/* * arch/sh/mm/ioremap.c * * (C) Copyright 1995 1996 Linus Torvalds * (C) Copyright 2005 - 2010 Paul Mundt * * Re-map IO memory to kernel address space so that we can access it. * This is needed for high PCI addresses that aren't mapped in the * 640k-1MB IO memory area on PC's * * This file is subject to the terms and conditions of the GNU General * Public License. See the file "COPYING" in the main directory of this * archive for more details. */ #include <linux/vmalloc.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/mm.h> #include <linux/pci.h> #include <linux/io.h> #include <asm/io_trapped.h> #include <asm/page.h> #include <asm/pgalloc.h> #include <asm/addrspace.h> #include <asm/cacheflush.h> #include <asm/tlbflush.h> #include <asm/mmu.h> #include "ioremap.h" /* * On 32-bit SH, we traditionally have the whole physical address space mapped * at all times (as MIPS does), so "ioremap()" and "iounmap()" do not need to do * anything but place the address in the proper segment. This is true for P1 * and P2 addresses, as well as some P3 ones. However, most of the P3 addresses * and newer cores using extended addressing need to map through page tables, so * the ioremap() implementation becomes a bit more complicated. */ #ifdef CONFIG_29BIT static void __iomem * __ioremap_29bit(phys_addr_t offset, unsigned long size, pgprot_t prot) { phys_addr_t last_addr = offset + size - 1; /* * For P1 and P2 space this is trivial, as everything is already * mapped. Uncached access for P1 addresses are done through P2. * In the P3 case or for addresses outside of the 29-bit space, * mapping must be done by the PMB or by using page tables. */ if (likely(PXSEG(offset) < P3SEG && PXSEG(last_addr) < P3SEG)) { u64 flags = pgprot_val(prot); /* * Anything using the legacy PTEA space attributes needs * to be kicked down to page table mappings. */ if (unlikely(flags & _PAGE_PCC_MASK)) return NULL; if (unlikely(flags & _PAGE_CACHABLE)) return (void __iomem *)P1SEGADDR(offset); return (void __iomem *)P2SEGADDR(offset); } /* P4 above the store queues are always mapped. */ if (unlikely(offset >= P3_ADDR_MAX)) return (void __iomem *)P4SEGADDR(offset); return NULL; } #else #define __ioremap_29bit(offset, size, prot) NULL #endif /* CONFIG_29BIT */ void __iomem __ref *ioremap_prot(phys_addr_t phys_addr, size_t size, unsigned long prot) { void __iomem *mapped; pgprot_t pgprot = __pgprot(prot); mapped = __ioremap_trapped(phys_addr, size); if (mapped) return mapped; mapped = __ioremap_29bit(phys_addr, size, pgprot); if (mapped) return mapped; /* * If we can't yet use the regular approach, go the fixmap route. */ if (!mem_init_done) return ioremap_fixed(phys_addr, size, pgprot); /* * First try to remap through the PMB. * PMB entries are all pre-faulted. */ mapped = pmb_remap_caller(phys_addr, size, pgprot, __builtin_return_address(0)); if (mapped && !IS_ERR(mapped)) return mapped; return generic_ioremap_prot(phys_addr, size, pgprot); } EXPORT_SYMBOL(ioremap_prot); /* * Simple checks for non-translatable mappings. */ static inline int iomapping_nontranslatable(unsigned long offset) { #ifdef CONFIG_29BIT /* * In 29-bit mode this includes the fixed P1/P2 areas, as well as * parts of P3. */ if (PXSEG(offset) < P3SEG || offset >= P3_ADDR_MAX) return 1; #endif return 0; } void iounmap(volatile void __iomem *addr) { unsigned long vaddr = (unsigned long __force)addr; /* * Nothing to do if there is no translatable mapping. */ if (iomapping_nontranslatable(vaddr)) return; /* * There's no VMA if it's from an early fixed mapping. */ if (iounmap_fixed((void __iomem *)addr) == 0) return; /* * If the PMB handled it, there's nothing else to do. */ if (pmb_unmap((void __iomem *)addr) == 0) return; generic_iounmap(addr); } EXPORT_SYMBOL(iounmap);