// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2017-2018, Intel Corporation. All rights reserved * Copyright Altera Corporation (C) 2014-2016. All rights reserved. * Copyright 2011-2012 Calxeda, Inc. */ #include <asm/cacheflush.h> #include <linux/ctype.h> #include <linux/delay.h> #include <linux/edac.h> #include <linux/firmware/intel/stratix10-smc.h> #include <linux/genalloc.h> #include <linux/interrupt.h> #include <linux/irqchip/chained_irq.h> #include <linux/kernel.h> #include <linux/mfd/altera-sysmgr.h> #include <linux/mfd/syscon.h> #include <linux/notifier.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/of_platform.h> #include <linux/panic_notifier.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/types.h> #include <linux/uaccess.h> #include "altera_edac.h" #include "edac_module.h" #define EDAC_MOD_STR "altera_edac" #define EDAC_DEVICE "Altera" #ifdef CONFIG_EDAC_ALTERA_SDRAM static const struct altr_sdram_prv_data c5_data = { .ecc_ctrl_offset = CV_CTLCFG_OFST, .ecc_ctl_en_mask = CV_CTLCFG_ECC_AUTO_EN, .ecc_stat_offset = CV_DRAMSTS_OFST, .ecc_stat_ce_mask = CV_DRAMSTS_SBEERR, .ecc_stat_ue_mask = CV_DRAMSTS_DBEERR, .ecc_saddr_offset = CV_ERRADDR_OFST, .ecc_daddr_offset = CV_ERRADDR_OFST, .ecc_cecnt_offset = CV_SBECOUNT_OFST, .ecc_uecnt_offset = CV_DBECOUNT_OFST, .ecc_irq_en_offset = CV_DRAMINTR_OFST, .ecc_irq_en_mask = CV_DRAMINTR_INTREN, .ecc_irq_clr_offset = CV_DRAMINTR_OFST, .ecc_irq_clr_mask = (CV_DRAMINTR_INTRCLR | CV_DRAMINTR_INTREN), .ecc_cnt_rst_offset = CV_DRAMINTR_OFST, .ecc_cnt_rst_mask = CV_DRAMINTR_INTRCLR, .ce_ue_trgr_offset = CV_CTLCFG_OFST, .ce_set_mask = CV_CTLCFG_GEN_SB_ERR, .ue_set_mask = CV_CTLCFG_GEN_DB_ERR, }; static const struct altr_sdram_prv_data a10_data = { .ecc_ctrl_offset = A10_ECCCTRL1_OFST, .ecc_ctl_en_mask = A10_ECCCTRL1_ECC_EN, .ecc_stat_offset = A10_INTSTAT_OFST, .ecc_stat_ce_mask = A10_INTSTAT_SBEERR, .ecc_stat_ue_mask = A10_INTSTAT_DBEERR, .ecc_saddr_offset = A10_SERRADDR_OFST, .ecc_daddr_offset = A10_DERRADDR_OFST, .ecc_irq_en_offset = A10_ERRINTEN_OFST, .ecc_irq_en_mask = A10_ECC_IRQ_EN_MASK, .ecc_irq_clr_offset = A10_INTSTAT_OFST, .ecc_irq_clr_mask = (A10_INTSTAT_SBEERR | A10_INTSTAT_DBEERR), .ecc_cnt_rst_offset = A10_ECCCTRL1_OFST, .ecc_cnt_rst_mask = A10_ECC_CNT_RESET_MASK, .ce_ue_trgr_offset = A10_DIAGINTTEST_OFST, .ce_set_mask = A10_DIAGINT_TSERRA_MASK, .ue_set_mask = A10_DIAGINT_TDERRA_MASK, }; /*********************** EDAC Memory Controller Functions ****************/ /* The SDRAM controller uses the EDAC Memory Controller framework. */ static irqreturn_t altr_sdram_mc_err_handler(int irq, void *dev_id) { struct mem_ctl_info *mci = dev_id; struct altr_sdram_mc_data *drvdata = mci->pvt_info; const struct altr_sdram_prv_data *priv = drvdata->data; u32 status, err_count = 1, err_addr; regmap_read(drvdata->mc_vbase, priv->ecc_stat_offset, &status); if (status & priv->ecc_stat_ue_mask) { regmap_read(drvdata->mc_vbase, priv->ecc_daddr_offset, &err_addr); if (priv->ecc_uecnt_offset) regmap_read(drvdata->mc_vbase, priv->ecc_uecnt_offset, &err_count); panic("\nEDAC: [%d Uncorrectable errors @ 0x%08X]\n", err_count, err_addr); } if (status & priv->ecc_stat_ce_mask) { regmap_read(drvdata->mc_vbase, priv->ecc_saddr_offset, &err_addr); if (priv->ecc_uecnt_offset) regmap_read(drvdata->mc_vbase, priv->ecc_cecnt_offset, &err_count); edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, err_count, err_addr >> PAGE_SHIFT, err_addr & ~PAGE_MASK, 0, 0, 0, -1, mci->ctl_name, ""); /* Clear IRQ to resume */ regmap_write(drvdata->mc_vbase, priv->ecc_irq_clr_offset, priv->ecc_irq_clr_mask); return IRQ_HANDLED; } return IRQ_NONE; } static ssize_t altr_sdr_mc_err_inject_write(struct file *file, const char __user *data, size_t count, loff_t *ppos) { struct mem_ctl_info *mci = file->private_data; struct altr_sdram_mc_data *drvdata = mci->pvt_info; const struct altr_sdram_prv_data *priv = drvdata->data; u32 *ptemp; dma_addr_t dma_handle; u32 reg, read_reg; ptemp = dma_alloc_coherent(mci->pdev, 16, &dma_handle, GFP_KERNEL); if (!ptemp) { dma_free_coherent(mci->pdev, 16, ptemp, dma_handle); edac_printk(KERN_ERR, EDAC_MC, "Inject: Buffer Allocation error\n"); return -ENOMEM; } regmap_read(drvdata->mc_vbase, priv->ce_ue_trgr_offset, &read_reg); read_reg &= ~(priv->ce_set_mask | priv->ue_set_mask); /* Error are injected by writing a word while the SBE or DBE * bit in the CTLCFG register is set. Reading the word will * trigger the SBE or DBE error and the corresponding IRQ. */ if (count == 3) { edac_printk(KERN_ALERT, EDAC_MC, "Inject Double bit error\n"); local_irq_disable(); regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset, (read_reg | priv->ue_set_mask)); local_irq_enable(); } else { edac_printk(KERN_ALERT, EDAC_MC, "Inject Single bit error\n"); local_irq_disable(); regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset, (read_reg | priv->ce_set_mask)); local_irq_enable(); } ptemp[0] = 0x5A5A5A5A; ptemp[1] = 0xA5A5A5A5; /* Clear the error injection bits */ regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset, read_reg); /* Ensure it has been written out */ wmb(); /* * To trigger the error, we need to read the data back * (the data was written with errors above). * The READ_ONCE macros and printk are used to prevent the * the compiler optimizing these reads out. */ reg = READ_ONCE(ptemp[0]); read_reg = READ_ONCE(ptemp[1]); /* Force Read */ rmb(); edac_printk(KERN_ALERT, EDAC_MC, "Read Data [0x%X, 0x%X]\n", reg, read_reg); dma_free_coherent(mci->pdev, 16, ptemp, dma_handle); return count; } static const struct file_operations altr_sdr_mc_debug_inject_fops = { .open = simple_open, .write = altr_sdr_mc_err_inject_write, .llseek = generic_file_llseek, }; static void altr_sdr_mc_create_debugfs_nodes(struct mem_ctl_info *mci) { if (!IS_ENABLED(CONFIG_EDAC_DEBUG)) return; if (!mci->debugfs) return; edac_debugfs_create_file("altr_trigger", S_IWUSR, mci->debugfs, mci, &altr_sdr_mc_debug_inject_fops); } /* Get total memory size from Open Firmware DTB */ static unsigned long get_total_mem(void) { struct device_node *np = NULL; struct resource res; int ret; unsigned long total_mem = 0; for_each_node_by_type(np, "memory") { ret = of_address_to_resource(np, 0, &res); if (ret) continue; total_mem += resource_size(&res); } edac_dbg(0, "total_mem 0x%lx\n", total_mem); return total_mem; } static const struct of_device_id altr_sdram_ctrl_of_match[] = { { .compatible = "altr,sdram-edac", .data = &c5_data}, { .compatible = "altr,sdram-edac-a10", .data = &a10_data}, {}, }; MODULE_DEVICE_TABLE(of, altr_sdram_ctrl_of_match); static int a10_init(struct regmap *mc_vbase) { if (regmap_update_bits(mc_vbase, A10_INTMODE_OFST, A10_INTMODE_SB_INT, A10_INTMODE_SB_INT)) { edac_printk(KERN_ERR, EDAC_MC, "Error setting SB IRQ mode\n"); return -ENODEV; } if (regmap_write(mc_vbase, A10_SERRCNTREG_OFST, 1)) { edac_printk(KERN_ERR, EDAC_MC, "Error setting trigger count\n"); return -ENODEV; } return 0; } static int a10_unmask_irq(struct platform_device *pdev, u32 mask) { void __iomem *sm_base; int ret = 0; if (!request_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32), dev_name(&pdev->dev))) { edac_printk(KERN_ERR, EDAC_MC, "Unable to request mem region\n"); return -EBUSY; } sm_base = ioremap(A10_SYMAN_INTMASK_CLR, sizeof(u32)); if (!sm_base) { edac_printk(KERN_ERR, EDAC_MC, "Unable to ioremap device\n"); ret = -ENOMEM; goto release; } iowrite32(mask, sm_base); iounmap(sm_base); release: release_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32)); return ret; } static int altr_sdram_probe(struct platform_device *pdev) { const struct of_device_id *id; struct edac_mc_layer layers[2]; struct mem_ctl_info *mci; struct altr_sdram_mc_data *drvdata; const struct altr_sdram_prv_data *priv; struct regmap *mc_vbase; struct dimm_info *dimm; u32 read_reg; int irq, irq2, res = 0; unsigned long mem_size, irqflags = 0; id = of_match_device(altr_sdram_ctrl_of_match, &pdev->dev); if (!id) return -ENODEV; /* Grab the register range from the sdr controller in device tree */ mc_vbase = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, "altr,sdr-syscon"); if (IS_ERR(mc_vbase)) { edac_printk(KERN_ERR, EDAC_MC, "regmap for altr,sdr-syscon lookup failed.