with a high rate of small
packets, the driver tries to reuse the remaining RX descriptor's space if more
than 2KB of this page remain unused.

A simple example of this mechanism is the following sequence of events:

::

        1. Driver allocates page-sized RX buffer and passes it to hardware
                +----------------------+
                |4KB RX Buffer         |
                +----------------------+

        2. A 300Bytes packet is received on this buffer

        3. The driver increases the ref count on this page and returns it back to
           HW as an RX buffer of size 4KB - 300Bytes = 3796 Bytes
               +----+--------------------+
               |****|3796 Bytes RX Buffer|
               +----+--------------------+

This mechanism isn't used when an XDP program is loaded, or when the
RX packet is less than rx_copybreak bytes (in which case the packet is
copied out of the RX buffer into the linear part of a new skb allocated
for it and the RX buffer remains the same size, see `RX copybreak`_).