// SPDX-License-Identifier: GPL-2.0-only
/*
 *  Support for ColdFire CPU based boards using a NS8390 Ethernet device.
 *
 *  Derived from the many other 8390 drivers.
 *
 *  (C) Copyright 2012,  Greg Ungerer <gerg@uclinux.org>
 *
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/platform_device.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/jiffies.h>
#include <linux/io.h>
#include <asm/mcf8390.h>

static const char version[] =
	"mcf8390.c: (15-06-2012) Greg Ungerer <gerg@uclinux.org>";

#define NE_CMD		0x00
#define NE_DATAPORT	0x10	/* NatSemi-defined port window offset */
#define NE_RESET	0x1f	/* Issue a read to reset ,a write to clear */
#define NE_EN0_ISR	0x07
#define NE_EN0_DCFG	0x0e
#define NE_EN0_RSARLO	0x08
#define NE_EN0_RSARHI	0x09
#define NE_EN0_RCNTLO	0x0a
#define NE_EN0_RXCR	0x0c
#define NE_EN0_TXCR	0x0d
#define NE_EN0_RCNTHI	0x0b
#define NE_EN0_IMR	0x0f

#define NESM_START_PG	0x40	/* First page of TX buffer */
#define NESM_STOP_PG	0x80	/* Last page +1 of RX ring */

#ifdef NE2000_ODDOFFSET
/*
 * A lot of the ColdFire boards use a separate address region for odd offset
 * register addresses. The following functions convert and map as required.
 * Note that the data port accesses are treated a little differently, and
 * always accessed via the insX/outsX functions.
 */
static inline u32 NE_PTR(u32 addr)
{
	if (addr & 1)
		return addr - 1 + NE2000_ODDOFFSET;
	return addr;
}

static inline u32 NE_DATA_PTR(u32 addr)
{
	return addr;
}

void ei_outb(u32 val, u32 addr)
{
	NE2000_BYTE *rp;

	rp = (NE2000_BYTE *) NE_PTR(addr);
	*rp = RSWAP(val);
}

#define	ei_inb	ei_inb
u8 ei_inb(u32 addr)
{
	NE2000_BYTE *rp, val;

	rp = (NE2000_BYTE *) NE_PTR(addr);
	val = *rp;
	return (u8) (RSWAP(val) & 0xff);
}

void ei_insb(u32 addr, void *vbuf, int len)
{
	NE2000_BYTE *rp, val;
	u8 *buf;

	buf = (u8 *) vbuf;
	rp = (NE2000_BYTE *) NE_DATA_PTR(addr);
	for (; (len > 0); len--) {
		val = *rp;
		*buf++ = RSWAP(val);
	}
}

void ei_insw(u32 addr, void *vbuf, int len)
{
	volatile u16 *rp;
	u16 w, *buf;

	buf = (u16 *) vbuf;
	rp = (volatile u16 *) NE_DATA_PTR(addr);
	for (; (len > 0); len--) {
		w = *rp;
		*buf++ = BSWAP(w);
	}
}

void ei_outsb(u32 addr, const void *vbuf, int len)
{
	NE2000_BYTE *rp, val;
	u8 *buf;

	buf = (u8 *) vbuf;
	rp = (NE2000_BYTE *) NE_DATA_PTR(addr);
	for (; (len > 0); len--) {
		val = *buf++;
		*rp = RSWAP(val);
	}
}

void ei_outsw(u32 addr, const void *vbuf, int len)
{
	volatile u16 *rp;
	u16 w, *buf;

	buf = (u16 *) vbuf;
	rp = (volatile u16 *) NE_DATA_PTR(addr);
	for (; (len > 0); len--) {
		w = *buf++;
		*rp = BSWAP(w);
	}
}

#else /* !NE2000_ODDOFFSET */

#define	ei_inb		inb
#define	ei_outb		outb
#define	ei_insb		insb
#define	ei_insw		insw
#define	ei_outsb	outsb
#define	ei_outsw	outsw

#endif /* !NE2000_ODDOFFSET */

#define	ei_inb_p	ei_inb
#define	ei_outb_p	ei_outb

#include "lib8390.c"