\n"); return -ENODEV; } /* Check specific dependencies for the module */ priv = of_match_node(altr_sdram_ctrl_of_match, pdev->dev.of_node)->data; /* Validate the SDRAM controller has ECC enabled */ if (regmap_read(mc_vbase, priv->ecc_ctrl_offset, &read_reg) || ((read_reg & priv->ecc_ctl_en_mask) != priv->ecc_ctl_en_mask)) { edac_printk(KERN_ERR, EDAC_MC, "No ECC/ECC disabled [0x%08X]\n", read_reg); return -ENODEV; } /* Grab memory size from device tree. */ mem_size = get_total_mem(); if (!mem_size) { edac_printk(KERN_ERR, EDAC_MC, "Unable to calculate memory size\n"); return -ENODEV; } /* Ensure the SDRAM Interrupt is disabled */ if (regmap_update_bits(mc_vbase, priv->ecc_irq_en_offset, priv->ecc_irq_en_mask, 0)) { edac_printk(KERN_ERR, EDAC_MC, "Error disabling SDRAM ECC IRQ\n"); return -ENODEV; } /* Toggle to clear the SDRAM Error count */ if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset, priv->ecc_cnt_rst_mask, priv->ecc_cnt_rst_mask)) { edac_printk(KERN_ERR, EDAC_MC, "Error clearing SDRAM ECC count\n"); return -ENODEV; } if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset, priv->ecc_cnt_rst_mask, 0)) { edac_printk(KERN_ERR, EDAC_MC, "Error clearing SDRAM ECC count\n"); return -ENODEV; } irq = platform_get_irq(pdev, 0); if (irq < 0) { edac_printk(KERN_ERR, EDAC_MC, "No irq %d in DT\n", irq); return irq; } /* Arria10 has a 2nd IRQ */ irq2 = platform_get_irq(pdev, 1); layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; layers[0].size = 1; layers[0].is_virt_csrow = true; layers[1].type = EDAC_MC_LAYER_CHANNEL; layers[1].size = 1; layers[1].is_virt_csrow = false; mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(struct altr_sdram_mc_data)); if (!mci) return -ENOMEM; mci->pdev = &pdev->dev; drvdata = mci->pvt_info; drvdata->mc_vbase = mc_vbase; drvdata->data = priv; platform_set_drvdata(pdev, mci); if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) { edac_printk(KERN_ERR, EDAC_MC, "Unable to get managed device resource\n"); res = -ENOMEM; goto free; } mci->mtype_cap = MEM_FLAG_DDR3; mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED; mci->edac_cap = EDAC_FLAG_SECDED; mci->mod_name = EDAC_MOD_STR; mci->ctl_name = dev_name(&pdev->dev); mci->scrub_mode = SCRUB_SW_SRC; mci->dev_name = dev_name(&pdev->dev); dimm = *mci->dimms; dimm->nr_pages = ((mem_size - 1) >> PAGE_SHIFT) + 1; dimm->grain = 8; dimm->dtype = DEV_X8; dimm->mtype = MEM_DDR3; dimm->edac_mode = EDAC_SECDED; res = edac_mc_add_mc(mci); if (res < 0) goto err; /* Only the Arria10 has separate IRQs */ if (of_machine_is_compatible("altr,socfpga-arria10")) { /* Arria10 specific initialization */ res = a10_init(mc_vbase); if (res < 0) goto err2; res = devm_request_irq(&pdev->dev, irq2, altr_sdram_mc_err_handler, IRQF_SHARED, dev_name(&pdev->dev), mci); if (res < 0) { edac_mc_printk(mci, KERN_ERR, "Unable to request irq %d\n", irq2); res = -ENODEV; goto err2; } res = a10_unmask_irq(pdev, A10_DDR0_IRQ_MASK); if (res < 0) goto err2; irqflags = IRQF_SHARED; } res = devm_request_irq(&pdev->dev, irq, altr_sdram_mc_err_handler, irqflags, dev_name(&pdev->dev), mci); if (res < 0) { edac_mc_printk(mci, KERN_ERR, "Unable to request irq %d\n", irq); res = -ENODEV; goto err2; } /* Infrastructure ready - enable the IRQ */ if (regmap_update_bits(drvdata->mc_vbase, priv->ecc_irq_en_offset, priv->ecc_irq_en_mask, priv->ecc_irq_en_mask)) { edac_mc_printk(mci, KERN_ERR, "Error enabling SDRAM ECC IRQ\n"); res = -ENODEV; goto err2; } altr_sdr_mc_create_debugfs_nodes(mci); devres_close_group(&pdev->dev, NULL); return 0; err2: edac_mc_del_mc(&pdev->dev); err: devres_release_group(&pdev->dev, NULL); free: edac_mc_free(mci); edac_printk(KERN_ERR, EDAC_MC, "EDAC Probe Failed; Error %d\n", res); return res; } static int altr_sdram_remove(struct platform_device *pdev) { struct mem_ctl_info *mci = platform_get_drvdata(pdev); edac_mc_del_mc(&pdev->dev); edac_mc_free(mci); platform_set_drvdata(pdev, NULL); return 0; } /* * If you want to suspend, need to disable EDAC by removing it * from the device tree or defconfig. */ #ifdef CONFIG_PM static int altr_sdram_prepare(struct device *dev) { pr_err("Suspend not allowed when EDAC is enabled.\n"); return -EPERM; } static const struct dev_pm_ops altr_sdram_pm_ops = { .prepare = altr_sdram_prepare, }; #endif static struct platform_driver altr_sdram_edac_driver = { .probe = altr_sdram_probe, .remove = altr_sdram_remove, .driver = { .name = "altr_sdram_edac", #ifdef CONFIG_PM .pm = &altr_sdram_pm_ops, #endif .of_match_table = altr_sdram_ctrl_of_match, }, }; module_platform_driver(altr_sdram_edac_driver); #endif /* CONFIG_EDAC_ALTERA_SDRAM */ /************************* EDAC Parent Probe *************************/ static const struct of_device_id altr_edac_device_of_match[]; static const struct of_device_id altr_edac_of_match[] = { { .compatible = "altr,socfpga-ecc-manager" }, {}, }; MODULE_DEVICE_TABLE(of, altr_edac_of_match); static int altr_edac_probe(struct platform_device *pdev) { of_platform_populate(pdev->dev.of_node, altr_edac_device_of_match, NULL, &pdev->dev); return 0; } static struct platform_driver altr_edac_driver = { .probe = altr_edac_probe, .driver = { .name = "socfpga_ecc_manager", .of_match_table = altr_edac_of_match, }, }; module_platform_driver(altr_edac_driver); /************************* EDAC Device Functions *************************/ /* * EDAC Device Functions (shared between various IPs). * The discrete memories use the EDAC Device framework. The probe * and error handling functions are very similar between memories * so they are shared. The memory allocation and freeing for EDAC * trigger testing are different for each memory. */ #ifdef CONFIG_EDAC_ALTERA_OCRAM static const struct edac_device_prv_data ocramecc_data; #endif #ifdef CONFIG_EDAC_ALTERA_L2C static const struct edac_device_prv_data l2ecc_data; #endif #ifdef CONFIG_EDAC_ALTERA_OCRAM static const struct edac_device_prv_data a10_ocramecc_data; #endif #ifdef CONFIG_EDAC_ALTERA_L2C static const struct edac_device_prv_data a10_l2ecc_data; #endif static irqreturn_t altr_edac_device_handler(int irq, void *dev_id) { irqreturn_t ret_value = IRQ_NONE; struct edac_device_ctl_info *dci = dev_id; struct altr_edac_device_dev *drvdata = dci->pvt_info; const struct edac_device_prv_data *priv = drvdata->data; if (irq == drvdata->sb_irq) { if (priv->ce_clear_mask) writel(priv->ce_clear_mask, drvdata->base); edac_device_handle_ce(dci, 0, 0, drvdata->edac_dev_name); ret_value = IRQ_HANDLED; } else if (irq == drvdata->db_irq) { if (priv->ue_clear_mask) writel(priv->ue_clear_mask, drvdata->base); edac_device_handle_ue(dci, 0, 0, drvdata->edac_dev_name); panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n"); ret_value = IRQ_HANDLED; } else { WARN_ON(1); } return ret_value; } static ssize_t __maybe_unused altr_edac_device_trig(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { u32 *ptemp, i, error_mask; int result = 0; u8 trig_type; unsigned long flags; struct edac_device_ctl_info *edac_dci = file->private_data; struct altr_edac_device_dev *drvdata = edac_dci->pvt_info; const struct edac_device_prv_data *priv = drvdata->data; void *generic_ptr = edac_dci->dev; if (!user_buf || get_user(trig_type, user_buf)) return -EFAULT; if (!priv->alloc_mem) return -ENOMEM; /* * Note that generic_ptr is initialized to the device * but in * some alloc_functions, this is overridden and returns data. */ ptemp = priv->alloc_mem(priv->trig_alloc_sz, &generic_ptr); if (!ptemp) { edac_printk(KERN_ERR, EDAC_DEVICE, "Inject: Buffer Allocation error\n"); return -ENOMEM; } if (trig_type == ALTR_UE_TRIGGER_CHAR) error_mask = priv->ue_set_mask; else error_mask = priv->ce_set_mask; edac_printk(KERN_ALERT, EDAC_DEVICE, "Trigger Error Mask (0x%X)\n", error_mask); local_irq_save(flags); /* write ECC corrupted data out. */ for (i = 0; i < (priv->trig_alloc_sz / sizeof(*ptemp)); i++) { /* Read data so we're in the correct state */ rmb(); if (READ_ONCE(ptemp[i])) result = -1; /* Toggle Error bit (it is latched), leave ECC enabled */ writel(error_mask, (drvdata->base + priv->set_err_ofst)); writel(priv->ecc_enable_mask, (drvdata->base + priv->set_err_ofst)); ptemp[i] = i; } /* Ensure it has been written out */ wmb(); local_irq_restore(flags); if (result) edac_printk(KERN_ERR, EDAC_DEVICE, "Mem Not Cleared\n"); /* Read out written data. ECC error caused here */ for (i = 0; i < ALTR_TRIGGER_READ_WRD_CNT; i++) if (READ_ONCE(ptemp[i]) != i) edac_printk(KERN_ERR, EDAC_DEVICE, "Read doesn't match written data\n"); if (priv->free_mem) priv->free_mem(ptemp, priv->trig_alloc_sz, generic_ptr); return count; } static const struct file_operations altr_edac_device_inject_fops __maybe_unused = { .open = simple_open, .write = altr_edac_device_trig, .llseek = generic_file_llseek, }; static ssize_t __maybe_unused altr_edac_a10_device_trig(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos); static const struct file_operations altr_edac_a10_device_inject_fops __maybe_unused = { .open = simple_open, .write = altr_edac_a10_device_trig, .llseek = generic_file_llseek, }; static ssize_t __maybe_unused altr_edac_a10_device_trig2(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos); static const struct file_operations altr_edac_a10_device_inject2_fops __maybe_unused = { .open = simple_open, .write = altr_edac_a10_device_trig2, .llseek = generic_file_llseek, }; static void altr_create_edacdev_dbgfs(struct edac_device_ctl_info *edac_dci, const struct edac_device_prv_data *priv) { struct altr_edac_device_dev *drvdata = edac_dci->pvt_info; if (!IS_ENABLED(CONFIG_EDAC_DEBUG)) return; drvdata->debugfs_dir = edac_debugfs_create_dir(drvdata->edac_dev_name); if (!drvdata->debugfs_dir) return; if (!edac_debugfs_create_file("altr_trigger", S_IWUSR, drvdata->debugfs_dir, edac_dci, priv->inject_fops)) debugfs_remove_recursive(drvdata->debugfs_dir); } static const struct of_device_id altr_edac_device_of_match[] = { #ifdef CONFIG_EDAC_ALTERA_L2C { .compatible = "altr,socfpga-l2-ecc", .data = &l2ecc_data }, #endif #ifdef CONFIG_EDAC_ALTERA_OCRAM { .compatible = "altr,socfpga-ocram-ecc", .data = &ocramecc_data }, #endif {}, }; MODULE_DEVICE_TABLE(of, altr_edac_device_of_match); /* * altr_edac_device_probe() * This is a generic EDAC device driver that will support * various Altera memory devices such as the L2 cache ECC and * OCRAM ECC as well as the memories for other peripherals. * Module specific initialization is done by passing the * function index in the device tree. */ static int altr_edac_device_probe(struct platform_device *pdev) { struct edac_device_ctl_info *dci; struct altr_edac_device_dev *drvdata; struct resource *r; int res = 0; struct device_node *np = pdev->dev.of_node; char *ecc_name = (char *)np->name; static int dev_instance; if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) { edac_printk(KERN_ERR, EDAC_DEVICE, "Unable to open devm\n"); return -ENOMEM; } r = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!r) { edac_printk(KERN_ERR, EDAC_DEVICE, "Unable to get mem resource\n"); res = -ENODEV; goto fail; } if (!devm_request_mem_region(&pdev->dev, r->start, resource_size(r), dev_name(&pdev->dev))) { edac_printk(KERN_ERR, EDAC_DEVICE, "%s:Error requesting mem region\n", ecc_name); res = -EBUSY; goto fail; } dci = edac_device_alloc_ctl_info(sizeof(*drvdata), ecc_name, 1, ecc_name, 1, 0, NULL, 0, dev_instance++); if (!dci) { edac_printk(KERN_ERR, EDAC_DEVICE, "%s: Unable to allocate EDAC device\n", ecc_name); res = -ENOMEM; goto fail; } drvdata = dci->pvt_info; dci->dev = &pdev->dev; platform_set_drvdata(pdev, dci); drvdata->edac_dev_name = ecc_name; drvdata->base = devm_ioremap(&pdev->dev, r->start, resource_size(r)); if (!drvdata->base) { res = -ENOMEM; goto fail1; } /* Get driver specific data for this EDAC device */ drvdata->data = of_match_node(altr_edac_device_of_match, np)->data; /* Check specific dependencies for the module */ if (drvdata->data->setup) { res = drvdata->data->setup(drvdata); if (res) goto fail1; } drvdata->sb_irq = platform_get_irq(pdev, 0); res = devm_request_irq(&pdev->dev, drvdata->sb_irq, altr_edac_device_handler, 0, dev_name(&pdev->dev), dci); if (res) goto fail1; drvdata->db_irq = platform_get_irq(pdev, 1); res = devm_request_irq(&pdev->dev, drvdata->db_irq, altr_edac_device_handler, 0, dev_name(&pdev->dev), dci); if (res) goto fail1; dci->mod_name = "Altera ECC Manager"; dci->dev_name = drvdata->edac_dev_name; res = edac_device_add_device(dci); if (res) goto fail1; altr_create_edacdev_dbgfs(dci, drvdata->data); devres_close_group(&pdev->dev, NULL); return 0; fail1: edac_device_free_ctl_info(dci); fail: devres_release_group(&pdev->dev, NULL); edac_printk(KERN_ERR, EDAC_DEVICE, "%s:Error setting up EDAC device: %d\n", ecc_name, res); return res; } static int altr_edac_device_remove(struct platform_device *pdev) { struct edac_device_ctl_info *dci = platform_get_drvdata(pdev); struct altr_edac_device_dev *drvdata = dci->pvt_info; debugfs_remove_recursive(drvdata->debugfs_dir); edac_device_del_device(&pdev->dev); edac_device_free_ctl_info(dci); return 0; } static struct platform_driver altr_edac_device_driver = { .probe = altr_edac_device_probe, .remove = altr_edac_device_remove, .driver = { .name = "altr_edac_device", .of_match_table = altr_edac_device_of_match, }, }; module_platform_driver(altr_edac_device_driver); /******************* Arria10 Device ECC Shared Functions *****************/ /* * Test for memory's ECC dependencies upon entry because platform specific * startup should have initialized the memory and enabled the ECC. * Can't turn on ECC here because accessing un-initialized memory will * cause CE/UE errors possibly causing an ABORT. */ static int __maybe_unused altr_check_ecc_deps(struct altr_edac_device_dev *device) { void __iomem *base = device->base; const struct edac_device_prv_data *prv = device->data; if (readl(base + prv->ecc_en_ofst) & prv->ecc_enable_mask) return 0; edac_printk(KERN_ERR, EDAC_DEVICE, "%s: No ECC present or ECC disabled.