// SPDX-License-Identifier: GPL-2.0 /* * Hosting Protected Virtual Machines * * Copyright IBM Corp. 2019, 2020 * Author(s): Janosch Frank <frankja@linux.ibm.com> */ #include <linux/kvm.h> #include <linux/kvm_host.h> #include <linux/minmax.h> #include <linux/pagemap.h> #include <linux/sched/signal.h> #include <asm/gmap.h> #include <asm/uv.h> #include <asm/mman.h> #include <linux/pagewalk.h> #include <linux/sched/mm.h> #include <linux/mmu_notifier.h> #include "kvm-s390.h" bool kvm_s390_pv_is_protected(struct kvm *kvm) { lockdep_assert_held(&kvm->lock); return !!kvm_s390_pv_get_handle(kvm); } EXPORT_SYMBOL_GPL(kvm_s390_pv_is_protected); bool kvm_s390_pv_cpu_is_protected(struct kvm_vcpu *vcpu) { lockdep_assert_held(&vcpu->mutex); return !!kvm_s390_pv_cpu_get_handle(vcpu); } EXPORT_SYMBOL_GPL(kvm_s390_pv_cpu_is_protected); /** * struct pv_vm_to_be_destroyed - Represents a protected VM that needs to * be destroyed * * @list: list head for the list of leftover VMs * @old_gmap_table: the gmap table of the leftover protected VM * @handle: the handle of the leftover protected VM * @stor_var: pointer to the variable storage of the leftover protected VM * @stor_base: address of the base storage of the leftover protected VM * * Represents a protected VM that is still registered with the Ultravisor, * but which does not correspond any longer to an active KVM VM. It should * be destroyed at some point later, either asynchronously or when the * process terminates. */ struct pv_vm_to_be_destroyed { struct list_head list; unsigned long old_gmap_table; u64 handle; void *stor_var; unsigned long stor_base; }; static void kvm_s390_clear_pv_state(struct kvm *kvm) { kvm->arch.pv.handle = 0; kvm->arch.pv.guest_len = 0; kvm->arch.pv.stor_base = 0; kvm->arch.pv.stor_var = NULL; } int kvm_s390_pv_destroy_cpu(struct kvm_vcpu *vcpu, u16 *rc, u16 *rrc) { int cc; if (!kvm_s390_pv_cpu_get_handle(vcpu)) return 0; cc = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu), UVC_CMD_DESTROY_SEC_CPU, rc, rrc); KVM_UV_EVENT(vcpu->kvm, 3, "PROTVIRT DESTROY VCPU %d: rc %x rrc %x", vcpu->vcpu_id, *rc, *rrc); WARN_ONCE(cc, "protvirt destroy cpu failed rc %x rrc %x", *rc, *rrc); /* Intended memory leak for something that should never happen. */ if (!cc) free_pages(vcpu->arch.pv.stor_base, get_order(uv_info.guest_cpu_stor_len)); free_page((unsigned long)sida_addr(vcpu->arch.sie_block)); vcpu->arch.sie_block->pv_handle_cpu = 0; vcpu->arch.sie_block->pv_handle_config = 0; memset(&vcpu->arch.pv, 0, sizeof(vcpu->arch.pv)); vcpu->arch.sie_block->sdf = 0; /* * The sidad field (for sdf == 2) is now the gbea field (for sdf == 0). * Use the reset value of gbea to avoid leaking the kernel pointer of * the just freed sida. */ vcpu->arch.sie_block->gbea = 1; kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); return cc ? EIO : 0; } int kvm_s390_pv_create_cpu(struct kvm_vcpu *vcpu, u16 *rc, u16 *rrc) { struct uv_cb_csc uvcb = { .header.cmd = UVC_CMD_CREATE_SEC_CPU, .header.len = sizeof(uvcb), }; void *sida_addr; int cc; if (kvm_s390_pv_cpu_get_handle(vcpu)) return -EINVAL; vcpu->arch.pv.stor_base = __get_free_pages(GFP_KERNEL_ACCOUNT, get_order(uv_info.guest_cpu_stor_len)); if (!vcpu->arch.pv.stor_base) return -ENOMEM; /* Input */ uvcb.guest_handle = kvm_s390_pv_get_handle(vcpu->kvm); uvcb.num = vcpu->arch.sie_block->icpua; uvcb.state_origin = virt_to_phys(vcpu->arch.sie_block); uvcb.stor_origin = virt_to_phys((void *)vcpu->arch.pv.stor_base); /* Alloc Secure Instruction Data Area Designation */ sida_addr = (void *)__get_free_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); if (!sida_addr) { free_pages(vcpu->arch.pv.stor_base, get_order(uv_info.guest_cpu_stor_len)); return -ENOMEM; } vcpu->arch.sie_block->sidad = virt_to_phys(sida_addr); cc = uv_call(0, (u64)&uvcb); *rc = uvcb.header.rc; *rrc = uvcb.header.rrc; KVM_UV_EVENT(vcpu->kvm, 3, "PROTVIRT CREATE VCPU: cpu %d handle %llx rc %x rrc %x", vcpu->vcpu_id, uvcb.cpu_handle, uvcb.header.rc, uvcb.header.rrc); if (cc) { u16 dummy; kvm_s390_pv_destroy_cpu(vcpu, &dummy, &dummy); return -EIO; } /* Output */ vcpu->arch.pv.handle = uvcb.cpu_handle; vcpu->arch.sie_block->pv_handle_cpu = uvcb.cpu_handle; vcpu->arch.sie_block->pv_handle_config = kvm_s390_pv_get_handle(vcpu->kvm); vcpu->arch.sie_block->sdf = 2; kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); return 0; } /* only free resources when the destroy was successful */ static void kvm_s390_pv_dealloc_vm(struct kvm *kvm) { vfree(kvm->arch.pv.stor_var); free_pages(kvm->arch.pv.stor_base, get_order(uv_info.guest_base_stor_len)); kvm_s390_clear_pv_state(kvm); } static int kvm_s390_pv_alloc_vm(struct kvm *kvm) { unsigned long base = uv_info.guest_base_stor_len; unsigned long virt = uv_info.guest_virt_var_stor_len; unsigned long npages = 0, vlen = 0; kvm->arch.pv.stor_var = NULL; kvm->arch.pv.stor_base = __get_free_pages(GFP_KERNEL_ACCOUNT, get_order(base)); if (!kvm->arch.pv.stor_base) return -ENOMEM; /* * Calculate current guest storage for allocation of the * variable storage, which is based on the length in MB. * * Slots are sorted by GFN */ mutex_lock(&kvm->slots_lock); npages = kvm_s390_get_gfn_end(kvm_memslots(kvm)); mutex_unlock(&kvm->slots_lock); kvm->arch.pv.guest_len = npages * PAGE_SIZE; /* Allocate variable storage */ vlen = ALIGN(virt * ((npages * PAGE_SIZE) / HPAGE_SIZE), PAGE_SIZE); vlen += uv_info.guest_virt_base_stor_len; kvm->arch.pv.stor_var = vzalloc(vlen); if (!kvm->arch.pv.stor_var) goto out_err; return 0; out_err: kvm_s390_pv_dealloc_vm(kvm); return -ENOMEM; } /** * kvm_s390_pv_dispose_one_leftover - Clean up one leftover protected VM. * @kvm: the KVM that was associated with this leftover protected VM * @leftover: details about the leftover protected VM that needs a clean up * @rc: the RC code of the Destroy Secure Configuration UVC * @rrc: the RRC code of the Destroy Secure Configuration UVC * * Destroy one leftover protected VM. * On success, kvm->mm->context.protected_count will be decremented atomically * and all other resources used by the VM will be freed. * * Return: 0 in case of success, otherwise 1 */ static int kvm_s390_pv_dispose_one_leftover(struct kvm *kvm, struct pv_vm_to_be_destroyed *leftover, u16 *rc, u16 *rrc) { int cc; /* It used the destroy-fast UVC, nothing left to do here */ if (!leftover->handle) goto done_fast; cc = uv_cmd_nodata(leftover->handle, UVC_CMD_DESTROY_SEC_CONF, rc, rrc); KVM_UV_EVENT(kvm, 3, "PROTVIRT DESTROY LEFTOVER VM: rc %x rrc %x", *rc, *rrc); WARN_ONCE(cc, "protvirt destroy leftover vm failed rc %x rrc %x", *rc, *rrc); if (cc) return cc; /* * Intentionally leak unusable memory. If the UVC fails, the memory * used for the VM and its metadata is permanently unusable. * This can only happen in case of a serious KVM or hardware bug; it * is not expected to happen in normal operation. */ free_pages(leftover->stor_base, get_order(uv_info.guest_base_stor_len)); free_pages(leftover->old_gmap_table, CRST_ALLOC_ORDER); vfree(leftover->stor_var); done_fast: atomic_dec(&kvm->mm->context.protected_count); return 0; } /** * kvm_s390_destroy_lower_2g - Destroy the first 2GB of protected guest memory. * @kvm: the VM whose memory is to be cleared. * * Destroy the first 2GB of guest memory, to avoid prefix issues after reboot. * The CPUs of the protected VM need to be destroyed beforehand. */ static void kvm_s390_destroy_lower_2g(struct kvm *kvm) { const unsigned long pages_2g = SZ_2G / PAGE_SIZE; struct kvm_memory_slot *slot; unsigned long len; int srcu_idx; srcu_idx = srcu_read_lock(&kvm->srcu); /* Take the memslot containing guest absolute address 0 */ slot = gfn_to_memslot(kvm, 0); /* Clear all slots or parts thereof that are below 2GB */ while (slot && slot->base_gfn < pages_2g) { len = min_t(u64, slot->npages, pages_2g - slot->base_gfn) * PAGE_SIZE; s390_uv_destroy_range(kvm->mm, slot->userspace_addr, slot->userspace_addr + len); /* Take the next memslot */ slot = gfn_to_memslot(kvm, slot->base_gfn + slot->npages); } srcu_read_unlock(&kvm->srcu, srcu_idx); } static int kvm_s390_pv_deinit_vm_fast(struct kvm *kvm, u16 *rc, u16 *rrc) { struct uv_cb_destroy_fast uvcb = { .header.cmd = UVC_CMD_DESTROY_SEC_CONF_FAST, .header.len = sizeof(uvcb), .handle = kvm_s390_pv_get_handle(kvm), }; int cc; cc = uv_call_sched(0, (u64)&uvcb); if (rc) *rc = uvcb.header.rc; if (rrc) *rrc = uvcb.header.rrc; WRITE_ONCE(kvm->arch.gmap->guest_handle, 0); KVM_UV_EVENT(kvm, 3, "PROTVIRT DESTROY VM FAST: rc %x rrc %x", uvcb.header.rc, uvcb.header.rrc); WARN_ONCE(cc && uvcb.header.rc != 0x104, "protvirt destroy vm fast failed handle %llx rc %x rrc %x", kvm_s390_pv_get_handle(kvm), uvcb.header.rc, uvcb.header.rrc); /* Intended memory leak on "impossible" error */ if (!cc) kvm_s390_pv_dealloc_vm(kvm); return cc ? -EIO : 0; } static inline bool is_destroy_fast_available(void) { return test_bit_inv(BIT_UVC_CMD_DESTROY_SEC_CONF_FAST, uv_info.inst_calls_list); } /** * kvm_s390_pv_set_aside - Set aside a protected VM for later teardown. * @kvm: the VM * @rc: return value for the RC field of the UVCB * @rrc: return value for the RRC field of the UVCB * * Set aside the protected VM for a subsequent teardown. The VM will be able * to continue immediately as a non-secure VM, and the information needed to * properly tear down the protected VM is set aside. If another protected VM * was already set aside without starting its teardown, this function will * fail. * The CPUs of the protected VM need to be destroyed beforehand. * * Context: kvm->lock needs to be held * * Return: 0 in case of