/*
 * Hard reset the card. This used to pause for the same period that a
 * 8390 reset command required, but that shouldn't be necessary.
 */
static void mcf8390_reset_8390(struct net_device *dev)
{
	unsigned long reset_start_time = jiffies;
	u32 addr = dev->base_addr;
	struct ei_device *ei_local = netdev_priv(dev);

	netif_dbg(ei_local, hw, dev, "resetting the 8390 t=%ld...\n", jiffies);

	ei_outb(ei_inb(addr + NE_RESET), addr + NE_RESET);

	ei_status.txing = 0;
	ei_status.dmaing = 0;

	/* This check _should_not_ be necessary, omit eventually. */
	while ((ei_inb(addr + NE_EN0_ISR) & ENISR_RESET) == 0) {
		if (time_after(jiffies, reset_start_time + 2 * HZ / 100)) {
			netdev_warn(dev, "%s: did not complete\n", __func__);
			break;
		}
	}

	ei_outb(ENISR_RESET, addr + NE_EN0_ISR);
}

/*
 * This *shouldn't* happen.
 * If it does, it's the last thing you'll see
 */
static void mcf8390_dmaing_err(const char *func, struct net_device *dev,
			       struct ei_device *ei_local)
{
	netdev_err(dev, "%s: DMAing conflict [DMAstat:%d][irqlock:%d]\n",
		func, ei_local->dmaing, ei_local->irqlock);
}

/*
 * Grab the 8390 specific header. Similar to the block_input routine, but
 * we don't need to be concerned with ring wrap as the header will be at
 * the start of a page, so we optimize accordingly.
 */
static void mcf8390_get_8390_hdr(struct net_device *dev,
				 struct e8390_pkt_hdr *hdr, int ring_page)
{
	struct ei_device *ei_local = netdev_priv(dev);
	u32 addr = dev->base_addr;

	if (ei_local->dmaing) {
		mcf8390_dmaing_err(__func__, dev, ei_local);
		return;
	}

	ei_local->dmaing |= 0x01;
	ei_outb(E8390_NODMA + E8390_PAGE0 + E8390_START, addr + NE_CMD);
	ei_outb(ENISR_RDC, addr + NE_EN0_ISR);
	ei_outb(sizeof(struct e8390_pkt_hdr), addr + NE_EN0_RCNTLO);
	ei_outb(0, addr + NE_EN0_RCNTHI);
	ei_outb(0, addr + NE_EN0_RSARLO);		/* On page boundary */
	ei_outb(ring_page, addr + NE_EN0_RSARHI);
	ei_outb(E8390_RREAD + E8390_START, addr + NE_CMD);

	ei_insw(addr + NE_DATAPORT, hdr, sizeof(struct e8390_pkt_hdr) >> 1);

	outb(ENISR_RDC, addr + NE_EN0_ISR);	/* Ack intr */
	ei_local->dmaing &= ~0x01;

	hdr->count = cpu_to_le16(hdr->count);
}

/*
 * Block input and output, similar to the Crynwr packet driver.
 * If you are porting to a new ethercard, look at the packet driver source
 * for hints. The NEx000 doesn't share the on-board packet memory --
 * you have to put the packet out through the "remote DMA" dataport
 * using z_writeb.
 */
static void mcf8390_block_input(struct net_device *dev, int count,
				struct sk_buff *skb, int ring_offset)
{
	struct ei_device *ei_local = netdev_priv(dev);
	u32 addr = dev->base_addr;
	char *buf = skb->data;

	if (ei_local->dmaing) {
		mcf8390_dmaing_err(__func__, dev, ei_local);
		return;
	}

	ei_local->dmaing |= 0x01;
	ei_outb(E8390_NODMA + E8390_PAGE0 + E8390_START, addr + NE_CMD);
	ei_outb(ENISR_RDC, addr + NE_EN0_ISR);
	ei_outb(count & 0xff, addr + NE_EN0_RCNTLO);
	ei_outb(count >> 8, addr + NE_EN0_RCNTHI);
	ei_outb(ring_offset & 0xff, addr + NE_EN0_RSARLO);
	ei_outb(ring_offset >> 8, addr + NE_EN0_RSARHI);
	ei_outb(E8390_RREAD + E8390_START, addr + NE_CMD);