\n", device->edac_dev_name); return -ENODEV; } static irqreturn_t __maybe_unused altr_edac_a10_ecc_irq(int irq, void *dev_id) { struct altr_edac_device_dev *dci = dev_id; void __iomem *base = dci->base; if (irq == dci->sb_irq) { writel(ALTR_A10_ECC_SERRPENA, base + ALTR_A10_ECC_INTSTAT_OFST); edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name); return IRQ_HANDLED; } else if (irq == dci->db_irq) { writel(ALTR_A10_ECC_DERRPENA, base + ALTR_A10_ECC_INTSTAT_OFST); edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name); if (dci->data->panic) panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n"); return IRQ_HANDLED; } WARN_ON(1); return IRQ_NONE; } /******************* Arria10 Memory Buffer Functions *********************/ static inline int a10_get_irq_mask(struct device_node *np) { int irq; const u32 *handle = of_get_property(np, "interrupts", NULL); if (!handle) return -ENODEV; irq = be32_to_cpup(handle); return irq; } static inline void ecc_set_bits(u32 bit_mask, void __iomem *ioaddr) { u32 value = readl(ioaddr); value |= bit_mask; writel(value, ioaddr); } static inline void ecc_clear_bits(u32 bit_mask, void __iomem *ioaddr) { u32 value = readl(ioaddr); value &= ~bit_mask; writel(value, ioaddr); } static inline int ecc_test_bits(u32 bit_mask, void __iomem *ioaddr) { u32 value = readl(ioaddr); return (value & bit_mask) ? 1 : 0; } /* * This function uses the memory initialization block in the Arria10 ECC * controller to initialize/clear the entire memory data and ECC data. */ static int __maybe_unused altr_init_memory_port(void __iomem *ioaddr, int port) { int limit = ALTR_A10_ECC_INIT_WATCHDOG_10US; u32 init_mask, stat_mask, clear_mask; int ret = 0; if (port) { init_mask = ALTR_A10_ECC_INITB; stat_mask = ALTR_A10_ECC_INITCOMPLETEB; clear_mask = ALTR_A10_ECC_ERRPENB_MASK; } else { init_mask = ALTR_A10_ECC_INITA; stat_mask = ALTR_A10_ECC_INITCOMPLETEA; clear_mask = ALTR_A10_ECC_ERRPENA_MASK; } ecc_set_bits(init_mask, (ioaddr + ALTR_A10_ECC_CTRL_OFST)); while (limit--) { if (ecc_test_bits(stat_mask, (ioaddr + ALTR_A10_ECC_INITSTAT_OFST))) break; udelay(1); } if (limit < 0) ret = -EBUSY; /* Clear any pending ECC interrupts */ writel(clear_mask, (ioaddr + ALTR_A10_ECC_INTSTAT_OFST)); return ret; } static __init int __maybe_unused altr_init_a10_ecc_block(struct device_node *np, u32 irq_mask, u32 ecc_ctrl_en_mask, bool dual_port) { int ret = 0; void __iomem *ecc_block_base; struct regmap *ecc_mgr_map; char *ecc_name; struct device_node *np_eccmgr; ecc_name = (char *)np->name; /* Get the ECC Manager - parent of the device EDACs */ np_eccmgr = of_get_parent(np); ecc_mgr_map = altr_sysmgr_regmap_lookup_by_phandle(np_eccmgr, "altr,sysmgr-syscon"); of_node_put(np_eccmgr); if (IS_ERR(ecc_mgr_map)) { edac_printk(KERN_ERR, EDAC_DEVICE, "Unable to get syscon altr,sysmgr-syscon\n"); return -ENODEV; } /* Map the ECC Block */ ecc_block_base = of_iomap(np, 0); if (!ecc_block_base) { edac_printk(KERN_ERR, EDAC_DEVICE, "Unable to map %s ECC block\n", ecc_name); return -ENODEV; } /* Disable ECC */ regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST, irq_mask); writel(ALTR_A10_ECC_SERRINTEN, (ecc_block_base + ALTR_A10_ECC_ERRINTENR_OFST)); ecc_clear_bits(ecc_ctrl_en_mask, (ecc_block_base + ALTR_A10_ECC_CTRL_OFST)); /* Ensure all writes complete */ wmb(); /* Use HW initialization block to initialize memory for ECC */ ret = altr_init_memory_port(ecc_block_base, 0); if (ret) { edac_printk(KERN_ERR, EDAC_DEVICE, "ECC: cannot init %s PORTA memory\n", ecc_name); goto out; } if (dual_port) { ret = altr_init_memory_port(ecc_block_base, 1); if (ret) { edac_printk(KERN_ERR, EDAC_DEVICE, "ECC: cannot init %s PORTB memory\n", ecc_name); goto out; } } /* Interrupt mode set to every SBERR */ regmap_write(ecc_mgr_map, ALTR_A10_ECC_INTMODE_OFST, ALTR_A10_ECC_INTMODE); /* Enable ECC */ ecc_set_bits(ecc_ctrl_en_mask, (ecc_block_base + ALTR_A10_ECC_CTRL_OFST)); writel(ALTR_A10_ECC_SERRINTEN, (ecc_block_base + ALTR_A10_ECC_ERRINTENS_OFST)); regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST, irq_mask); /* Ensure all writes complete */ wmb(); out: iounmap(ecc_block_base); return ret; } static int validate_parent_available(struct device_node *np); static const struct of_device_id altr_edac_a10_device_of_match[]; static int __init __maybe_unused altr_init_a10_ecc_device_type(char *compat) { int irq; struct device_node *child, *np; np = of_find_compatible_node(NULL, NULL, "altr,socfpga-a10-ecc-manager"); if (!np) { edac_printk(KERN_ERR, EDAC_DEVICE, "ECC Manager not found\n"); return -ENODEV; } for_each_child_of_node(np, child) { const struct of_device_id *pdev_id; const struct edac_device_prv_data *prv; if (!of_device_is_available(child)) continue; if (!of_device_is_compatible(child, compat)) continue; if (validate_parent_available(child)) continue; irq = a10_get_irq_mask(child); if (irq < 0) continue; /* Get matching node and check for valid result */ pdev_id = of_match_node(altr_edac_a10_device_of_match, child); if (IS_ERR_OR_NULL(pdev_id)) continue; /* Validate private data pointer before dereferencing */ prv = pdev_id->data; if (!prv) continue; altr_init_a10_ecc_block(child, BIT(irq), prv->ecc_enable_mask, 0); } of_node_put(np); return 0; } /*********************** SDRAM EDAC Device Functions *********************/ #ifdef CONFIG_EDAC_ALTERA_SDRAM /* * A legacy U-Boot bug only enabled memory mapped access to the ECC Enable * register if ECC is enabled. Linux checks the ECC Enable register to * determine ECC status. * Use an SMC call (which always works) to determine ECC enablement. */ static int altr_s10_sdram_check_ecc_deps(struct altr_edac_device_dev *device) { const struct edac_device_prv_data *prv = device->data; unsigned long sdram_ecc_addr; struct arm_smccc_res result; struct device_node *np; phys_addr_t sdram_addr; u32 read_reg; int ret; np = of_find_compatible_node(NULL, NULL, "altr,sdr-ctl"); if (!np) goto sdram_err; sdram_addr = of_translate_address(np, of_get_address(np, 0, NULL, NULL)); of_node_put(np); sdram_ecc_addr = (unsigned long)sdram_addr + prv->ecc_en_ofst; arm_smccc_smc(INTEL_SIP_SMC_REG_READ, sdram_ecc_addr, 0, 0, 0, 0, 0, 0, &result); read_reg = (unsigned int)result.a1; ret = (int)result.a0; if (!ret && (read_reg & prv->ecc_enable_mask)) return 0; sdram_err: edac_printk(KERN_ERR, EDAC_DEVICE, "%s: No ECC present or ECC disabled.