success, -EINVAL if another protected VM was already set * aside, -ENOMEM if the system ran out of memory. */ int kvm_s390_pv_set_aside(struct kvm *kvm, u16 *rc, u16 *rrc) { struct pv_vm_to_be_destroyed *priv; int res = 0; lockdep_assert_held(&kvm->lock); /* * If another protected VM was already prepared for teardown, refuse. * A normal deinitialization has to be performed instead. */ if (kvm->arch.pv.set_aside) return -EINVAL; /* Guest with segment type ASCE, refuse to destroy asynchronously */ if ((kvm->arch.gmap->asce & _ASCE_TYPE_MASK) == _ASCE_TYPE_SEGMENT) return -EINVAL; priv = kzalloc(sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; if (is_destroy_fast_available()) { res = kvm_s390_pv_deinit_vm_fast(kvm, rc, rrc); } else { priv->stor_var = kvm->arch.pv.stor_var; priv->stor_base = kvm->arch.pv.stor_base; priv->handle = kvm_s390_pv_get_handle(kvm); priv->old_gmap_table = (unsigned long)kvm->arch.gmap->table; WRITE_ONCE(kvm->arch.gmap->guest_handle, 0); if (s390_replace_asce(kvm->arch.gmap)) res = -ENOMEM; } if (res) { kfree(priv); return res; } kvm_s390_destroy_lower_2g(kvm); kvm_s390_clear_pv_state(kvm); kvm->arch.pv.set_aside = priv; *rc = UVC_RC_EXECUTED; *rrc = 42; return 0; } /** * kvm_s390_pv_deinit_vm - Deinitialize the current protected VM * @kvm: the KVM whose protected VM needs to be deinitialized * @rc: the RC code of the UVC * @rrc: the RRC code of the UVC * * Deinitialize the current protected VM. This function will destroy and * cleanup the current protected VM, but it will not cleanup the guest * memory. This function should only be called when the protected VM has * just been created and therefore does not have any guest memory, or when * the caller cleans up the guest memory separately. * * This function should not fail, but if it does, the donated memory must * not be freed. * * Context: kvm->lock needs to be held * * Return: 0 in case of success, otherwise -EIO */ int kvm_s390_pv_deinit_vm(struct kvm *kvm, u16 *rc, u16 *rrc) { int cc; cc = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), UVC_CMD_DESTROY_SEC_CONF, rc, rrc); WRITE_ONCE(kvm->arch.gmap->guest_handle, 0); if (!cc) { atomic_dec(&kvm->mm->context.protected_count); kvm_s390_pv_dealloc_vm(kvm); } else { /* Intended memory leak on "impossible" error */ s390_replace_asce(kvm->arch.gmap); } KVM_UV_EVENT(kvm, 3, "PROTVIRT DESTROY VM: rc %x rrc %x", *rc, *rrc); WARN_ONCE(cc, "protvirt destroy vm failed rc %x rrc %x", *rc, *rrc); return cc ? -EIO : 0; } /** * kvm_s390_pv_deinit_cleanup_all - Clean up all protected VMs associated * with a specific KVM. * @kvm: the KVM to be cleaned up * @rc: the RC code of the first failing UVC * @rrc: the RRC code of the first failing UVC * * This function will clean up all protected VMs associated with a KVM. * This includes the active one, the one prepared for deinitialization with * kvm_s390_pv_set_aside, and any still pending in the need_cleanup list. * * Context: kvm->lock needs to be held unless being called from * kvm_arch_destroy_vm. * * Return: 0 if all VMs are successfully cleaned up, otherwise -EIO */ int kvm_s390_pv_deinit_cleanup_all(struct kvm *kvm, u16 *rc, u16 *rrc) { struct