	ei_insw(addr + NE_DATAPORT, buf, count >> 1);
	if (count & 1)
		buf[count - 1] = ei_inb(addr + NE_DATAPORT);

	ei_outb(ENISR_RDC, addr + NE_EN0_ISR);	/* Ack intr */
	ei_local->dmaing &= ~0x01;
}

static void mcf8390_block_output(struct net_device *dev, int count,
				 const unsigned char *buf,
				 const int start_page)
{
	struct ei_device *ei_local = netdev_priv(dev);
	u32 addr = dev->base_addr;
	unsigned long dma_start;

	/* Make sure we transfer all bytes if 16bit IO writes */
	if (count & 0x1)
		count++;

	if (ei_local->dmaing) {
		mcf8390_dmaing_err(__func__, dev, ei_local);
		return;
	}

	ei_local->dmaing |= 0x01;
	/* We should already be in page 0, but to be safe... */
	ei_outb(E8390_PAGE0 + E8390_START + E8390_NODMA, addr + NE_CMD);

	ei_outb(ENISR_RDC, addr + NE_EN0_ISR);

	/* Now the normal output. */
	ei_outb(count & 0xff, addr + NE_EN0_RCNTLO);
	ei_outb(count >> 8, addr + NE_EN0_RCNTHI);
	ei_outb(0x00, addr + NE_EN0_RSARLO);
	ei_outb(start_page, addr + NE_EN0_RSARHI);
	ei_outb(E8390_RWRITE + E8390_START, addr + NE_CMD);

	ei_outsw(addr + NE_DATAPORT, buf, count >> 1);

	dma_start = jiffies;
	while ((ei_inb(addr + NE_EN0_ISR) & ENISR_RDC) == 0) {
		if (time_after(jiffies, dma_start + 2 * HZ / 100)) { /* 20ms */
			netdev_warn(dev, "timeout waiting for Tx RDC\n");
			mcf8390_reset_8390(dev);
			__NS8390_init(dev, 1);
			break;
		}
	}

	ei_outb(ENISR_RDC, addr + NE_EN0_ISR);	/* Ack intr */
	ei_local->dmaing &= ~0x01;
}

static const struct net_device_ops mcf8390_netdev_ops = {
	.ndo_open		= __ei_open,
	.ndo_stop		= __ei_close,
	.ndo_start_xmit		= __ei_start_xmit,
	.ndo_tx_timeout		= __ei_tx_timeout,
	.ndo_get_stats		= __ei_get_stats,
	.ndo_set_rx_mode	= __ei_set_multicast_list,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_set_mac_address	= eth_mac_addr,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= __ei_poll,
#endif
};

static int mcf8390_init(struct net_device *dev)
{
	static u32 offsets[] = {
		0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
		0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
	};
	struct ei_device *ei_local = netdev_priv(dev);
	unsigned char SA_prom[32];
	u32 addr = dev->base_addr;
	int start_page, stop_page;
	int i, ret;

	mcf8390_reset_8390(dev);

	/*
	 * Read the 16 bytes of station address PROM.
	 * We must first initialize registers,
	 * similar to NS8390_init(eifdev, 0).
	 * We can't reliably read the SAPROM address without this.
	 * (I learned the hard way!).
	 */
	{
		static const struct {
			u32 value;
			u32 offset;
		} program_seq[] = {
			{E8390_NODMA + E8390_PAGE0 + E8390_STOP, NE_CMD},
						/* Select page 0 */
			{0x48,	NE_EN0_DCFG},	/* 0x48: Set byte-wide access */
			{0x00,	NE_EN0_RCNTLO},	/* Clear the count regs */
			{0x00,	NE_EN0_RCNTHI},
			{0x00,	NE_EN0_IMR},	/* Mask completion irq */
			{0xFF,	NE_EN0_ISR},
			{E8390_RXOFF, NE_EN0_RXCR}, /* 0x20 Set to monitor */
			{E8390_TXOFF, NE_EN0_TXCR}, /* 0x02 and loopback mode */
			{32,	NE_EN0_RCNTLO},
			{0x00,	NE_EN0_RCNTHI},
			{0x00,	NE_EN0_RSARLO},	/* DMA starting at 0x0000 */
			{0x00,	NE_EN0_RSARHI},
			{E8390_RREAD + E8390_START, NE_CMD},
		};
		for (i = 0; i < ARRAY_SIZE(program_seq); i++) {
			ei_outb(program_seq[i].value,
				 addr + program_seq[i].offset);
		}
	}