\n", device->edac_dev_name); return -ENODEV; } static const struct edac_device_prv_data s10_sdramecc_data = { .setup = altr_s10_sdram_check_ecc_deps, .ce_clear_mask = ALTR_S10_ECC_SERRPENA, .ue_clear_mask = ALTR_S10_ECC_DERRPENA, .ecc_enable_mask = ALTR_S10_ECC_EN, .ecc_en_ofst = ALTR_S10_ECC_CTRL_SDRAM_OFST, .ce_set_mask = ALTR_S10_ECC_TSERRA, .ue_set_mask = ALTR_S10_ECC_TDERRA, .set_err_ofst = ALTR_S10_ECC_INTTEST_OFST, .ecc_irq_handler = altr_edac_a10_ecc_irq, .inject_fops = &altr_edac_a10_device_inject_fops, }; #endif /* CONFIG_EDAC_ALTERA_SDRAM */ /*********************** OCRAM EDAC Device Functions *********************/ #ifdef CONFIG_EDAC_ALTERA_OCRAM static void *ocram_alloc_mem(size_t size, void **other) { struct device_node *np; struct gen_pool *gp; void *sram_addr; np = of_find_compatible_node(NULL, NULL, "altr,socfpga-ocram-ecc"); if (!np) return NULL; gp = of_gen_pool_get(np, "iram", 0); of_node_put(np); if (!gp) return NULL; sram_addr = (void *)gen_pool_alloc(gp, size); if (!sram_addr) return NULL; memset(sram_addr, 0, size); /* Ensure data is written out */ wmb(); /* Remember this handle for freeing later */ *other = gp; return sram_addr; } static void ocram_free_mem(void *p, size_t size, void *other) { gen_pool_free((struct gen_pool *)other, (unsigned long)p, size); } static const struct edac_device_prv_data ocramecc_data = { .setup = altr_check_ecc_deps, .ce_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_SERR), .ue_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_DERR), .alloc_mem = ocram_alloc_mem, .free_mem = ocram_free_mem, .ecc_enable_mask = ALTR_OCR_ECC_EN, .ecc_en_ofst = ALTR_OCR_ECC_REG_OFFSET, .ce_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJS), .ue_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJD), .set_err_ofst = ALTR_OCR_ECC_REG_OFFSET, .trig_alloc_sz = ALTR_TRIG_OCRAM_BYTE_SIZE, .inject_fops = &altr_edac_device_inject_fops, }; static int __maybe_unused altr_check_ocram_deps_init(struct altr_edac_device_dev *device) { void __iomem *base = device->base; int ret; ret = altr_check_ecc_deps(device); if (ret) return ret; /* Verify OCRAM has been initialized */ if (!ecc_test_bits(ALTR_A10_ECC_INITCOMPLETEA, (base + ALTR_A10_ECC_INITSTAT_OFST))) return -ENODEV; /* Enable IRQ on Single Bit Error */ writel(ALTR_A10_ECC_SERRINTEN, (base + ALTR_A10_ECC_ERRINTENS_OFST)); /* Ensure all writes complete */ wmb(); return 0; } static const struct edac_device_prv_data a10_ocramecc_data = { .setup = altr_check_ocram_deps_init, .ce_clear_mask = ALTR_A10_ECC_SERRPENA, .ue_clear_mask = ALTR_A10_ECC_DERRPENA, .irq_status_mask = A10_SYSMGR_ECC_INTSTAT_OCRAM, .ecc_enable_mask = ALTR_A10_OCRAM_ECC_EN_CTL, .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, .ce_set_mask = ALTR_A10_ECC_TSERRA, .ue_set_mask = ALTR_A10_ECC_TDERRA, .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, .ecc_irq_handler = altr_edac_a10_ecc_irq, .inject_fops = &altr_edac_a10_device_inject2_fops, /* * OCRAM panic on uncorrectable error because sleep/resume * functions and FPGA contents are stored in OCRAM. Prefer * a kernel panic over executing/loading corrupted data. */ .panic = true, }; #endif /* CONFIG_EDAC_ALTERA_OCRAM */ /********************* L2 Cache EDAC Device Functions ********************/ #ifdef CONFIG_EDAC_ALTERA_L2C static void *l2_alloc_mem(size_t size, void **other) { struct device *dev = *other; void *ptemp = devm_kzalloc(dev, size, GFP_KERNEL); if (!ptemp) return NULL; /* Make sure everything is written out */ wmb(); /* * Clean all cache levels up to LoC (includes L2) * This ensures the corrupted data is written into * L2 cache for readback test (which causes ECC error). */ flush_cache_all(); return ptemp; } static void l2_free_mem(void *p, size_t size, void *other) { struct device *dev = other; if (dev && p) devm_kfree(dev, p); } /* * altr_l2_check_deps() * Test for L2 cache ECC dependencies upon entry because * platform specific startup should have initialized the L2 * memory and enabled the ECC. * Bail if ECC is not enabled. * Note that L2 Cache Enable is forced at build time. */ static int altr_l2_check_deps(struct altr_edac_device_dev *device) { void __iomem *base = device->base; const struct edac_device_prv_data *prv = device->data; if ((readl(base) & prv->ecc_enable_mask) == prv->ecc_enable_mask) return 0; edac_printk(KERN_ERR, EDAC_DEVICE, "L2: No ECC present, or ECC disabled\n"); return -ENODEV; } static irqreturn_t altr_edac_a10_l2_irq(int irq, void *dev_id) { struct altr_edac_device_dev *dci = dev_id; if (irq == dci->sb_irq) { regmap_write(dci->edac->ecc_mgr_map, A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST, A10_SYSGMR_MPU_CLEAR_L2_ECC_SB); edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name); return IRQ_HANDLED; } else if (irq == dci->db_irq) { regmap_write(dci->edac->ecc_mgr_map, A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST, A10_SYSGMR_MPU_CLEAR_L2_ECC_MB); edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name); panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n"); return IRQ_HANDLED; } WARN_ON(1); return IRQ_NONE; } static const struct edac_device_prv_data l2ecc_data = { .setup = altr_l2_check_deps, .ce_clear_mask = 0, .ue_clear_mask = 0, .alloc_mem = l2_alloc_mem, .free_mem = l2_free_mem, .ecc_enable_mask = ALTR_L2_ECC_EN, .ce_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJS), .ue_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJD), .set_err_ofst = ALTR_L2_ECC_REG_OFFSET, .trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE, .inject_fops = &altr_edac_device_inject_fops, }; static const struct edac_device_prv_data a10_l2ecc_data = { .setup = altr_l2_check_deps, .ce_clear_mask = ALTR_A10_L2_ECC_SERR_CLR, .ue_clear_mask = ALTR_A10_L2_ECC_MERR_CLR, .irq_status_mask = A10_SYSMGR_ECC_INTSTAT_L2, .alloc_mem = l2_alloc_mem, .free_mem = l2_free_mem, .ecc_enable_mask = ALTR_A10_L2_ECC_EN_CTL, .ce_set_mask = ALTR_A10_L2_ECC_CE_INJ_MASK, .ue_set_mask = ALTR_A10_L2_ECC_UE_INJ_MASK, .set_err_ofst = ALTR_A10_L2_ECC_INJ_OFST, .ecc_irq_handler = altr_edac_a10_l2_irq, .trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE, .inject_fops = &altr_edac_device_inject_fops, }; #endif /* CONFIG_EDAC_ALTERA_L2C */ /********************* Ethernet Device Functions ********************/ #ifdef CONFIG_EDAC_ALTERA_ETHERNET static int __init socfpga_init_ethernet_ecc(struct altr_edac_device_dev *dev) { int ret; ret = altr_init_a10_ecc_device_type("altr,socfpga-eth-mac-ecc"); if (ret) return ret; return altr_check_ecc_deps(dev); } static const struct edac_device_prv_data a10_enetecc_data = { .setup = socfpga_init_ethernet_ecc, .ce_clear_mask = ALTR_A10_ECC_SERRPENA, .ue_clear_mask = ALTR_A10_ECC_DERRPENA, .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, .ce_set_mask = ALTR_A10_ECC_TSERRA, .ue_set_mask = ALTR_A10_ECC_TDERRA, .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, .ecc_irq_handler = altr_edac_a10_ecc_irq, .inject_fops = &altr_edac_a10_device_inject2_fops, }; #endif /* CONFIG_EDAC_ALTERA_ETHERNET */ /********************** NAND Device Functions **********************/ #ifdef CONFIG_EDAC_ALTERA_NAND static int __init socfpga_init_nand_ecc(struct altr_edac_device_dev *device) { int ret; ret = altr_init_a10_ecc_device_type("altr,socfpga-nand-ecc"); if (ret) return ret; return altr_check_ecc_deps(device); } static const struct edac_device_prv_data a10_nandecc_data = { .setup = socfpga_init_nand_ecc, .ce_clear_mask = ALTR_A10_ECC_SERRPENA, .ue_clear_mask = ALTR_A10_ECC_DERRPENA, .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, .ce_set_mask = ALTR_A10_ECC_TSERRA, .ue_set_mask = ALTR_A10_ECC_TDERRA, .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, .ecc_irq_handler = altr_edac_a10_ecc_irq, .inject_fops = &altr_edac_a10_device_inject_fops, }; #endif /* CONFIG_EDAC_ALTERA_NAND */ /********************** DMA Device Functions **********************/ #ifdef CONFIG_EDAC_ALTERA_DMA static int __init socfpga_init_dma_ecc(struct altr_edac_device_dev *device) { int ret; ret = altr_init_a10_ecc_device_type("altr,socfpga-dma-ecc"); if (ret) return ret; return altr_check_ecc_deps(device); } static const struct edac_device_prv_data a10_dmaecc_data = { .setup = socfpga_init_dma_ecc, .ce_clear_mask = ALTR_A10_ECC_SERRPENA, .ue_clear_mask = ALTR_A10_ECC_DERRPENA, .