pv_vm_to_be_destroyed *cur; bool need_zap = false; u16 _rc, _rrc; int cc = 0; /* * Nothing to do if the counter was already 0. Otherwise make sure * the counter does not reach 0 before calling s390_uv_destroy_range. */ if (!atomic_inc_not_zero(&kvm->mm->context.protected_count)) return 0; *rc = 1; /* If the current VM is protected, destroy it */ if (kvm_s390_pv_get_handle(kvm)) { cc = kvm_s390_pv_deinit_vm(kvm, rc, rrc); need_zap = true; } /* If a previous protected VM was set aside, put it in the need_cleanup list */ if (kvm->arch.pv.set_aside) { list_add(kvm->arch.pv.set_aside, &kvm->arch.pv.need_cleanup); kvm->arch.pv.set_aside = NULL; } /* Cleanup all protected VMs in the need_cleanup list */ while (!list_empty(&kvm->arch.pv.need_cleanup)) { cur = list_first_entry(&kvm->arch.pv.need_cleanup, typeof(*cur), list); need_zap = true; if (kvm_s390_pv_dispose_one_leftover(kvm, cur, &_rc, &_rrc)) { cc = 1; /* * Only return the first error rc and rrc, so make * sure it is not overwritten. All destroys will * additionally be reported via KVM_UV_EVENT(). */ if (*rc == UVC_RC_EXECUTED) { *rc = _rc; *rrc = _rrc; } } list_del(&cur->list); kfree(cur); } /* * If the mm still has a mapping, try to mark all its pages as * accessible. The counter should not reach zero before this * cleanup has been performed. */ if (need_zap && mmget_not_zero(kvm->mm)) { s390_uv_destroy_range(kvm->mm, 0, TASK_SIZE); mmput(kvm->mm); } /* Now the counter can safely reach 0 */ atomic_dec(&kvm->mm->context.protected_count); return cc ? -EIO : 0; } /** * kvm_s390_pv_deinit_aside_vm - Teardown a previously set aside protected VM. * @kvm: the VM previously associated with the protected VM * @rc: return value for the RC field of the UVCB * @rrc: return value for the RRC field of the UVCB * * Tear down the protected VM that had been previously prepared for teardown * using kvm_s390_pv_set_aside_vm. Ideally this should be called by * userspace asynchronously from a separate thread. * * Context: kvm->lock must not be held. * * Return: 0 in case of success, -EINVAL if no protected VM had been * prepared for asynchronous teardowm, -EIO in case of other errors. */ int kvm_s390_pv_deinit_aside_vm(struct kvm *kvm, u16 *rc, u16 *rrc) { struct pv_vm_to_be_destroyed *p; int ret = 0; lockdep_assert_not_held(&kvm->lock); mutex_lock(&kvm->lock); p = kvm->arch.pv.set_aside; kvm->arch.pv.set_aside = NULL; mutex_unlock(&kvm->lock); if (!p) return -EINVAL; /* When a fatal signal is received, stop immediately */ if (s390_uv_destroy_range_interruptible(kvm->mm, 0, TASK_SIZE_MAX)) goto done; if (kvm_s390_pv_dispose_one_leftover(kvm, p, rc, rrc)) ret = -EIO; kfree(p); p = NULL; done: /* * p is not NULL if we aborted because of a fatal signal, in which * case queue the leftover for later cleanup. */ if (p) { mutex_lock(&kvm->lock); list_add(&p->list, &kvm->arch.pv.need_cleanup); mutex_unlock(&kvm->lock); /* Did not finish, but pretend things went well */ *rc = UVC_RC_EXECUTED; *rrc = 42; } return ret; } static void kvm_s390_pv_mmu_notifier_release(struct mmu_notifier *subscription, struct mm_struct *mm) { struct kvm *kvm = container_of(subscription, struct kvm, arch.pv.mmu_notifier); u16 dummy; int