	for (i = 0; i < 16; i++) {
		SA_prom[i] = ei_inb(addr + NE_DATAPORT);
		ei_inb(addr + NE_DATAPORT);
	}

	/* We must set the 8390 for word mode. */
	ei_outb(0x49, addr + NE_EN0_DCFG);
	start_page = NESM_START_PG;
	stop_page = NESM_STOP_PG;

	/* Install the Interrupt handler */
	ret = request_irq(dev->irq, __ei_interrupt, 0, dev->name, dev);
	if (ret)
		return ret;

	eth_hw_addr_set(dev, SA_prom);

	netdev_dbg(dev, "Found ethernet address: %pM\n", dev->dev_addr);

	ei_local->name = "mcf8390";
	ei_local->tx_start_page = start_page;
	ei_local->stop_page = stop_page;
	ei_local->word16 = 1;
	ei_local->rx_start_page = start_page + TX_PAGES;
	ei_local->reset_8390 = mcf8390_reset_8390;
	ei_local->block_input = mcf8390_block_input;
	ei_local->block_output = mcf8390_block_output;
	ei_local->get_8390_hdr = mcf8390_get_8390_hdr;
	ei_local->reg_offset = offsets;

	dev->netdev_ops = &mcf8390_netdev_ops;
	__NS8390_init(dev, 0);
	ret = register_netdev(dev);
	if (ret) {
		free_irq(dev->irq, dev);
		return ret;
	}

	netdev_info(dev, "addr=0x%08x irq=%d, Ethernet Address %pM\n",
		addr, dev->irq, dev->dev_addr);
	return 0;
}

static int mcf8390_probe(struct platform_device *pdev)
{
	struct net_device *dev;
	struct resource *mem;
	resource_size_t msize;
	int ret, irq;

	irq = platform_get_irq(pdev, 0);
	if (irq < 0)
		return -ENXIO;

	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (mem == NULL) {
		dev_err(&pdev->dev, "no memory address specified?\n");
		return -ENXIO;
	}
	msize = resource_size(mem);
	if (!request_mem_region(mem->start, msize, pdev->name))
		return -EBUSY;

	dev = ____alloc_ei_netdev(0);
	if (dev == NULL) {
		release_mem_region(mem->start, msize);
		return -ENOMEM;
	}

	SET_NETDEV_DEV(dev, &pdev->dev);
	platform_set_drvdata(pdev, dev);

	dev->irq = irq;
	dev->base_addr = mem->start;

	ret = mcf8390_init(dev);
	if (ret) {
		release_mem_region(mem->start, msize);
		free_netdev(dev);
		return ret;
	}
	return 0;
}

static int mcf8390_remove(struct platform_device *pdev)
{
	struct net_device *dev = platform_get_drvdata(pdev);
	struct resource *mem;

	unregister_netdev(dev);
	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	release_mem_region(mem->start, resource_size(mem));
	free_netdev(dev);
	return 0;
}

static struct platform_driver mcf8390_drv = {
	.driver = {
		.name	= "mcf8390",
	},
	.probe		= mcf8390_probe,
	.remove		= mcf8390_remove,
};

module_platform_driver(mcf8390_drv);

MODULE_DESCRIPTION("MCF8390 ColdFire NS8390 driver");
MODULE_AUTHOR("Greg Ungerer <gerg@uclinux.org>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:mcf8390");