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, .ce_set_mask = ALTR_A10_ECC_TSERRA, .ue_set_mask = ALTR_A10_ECC_TDERRA, .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, .ecc_irq_handler = altr_edac_a10_ecc_irq, .inject_fops = &altr_edac_a10_device_inject_fops, }; #endif /* CONFIG_EDAC_ALTERA_DMA */ /********************** USB Device Functions **********************/ #ifdef CONFIG_EDAC_ALTERA_USB static int __init socfpga_init_usb_ecc(struct altr_edac_device_dev *device) { int ret; ret = altr_init_a10_ecc_device_type("altr,socfpga-usb-ecc"); if (ret) return ret; return altr_check_ecc_deps(device); } static const struct edac_device_prv_data a10_usbecc_data = { .setup = socfpga_init_usb_ecc, .ce_clear_mask = ALTR_A10_ECC_SERRPENA, .ue_clear_mask = ALTR_A10_ECC_DERRPENA, .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, .ce_set_mask = ALTR_A10_ECC_TSERRA, .ue_set_mask = ALTR_A10_ECC_TDERRA, .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, .ecc_irq_handler = altr_edac_a10_ecc_irq, .inject_fops = &altr_edac_a10_device_inject2_fops, }; #endif /* CONFIG_EDAC_ALTERA_USB */ /********************** QSPI Device Functions **********************/ #ifdef CONFIG_EDAC_ALTERA_QSPI static int __init socfpga_init_qspi_ecc(struct altr_edac_device_dev *device) { int ret; ret = altr_init_a10_ecc_device_type("altr,socfpga-qspi-ecc"); if (ret) return ret; return altr_check_ecc_deps(device); } static const struct edac_device_prv_data a10_qspiecc_data = { .setup = socfpga_init_qspi_ecc, .ce_clear_mask = ALTR_A10_ECC_SERRPENA, .ue_clear_mask = ALTR_A10_ECC_DERRPENA, .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, .ce_set_mask = ALTR_A10_ECC_TSERRA, .ue_set_mask = ALTR_A10_ECC_TDERRA, .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, .ecc_irq_handler = altr_edac_a10_ecc_irq, .inject_fops = &altr_edac_a10_device_inject_fops, }; #endif /* CONFIG_EDAC_ALTERA_QSPI */ /********************* SDMMC Device Functions **********************/ #ifdef CONFIG_EDAC_ALTERA_SDMMC static const struct edac_device_prv_data a10_sdmmceccb_data; static int altr_portb_setup(struct altr_edac_device_dev *device) { struct edac_device_ctl_info *dci; struct altr_edac_device_dev *altdev; char *ecc_name = "sdmmcb-ecc"; int edac_idx, rc; struct device_node *np; const struct edac_device_prv_data *prv = &a10_sdmmceccb_data; rc = altr_check_ecc_deps(device); if (rc) return rc; np = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc"); if (!np) { edac_printk(KERN_WARNING, EDAC_DEVICE, "SDMMC node not found\n"); return -ENODEV; } /* Create the PortB EDAC device */ edac_idx = edac_device_alloc_index(); dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name, 1, ecc_name, 1, 0, NULL, 0, edac_idx); if (!dci) { edac_printk(KERN_ERR, EDAC_DEVICE, "%s: Unable to allocate PortB EDAC device\n", ecc_name); return -ENOMEM; } /* Initialize the PortB EDAC device structure from PortA structure */ altdev = dci->pvt_info; *altdev = *device; if (!devres_open_group(&altdev->ddev, altr_portb_setup, GFP_KERNEL)) return -ENOMEM; /* Update PortB specific values */ altdev->edac_dev_name = ecc_name; altdev->edac_idx = edac_idx; altdev->edac_dev = dci; altdev->data = prv; dci->dev = &altdev->ddev; dci->ctl_name = "Altera ECC Manager"; dci->mod_name = ecc_name; dci->dev_name = ecc_name; /* * Update the PortB IRQs - A10 has 4, S10 has 2, Index accordingly * * FIXME: Instead of ifdefs with different architectures the driver * should properly use compatibles. */ #ifdef CONFIG_64BIT altdev->sb_irq = irq_of_parse_and_map(np, 1); #else altdev->sb_irq = irq_of_parse_and_map(np, 2); #endif if (!altdev->sb_irq) { edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB SBIRQ alloc\n"); rc = -ENODEV; goto err_release_group_1; } rc = devm_request_irq(&altdev->ddev, altdev->sb_irq, prv->ecc_irq_handler, IRQF_ONESHOT | IRQF_TRIGGER_HIGH, ecc_name, altdev); if (rc) { edac_printk(KERN_ERR, EDAC_DEVICE, "PortB SBERR IRQ error\n"); goto err_release_group_1; } #ifdef CONFIG_64BIT /* Use IRQ to determine SError origin instead of assigning IRQ */ rc = of_property_read_u32_index(np, "interrupts", 1, &altdev->db_irq); if (rc) { edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB DBIRQ alloc\n"); goto err_release_group_1; } #else altdev->db_irq = irq_of_parse_and_map(np, 3); if (!altdev->db_irq) { edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB DBIRQ alloc\n"); rc = -ENODEV; goto err_release_group_1; } rc = devm_request_irq(&altdev->ddev, altdev->db_irq, prv->ecc_irq_handler, IRQF_ONESHOT | IRQF_TRIGGER_HIGH, ecc_name, altdev); if (rc) { edac_printk(KERN_ERR, EDAC_DEVICE, "PortB DBERR IRQ error\n"); goto err_release_group_1; } #endif rc = edac_device_add_device(dci); if (rc) { edac_printk(KERN_ERR, EDAC_DEVICE, "edac_device_add_device portB failed\n"); rc = -ENOMEM; goto err_release_group_1; } altr_create_edacdev_dbgfs(dci, prv); list_add(&altdev->next, &altdev->edac->a10_ecc_devices); devres_remove_group(&altdev->ddev, altr_portb_setup); return 0; err_release_group_1: edac_device_free_ctl_info(dci); devres_release_group(&altdev->ddev, altr_portb_setup); edac_printk(KERN_ERR, EDAC_DEVICE, "%s:Error setting up EDAC device: %d\n", ecc_name, rc); return rc; } static int __init socfpga_init_sdmmc_ecc(struct altr_edac_device_dev *device) { int rc = -ENODEV; struct device_node *child; child = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc"); if (!child) return -ENODEV; if (!of_device_is_available(child)) goto exit; if (validate_parent_available(child)) goto exit; /* Init portB */ rc = altr_init_a10_ecc_block(child, ALTR_A10_SDMMC_IRQ_MASK, a10_sdmmceccb_data.ecc_enable_mask, 1); if (rc) goto exit; /* Setup portB */ return altr_portb_setup(device); exit: of_node_put(child); return rc; } static irqreturn_t altr_edac_a10_ecc_irq_portb(int irq, void *dev_id) { struct altr_edac_device_dev *ad = dev_id; void __iomem *base = ad->base; const struct edac_device_prv_data *priv = ad->data; if (irq == ad->sb_irq) { writel(priv->ce_clear_mask, base + ALTR_A10_ECC_INTSTAT_OFST); edac_device_handle_ce(ad->edac_dev, 0, 0, ad->edac_dev_name); return IRQ_HANDLED; } else if (irq == ad->db_irq) { writel(priv->ue_clear_mask, base + ALTR_A10_ECC_INTSTAT_OFST); edac_device_handle_ue(ad->edac_dev, 0, 0, ad->edac_dev_name); return IRQ_HANDLED; } WARN_ONCE(1, "Unhandled IRQ%d on Port B.", irq); return IRQ_NONE; } static const struct edac_device_prv_data a10_sdmmcecca_data = { .setup = socfpga_init_sdmmc_ecc, .ce_clear_mask = ALTR_A10_ECC_SERRPENA, .ue_clear_mask = ALTR_A10_ECC_DERRPENA, .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, .ce_set_mask = ALTR_A10_ECC_SERRPENA, .ue_set_mask = ALTR_A10_ECC_DERRPENA, .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, .ecc_irq_handler = altr_edac_a10_ecc_irq, .inject_fops = &altr_edac_a10_device_inject_fops, }; static const struct edac_device_prv_data a10_sdmmceccb_data = { .setup = socfpga_init_sdmmc_ecc, .ce_clear_mask = ALTR_A10_ECC_SERRPENB, .ue_clear_mask = ALTR_A10_ECC_DERRPENB, .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, .ce_set_mask = ALTR_A10_ECC_TSERRB, .ue_set_mask = ALTR_A10_ECC_TDERRB, .