r; /* * No locking is needed since this is the last thread of the last user of this * struct mm. * When the struct kvm gets deinitialized, this notifier is also * unregistered. This means that if this notifier runs, then the * struct kvm is still valid. */ r = kvm_s390_cpus_from_pv(kvm, &dummy, &dummy); if (!r && is_destroy_fast_available() && kvm_s390_pv_get_handle(kvm)) kvm_s390_pv_deinit_vm_fast(kvm, &dummy, &dummy); } static const struct mmu_notifier_ops kvm_s390_pv_mmu_notifier_ops = { .release = kvm_s390_pv_mmu_notifier_release, }; int kvm_s390_pv_init_vm(struct kvm *kvm, u16 *rc, u16 *rrc) { struct uv_cb_cgc uvcb = { .header.cmd = UVC_CMD_CREATE_SEC_CONF, .header.len = sizeof(uvcb) }; int cc, ret; u16 dummy; ret = kvm_s390_pv_alloc_vm(kvm); if (ret) return ret; /* Inputs */ uvcb.guest_stor_origin = 0; /* MSO is 0 for KVM */ uvcb.guest_stor_len = kvm->arch.pv.guest_len; uvcb.guest_asce = kvm->arch.gmap->asce; uvcb.guest_sca = virt_to_phys(kvm->arch.sca); uvcb.conf_base_stor_origin = virt_to_phys((void *)kvm->arch.pv.stor_base); uvcb.conf_virt_stor_origin = (u64)kvm->arch.pv.stor_var; uvcb.flags.ap_allow_instr = kvm->arch.model.uv_feat_guest.ap; uvcb.flags.ap_instr_intr = kvm->arch.model.uv_feat_guest.ap_intr; cc = uv_call_sched(0, (u64)&uvcb); *rc = uvcb.header.rc; *rrc = uvcb.header.rrc; KVM_UV_EVENT(kvm, 3, "PROTVIRT CREATE VM: handle %llx len %llx rc %x rrc %x flags %04x", uvcb.guest_handle, uvcb.guest_stor_len, *rc, *rrc, uvcb.flags.raw); /* Outputs */ kvm->arch.pv.handle = uvcb.guest_handle; atomic_inc(&kvm->mm->context.protected_count); if (cc) { if (uvcb.header.rc & UVC_RC_NEED_DESTROY) { kvm_s390_pv_deinit_vm(kvm, &dummy, &dummy); } else { atomic_dec(&kvm->mm->context.protected_count); kvm_s390_pv_dealloc_vm(kvm); } return -EIO; } kvm->arch.gmap->guest_handle = uvcb.guest_handle; /* Add the notifier only once. No races because we hold kvm->lock */ if (kvm->arch.pv.mmu_notifier.ops != &kvm_s390_pv_mmu_notifier_ops) { kvm->arch.pv.mmu_notifier.ops = &kvm_s390_pv_mmu_notifier_ops; mmu_notifier_register(&kvm->arch.pv.mmu_notifier, kvm->mm); } return 0; } int kvm_s390_pv_set_sec_parms(struct kvm *kvm, void *hdr, u64 length, u16 *rc, u16 *rrc) { struct uv_cb_ssc uvcb = { .header.cmd = UVC_CMD_SET_SEC_CONF_PARAMS, .header.len = sizeof(uvcb), .sec_header_origin = (u64)hdr, .sec_header_len = length, .guest_handle = kvm_s390_pv_get_handle(kvm), }; int cc = uv_call(0, (u64)&uvcb); *rc = uvcb.header.rc; *rrc = uvcb.header.rrc; KVM_UV_EVENT(kvm, 3, "PROTVIRT VM SET PARMS: rc %x rrc %x", *rc, *rrc); return cc ? -EINVAL : 0; } static int unpack_one(struct kvm *kvm, unsigned long addr, u64 tweak, u64 offset, u16 *rc, u16 *rrc) { struct uv_cb_unp uvcb = { .header.cmd = UVC_CMD_UNPACK_IMG, .header.len = sizeof(uvcb), .guest_handle = kvm_s390_pv_get_handle(kvm), .gaddr = addr, .tweak[0] = tweak, .tweak[1] = offset, }; int ret = gmap_make_secure(kvm->arch.gmap, addr, &uvcb); *rc = uvcb.header.rc; *rrc = uvcb.header.rrc; if (ret && ret != -EAGAIN) KVM_UV_EVENT(kvm, 3, "PROTVIRT VM UNPACK: failed addr %llx with rc %x rrc %x", uvcb.gaddr, *rc, *rrc); return ret; } int kvm_s390_pv_unpack(struct kvm *kvm, unsigned long addr, unsigned