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, .ecc_irq_handler = altr_edac_a10_ecc_irq_portb, .inject_fops = &altr_edac_a10_device_inject_fops, }; #endif /* CONFIG_EDAC_ALTERA_SDMMC */ /********************* Arria10 EDAC Device Functions *************************/ static const struct of_device_id altr_edac_a10_device_of_match[] = { #ifdef CONFIG_EDAC_ALTERA_L2C { .compatible = "altr,socfpga-a10-l2-ecc", .data = &a10_l2ecc_data }, #endif #ifdef CONFIG_EDAC_ALTERA_OCRAM { .compatible = "altr,socfpga-a10-ocram-ecc", .data = &a10_ocramecc_data }, #endif #ifdef CONFIG_EDAC_ALTERA_ETHERNET { .compatible = "altr,socfpga-eth-mac-ecc", .data = &a10_enetecc_data }, #endif #ifdef CONFIG_EDAC_ALTERA_NAND { .compatible = "altr,socfpga-nand-ecc", .data = &a10_nandecc_data }, #endif #ifdef CONFIG_EDAC_ALTERA_DMA { .compatible = "altr,socfpga-dma-ecc", .data = &a10_dmaecc_data }, #endif #ifdef CONFIG_EDAC_ALTERA_USB { .compatible = "altr,socfpga-usb-ecc", .data = &a10_usbecc_data }, #endif #ifdef CONFIG_EDAC_ALTERA_QSPI { .compatible = "altr,socfpga-qspi-ecc", .data = &a10_qspiecc_data }, #endif #ifdef CONFIG_EDAC_ALTERA_SDMMC { .compatible = "altr,socfpga-sdmmc-ecc", .data = &a10_sdmmcecca_data }, #endif #ifdef CONFIG_EDAC_ALTERA_SDRAM { .compatible = "altr,sdram-edac-s10", .data = &s10_sdramecc_data }, #endif {}, }; MODULE_DEVICE_TABLE(of, altr_edac_a10_device_of_match); /* * The Arria10 EDAC Device Functions differ from the Cyclone5/Arria5 * because 2 IRQs are shared among the all ECC peripherals. The ECC * manager manages the IRQs and the children. * Based on xgene_edac.c peripheral code. */ static ssize_t __maybe_unused altr_edac_a10_device_trig(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { struct edac_device_ctl_info *edac_dci = file->private_data; struct altr_edac_device_dev *drvdata = edac_dci->pvt_info; const struct edac_device_prv_data *priv = drvdata->data; void __iomem *set_addr = (drvdata->base + priv->set_err_ofst); unsigned long flags; u8 trig_type; if (!user_buf || get_user(trig_type, user_buf)) return -EFAULT; local_irq_save(flags); if (trig_type == ALTR_UE_TRIGGER_CHAR) writel(priv->ue_set_mask, set_addr); else writel(priv->ce_set_mask, set_addr); /* Ensure the interrupt test bits are set */ wmb(); local_irq_restore(flags); return count; } /* * The Stratix10 EDAC Error Injection Functions differ from Arria10 * slightly. A few Arria10 peripherals can use this injection function. * Inject the error into the memory and then readback to trigger the IRQ. */ static ssize_t __maybe_unused altr_edac_a10_device_trig2(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { struct edac_device_ctl_info *edac_dci = file->private_data; struct altr_edac_device_dev *drvdata = edac_dci->pvt_info; const struct edac_device_prv_data *priv = drvdata->data; void __iomem *set_addr = (drvdata->base + priv->set_err_ofst); unsigned long flags; u8 trig_type; if (!user_buf || get_user(trig_type, user_buf)) return -EFAULT; local_irq_save(flags); if (trig_type == ALTR_UE_TRIGGER_CHAR) { writel(priv->ue_set_mask, set_addr); } else { /* Setup read/write of 4 bytes */ writel(ECC_WORD_WRITE, drvdata->base + ECC_BLK_DBYTECTRL_OFST); /* Setup Address to 0 */ writel(0, drvdata->base + ECC_BLK_ADDRESS_OFST); /* Setup accctrl to read & ecc & data override */ writel(ECC_READ_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST); /* Kick it. */ writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST); /* Setup write for single bit change */ writel(readl(drvdata->base + ECC_BLK_RDATA0_OFST) ^ 0x1, drvdata->base + ECC_BLK_WDATA0_OFST); writel(readl(drvdata->base + ECC_BLK_RDATA1_OFST), drvdata->base + ECC_BLK_WDATA1_OFST); writel(readl(drvdata->base + ECC_BLK_RDATA2_OFST), drvdata->base + ECC_BLK_WDATA2_OFST); writel(readl(drvdata->base + ECC_BLK_RDATA3_OFST), drvdata->base + ECC_BLK_WDATA3_OFST); /* Copy Read ECC to Write ECC */ writel(readl(drvdata->base + ECC_BLK_RECC0_OFST), drvdata->base + ECC_BLK_WECC0_OFST); writel(readl(drvdata->base + ECC_BLK_RECC1_OFST), drvdata->base + ECC_BLK_WECC1_OFST); /* Setup accctrl to write & ecc override & data override */ writel(ECC_WRITE_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST); /* Kick it. */ writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST); /* Setup accctrl to read & ecc overwrite & data overwrite */ writel(ECC_READ_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST); /* Kick it. */ writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST); } /* Ensure the interrupt test bits are set */ wmb(); local_irq_restore(flags); return count; } static void altr_edac_a10_irq_handler(struct irq_desc *desc) { int dberr, bit, sm_offset, irq_status; struct altr_arria10_edac *edac = irq_desc_get_handler_data(desc); struct irq_chip *chip = irq_desc_get_chip(desc); int irq = irq_desc_get_irq(desc); unsigned long bits; dberr = (irq == edac->db_irq) ? 1 : 0; sm_offset = dberr ? A10_SYSMGR_ECC_INTSTAT_DERR_OFST : A10_SYSMGR_ECC_INTSTAT_SERR_OFST; chained_irq_enter(chip, desc); regmap_read(edac->ecc_mgr_map, sm_offset, &irq_status); bits = irq_status; for_each_set_bit(bit, &bits, 32) generic_handle_domain_irq(edac->domain, dberr * 32 + bit); chained_irq_exit(chip, desc); } static int validate_parent_available(struct device_node *np) { struct device_node *parent; int ret = 0; /* SDRAM must be present for Linux (implied parent) */ if (of_device_is_compatible(np, "altr,sdram-edac-s10")) return 0; /* Ensure parent device is enabled if parent node exists */ parent = of_parse_phandle(np, "altr,ecc-parent", 0); if (parent && !of_device_is_available(parent)) ret = -ENODEV; of_node_put(parent); return ret; } static int get_s10_sdram_edac_resource(struct device_node *np, struct resource *res) { struct device_node *parent; int ret; parent = of_parse_phandle(np, "altr,sdr-syscon", 0); if (!parent) return -ENODEV; ret = of_address_to_resource(parent, 0, res); of_node_put(parent); return ret; } static int altr_edac_a10_device_add(struct altr_arria10_edac *edac, struct device_node *np) { struct edac_device_ctl_info *dci; struct altr_edac_device_dev *altdev; char *ecc_name = (char *)np->name; struct resource res; int edac_idx; int rc = 0; const struct edac_device_prv_data *prv; /* Get matching node and check for valid result */ const struct of_device_id *pdev_id = of_match_node(altr_edac_a10_device_of_match, np); if (IS_ERR_OR_NULL(pdev_id)) return -ENODEV; /* Get driver specific data for this EDAC device */ prv = pdev_id->data; if (IS_ERR_OR_NULL(prv)) return -ENODEV; if (validate_parent_available(np)) return -ENODEV; if (!devres_open_group(edac->dev, altr_edac_a10_device_add, GFP_KERNEL)) return -ENOMEM; if (of_device_is_compatible(np, "altr,sdram-edac-s10")) rc = get_s10_sdram_edac_resource(np, &res); else rc = of_address_to_resource(np, 0, &res); if (rc < 0) { edac_printk(KERN_ERR, EDAC_DEVICE, "%s: no resource address\n", ecc_name); goto err_release_group; } edac_idx = edac_device_alloc_index(); dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name, 1, ecc_name, 1, 0, NULL, 0, edac_idx); if (!dci) { edac_printk(KERN_ERR, EDAC_DEVICE, "%s: Unable to allocate EDAC device\n", ecc_name); rc = -ENOMEM; goto err_release_group; } altdev = dci->pvt_info; dci->dev = edac->dev; altdev->edac_dev_name = ecc_name; altdev->edac_idx = edac_idx; altdev->edac = edac; altdev->edac_dev = dci; altdev->data = prv; altdev->ddev = *edac->dev; dci->dev = &altdev->ddev; dci->ctl_name = "Altera ECC Manager"; dci->mod_name = ecc_name; dci->dev_name = ecc_name; altdev->base = devm_ioremap_resource(edac->dev, &res); if (IS_ERR(altdev->base)) { rc = PTR_ERR(altdev->base); goto err_release_group1; } /* Check specific dependencies for the module */ if (altdev->data->setup) { rc = altdev->data->setup(altdev); if (rc) goto err_release_group1; } altdev->sb_irq = irq_of_parse_and_map(np, 0); if (!altdev->sb_irq) { edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating SBIRQ\n"); rc = -ENODEV; goto err_release_group1; } rc = devm_request_irq(edac->dev, altdev->sb_irq, prv->ecc_irq_handler, IRQF_ONESHOT | IRQF_TRIGGER_HIGH, ecc_name, altdev); if (rc) { edac_printk(KERN_ERR, EDAC_DEVICE, "No SBERR IRQ resource\n"); goto err_release_group1; } #ifdef CONFIG_64BIT /* Use IRQ to determine SError origin instead of assigning IRQ */ rc = of_property_read_u32_index(np, "interrupts", 0, &altdev->db_irq); if (rc) { edac_printk(KERN_ERR, EDAC_DEVICE, "Unable to parse DB IRQ index\n"); goto err_release_group1; } #else altdev->db_irq = irq_of_parse_and_map(np, 1); if (!altdev->db_irq) { edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating DBIRQ\n"); rc = -ENODEV; goto err_release_group1; } rc = devm_request_irq(edac->dev, altdev->db_irq, prv->ecc_irq_handler, IRQF_ONESHOT | IRQF_TRIGGER_HIGH, ecc_name, altdev); if (rc) { edac_printk(KERN_ERR, EDAC_DEVICE, "No DBERR IRQ resource\n"); goto err_release_group1; } #endif rc = edac_device_add_device(dci); if (rc) { dev_err(edac->dev, "edac_device_add_device failed\n"); rc = -ENOMEM; goto err_release_group1; } altr_create_edacdev_dbgfs(dci, prv); list_add(&altdev->next, &edac->a10_ecc_devices); devres_remove_group(edac->dev, altr_edac_a10_device_add); return 0; err_release_group1: edac_device_free_ctl_info(dci); err_release_group: devres_release_group(edac->dev, NULL); edac_printk(KERN_ERR, EDAC_DEVICE, "%s:Error setting up EDAC device: %d\n", ecc_name, rc); return rc; } static void a10_eccmgr_irq_mask(struct irq_data *d) { struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d); regmap_write(edac->ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST, BIT(d->hwirq)); } static void a10_eccmgr_irq_unmask(struct irq_data *d) { struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d); regmap_write(edac->ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST, BIT(d->hwirq)); } static int a10_eccmgr_irqdomain_map(struct irq_domain *d, unsigned int irq, irq_hw_number_t hwirq) { struct altr_arria10_edac *edac = d->host_data; irq_set_chip_and_handler(irq, &edac->irq_chip, handle_simple_irq); irq_set_chip_data(irq, edac); irq_set_noprobe(irq); return 0; } static const struct irq_domain_ops a10_eccmgr_ic_ops = { .map = a10_eccmgr_irqdomain_map, .xlate = irq_domain_xlate_twocell, }; /************** Stratix 10 EDAC Double Bit Error Handler ************/ #define to_a10edac(p, m) container_of(p, struct altr_arria10_edac, m) #ifdef CONFIG_64BIT /* panic routine issues reboot on non-zero panic_timeout */ extern int panic_timeout; /* * The double bit error is handled through SError which is fatal. This is * called as a panic notifier to printout ECC error info as part of the panic. */ static int s10_edac_dberr_handler(struct notifier_block *this, unsigned long event, void *ptr) { struct altr_arria10_edac *edac = to_a10edac(this, panic_notifier); int err_addr, dberror; regmap_read(edac->ecc_mgr_map, S10_SYSMGR_ECC_INTSTAT_DERR_OFST, &dberror); regmap_write(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST, dberror); if (dberror & S10_DBE_IRQ_MASK) { struct list_head *position; struct altr_edac_device_dev *ed; struct arm_smccc_res result; /* Find the matching DBE in the list of devices */ list_for_each(position, &edac->a10_ecc_devices) { ed = list_entry(position, struct altr_edac_device_dev, next); if (!(BIT(ed->db_irq) & dberror)) continue; writel(ALTR_A10_ECC_DERRPENA, ed->base + ALTR_A10_ECC_INTSTAT_OFST); err_addr = readl(ed->base + ALTR_S10_DERR_ADDRA_OFST); regmap_write(edac->ecc_mgr_map, S10_SYSMGR_UE_ADDR_OFST, err_addr); edac_printk(KERN_ERR, EDAC_DEVICE, "EDAC: [Fatal DBE on %s @ 0x%08X]\n", ed->edac_dev_name, err_addr); break; } /* Notify the System through SMC. Reboot delay = 1 second */ panic_timeout = 1; arm_smccc_smc(INTEL_SIP_SMC_ECC_DBE, dberror, 0, 0, 0, 0, 0, 0, &result); } return NOTIFY_DONE; } #endif /****************** Arria 10 EDAC Probe Function *********************/ static int altr_edac_a10_probe(struct platform_device *pdev) { struct altr_arria10_edac *edac; struct device_node *child; edac = devm_kzalloc(&pdev->dev, sizeof(*edac), GFP_KERNEL); if (!edac) return -ENOMEM; edac->dev = &pdev->dev; platform_set_drvdata(pdev, edac); INIT_LIST_HEAD(&edac->a10_ecc_devices); edac->ecc_mgr_map = altr_sysmgr_regmap_lookup_by_phandle(pdev->dev.of_node, "altr,sysmgr-syscon"); if (IS_ERR(edac->ecc_mgr_map)) { edac_printk(KERN_ERR, EDAC_DEVICE, "Unable to get syscon altr,sysmgr-syscon\n"); return PTR_ERR(edac->ecc_mgr_map); } edac->irq_chip.name = pdev->dev.of_node->name; edac->irq_chip.irq_mask = a10_eccmgr_irq_mask; edac->irq_chip.irq_unmask = a10_eccmgr_irq_unmask; edac->domain = irq_domain_add_linear(pdev->dev.of_node, 64, &a10_eccmgr_ic_ops, edac); if (!edac->domain) { dev_err(&pdev->dev, "Error adding IRQ domain\n"); return -ENOMEM; } edac->sb_irq = platform_get_irq(pdev, 0); if (edac->sb_irq < 0) return edac->sb_irq; irq_set_chained_handler_and_data(edac->sb_irq, altr_edac_a10_irq_handler, edac); #ifdef CONFIG_64BIT { int dberror, err_addr; edac->panic_notifier.notifier_call = s10_edac_dberr_handler; atomic_notifier_chain_register(&panic_notifier_list, &edac->panic_notifier); /* Printout a message if uncorrectable error previously. */ regmap_read(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST, &dberror); if (dberror) { regmap_read(edac->ecc_mgr_map, S10_SYSMGR_UE_ADDR_OFST, &err_addr); edac_printk(KERN_ERR, EDAC_DEVICE, "Previous Boot UE detected[0x%X] @ 0x%X\n", dberror, err_addr); /* Reset the sticky registers */ regmap_write(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST, 0); regmap_write(edac->ecc_mgr_map, S10_SYSMGR_UE_ADDR_OFST, 0); } } #else edac->db_irq = platform_get_irq(pdev, 1); if (edac->db_irq < 0) return edac->db_irq; irq_set_chained_handler_and_data(edac->db_irq, altr_edac_a10_irq_handler, edac); #endif for_each_child_of_node(pdev->dev.of_node, child) { if (!of_device_is_available(child)) continue; if (of_match_node(altr_edac_a10_device_of_match, child)) altr_edac_a10_device_add(edac, child); #ifdef CONFIG_EDAC_ALTERA_SDRAM else if (of_device_is_compatible(child, "altr,sdram-edac-a10")) of_platform_populate(pdev->dev.of_node, altr_sdram_ctrl_of_match, NULL, &pdev->dev); #endif } return 0; } static const struct of_device_id altr_edac_a10_of_match[] = { { .compatible = "altr,socfpga-a10-ecc-manager" }, { .compatible = "altr,socfpga-s10-ecc-manager" }, {}, }; MODULE_DEVICE_TABLE(of, altr_edac_a10_of_match); static struct platform_driver altr_edac_a10_driver = { .probe = altr_edac_a10_probe, .driver = { .name = "socfpga_a10_ecc_manager", .of_match_table = altr_edac_a10_of_match, }, }; module_platform_driver(altr_edac_a10_driver); MODULE_AUTHOR("Thor Thayer"); MODULE_DESCRIPTION("EDAC Driver for Altera Memories");