long size, unsigned long tweak, u16 *rc, u16 *rrc) { u64 offset = 0; int ret = 0; if (addr & ~PAGE_MASK || !size || size & ~PAGE_MASK) return -EINVAL; KVM_UV_EVENT(kvm, 3, "PROTVIRT VM UNPACK: start addr %lx size %lx", addr, size); while (offset < size) { ret = unpack_one(kvm, addr, tweak, offset, rc, rrc); if (ret == -EAGAIN) { cond_resched(); if (fatal_signal_pending(current)) break; continue; } if (ret) break; addr += PAGE_SIZE; offset += PAGE_SIZE; } if (!ret) KVM_UV_EVENT(kvm, 3, "%s", "PROTVIRT VM UNPACK: successful"); return ret; } int kvm_s390_pv_set_cpu_state(struct kvm_vcpu *vcpu, u8 state) { struct uv_cb_cpu_set_state uvcb = { .header.cmd = UVC_CMD_CPU_SET_STATE, .header.len = sizeof(uvcb), .cpu_handle = kvm_s390_pv_cpu_get_handle(vcpu), .state = state, }; int cc; cc = uv_call(0, (u64)&uvcb); KVM_UV_EVENT(vcpu->kvm, 3, "PROTVIRT SET CPU %d STATE %d rc %x rrc %x", vcpu->vcpu_id, state, uvcb.header.rc, uvcb.header.rrc); if (cc) return -EINVAL; return 0; } int kvm_s390_pv_dump_cpu(struct kvm_vcpu *vcpu, void *buff, u16 *rc, u16 *rrc) { struct uv_cb_dump_cpu uvcb = { .header.cmd = UVC_CMD_DUMP_CPU, .header.len = sizeof(uvcb), .cpu_handle = vcpu->arch.pv.handle, .dump_area_origin = (u64)buff, }; int cc; cc = uv_call_sched(0, (u64)&uvcb); *rc = uvcb.header.rc; *rrc = uvcb.header.rrc; return cc; } /* Size of the cache for the storage state dump data. 1MB for now */ #define DUMP_BUFF_LEN HPAGE_SIZE /** * kvm_s390_pv_dump_stor_state * * @kvm: pointer to the guest's KVM struct * @buff_user: Userspace pointer where we will write the results to * @gaddr: Starting absolute guest address for which the storage state * is requested. * @buff_user_len: Length of the buff_user buffer * @rc: Pointer to where the uvcb return code is stored * @rrc: Pointer to where the uvcb return reason code is stored * * Stores buff_len bytes of tweak component values to buff_user * starting with the 1MB block specified by the absolute guest address * (gaddr). The gaddr pointer will be updated with the last address * for which data was written when returning to userspace. buff_user * might be written to even if an error rc is returned. For instance * if we encounter a fault after writing the first page of data. * * Context: kvm->lock needs to be held * * Return: * 0 on success * -ENOMEM if allocating the cache fails * -EINVAL if gaddr is not aligned to 1MB * -EINVAL if buff_user_len is not aligned to uv_info.conf_dump_storage_state_len * -EINVAL if the UV call fails, rc and rrc will be set in this case * -EFAULT if copying the result to buff_user failed */ int kvm_s390_pv_dump_stor_state(struct kvm *kvm, void __user *buff_user, u64 *gaddr, u64 buff_user_len, u16 *rc, u16 *rrc) { struct uv_cb_dump_stor_state uvcb = { .header.cmd = UVC_CMD_DUMP_CONF_STOR_STATE, .header.len = sizeof(uvcb), .config_handle = kvm->arch.pv.handle, .gaddr = *gaddr, .dump_area_origin = 0, }; const u64 increment_len = uv_info.conf_dump_storage_state_len; size_t buff_kvm_size; size_t size_done = 0; u8 *buff_kvm = NULL; int cc, ret; ret = -EINVAL; /* UV call processes 1MB guest storage chunks at a time */ if (!IS_ALIGNED(*gaddr, HPAGE_SIZE)) goto out; /* * We provide the storage state for 1MB chunks of guest * storage. The buffer will need to be aligned to * conf_dump_storage_state_len so we don't end on a partial * chunk. */ if (!buff_user_len || !IS_ALIGNED(buff_user_len, increment_len)) goto out; /* * Allocate a buffer from which we will later copy to the user * process. We don't want userspace to dictate our buffer size * so we limit it to DUMP_BUFF_LEN. */ ret = -ENOMEM; buff_kvm_size = min_t(u64, buff_user_len, DUMP_BUFF_LEN); buff_kvm = vzalloc(buff_kvm_size); if (!buff_kvm) goto out; ret = 0; uvcb.dump_area_origin = (u64)buff_kvm; /* We will loop until the user buffer is filled or an error occurs */ do { /* Get 1MB worth of guest storage state data */ cc = uv_call_sched(0, (u64)&uvcb); /* All or nothing */ if (cc) { ret = -EINVAL; break; } size_done += increment_len; uvcb.dump_area_origin += increment_len; buff_user_len -= increment_len; uvcb.gaddr += HPAGE_SIZE; /* KVM Buffer full, time to copy to the process */ if (!buff_user_len || size_done == DUMP_BUFF_LEN) { if (copy_to_user(buff_user, buff_kvm, size_done)) { ret = -EFAULT; break; } buff_user += size_done; size_done = 0; uvcb.dump_area_origin = (u64)buff_kvm; } } while (buff_user_len); /* Report back where we ended dumping */ *gaddr = uvcb.gaddr; /* Lets only log errors, we don't want to spam */ out: if (ret) KVM_UV_EVENT(kvm, 3, "PROTVIRT DUMP STORAGE STATE: addr %llx ret %d, uvcb rc %x rrc %x", uvcb.gaddr, ret, uvcb.header.rc, uvcb.header.rrc); *rc = uvcb.header.rc; *rrc = uvcb.header.rrc; vfree(buff_kvm); return ret; } /** * kvm_s390_pv_dump_complete * * @kvm: pointer to the guest's KVM struct * @buff_user: Userspace pointer where we will write the results to * @rc: Pointer to where the uvcb return code is stored * @rrc: Pointer to where the uvcb return reason code is stored * * Completes the dumping operation and writes the completion data to * user space. * * Context: kvm->lock needs to be held * * Return: * 0 on success * -ENOMEM if allocating the completion buffer fails * -EINVAL if the UV call fails, rc and rrc will be set in this case * -EFAULT if copying the result to buff_user failed */ int kvm_s390_pv_dump_complete(struct kvm *kvm, void __user *buff_user, u16 *rc, u16 *rrc) { struct uv_cb_dump_complete complete = { .header.len = sizeof(complete), .header.cmd = UVC_CMD_DUMP_COMPLETE, .config_handle = kvm_s390_pv_get_handle(kvm), }; u64 *compl_data; int ret; /* Allocate dump area */ compl_data = vzalloc(uv_info.conf_dump_finalize_len); if (!compl_data) return -ENOMEM; complete.dump_area_origin = (u64)compl_data; ret = uv_call_sched(0, (u64)&complete); *rc = complete.header.rc; *rrc = complete.header.rrc; KVM_UV_EVENT(kvm, 3, "PROTVIRT DUMP COMPLETE: rc %x rrc %x", complete.header.rc, complete.header.rrc); if (!ret) { /* * kvm_s390_pv_dealloc_vm() will also (mem)set * this to false on a reboot or other destroy * operation for this vm. */ kvm->arch.pv.dumping = false; kvm_s390_vcpu_unblock_all(kvm); ret = copy_to_user(buff_user, compl_data, uv_info.conf_dump_finalize_len); if (ret) ret = -EFAULT; } vfree(compl_data); /* If the UVC returned an error, translate it to -EINVAL */ if (ret > 0) ret = -EINVAL; return ret; }