// SPDX-License-Identifier: GPL-2.0-or-later /* align.c - handle alignment exceptions for the Power PC. * * Copyright (c) 1996 Paul Mackerras <paulus@cs.anu.edu.au> * Copyright (c) 1998-1999 TiVo, Inc. * PowerPC 403GCX modifications. * Copyright (c) 1999 Grant Erickson <grant@lcse.umn.edu> * PowerPC 403GCX/405GP modifications. * Copyright (c) 2001-2002 PPC64 team, IBM Corp * 64-bit and Power4 support * Copyright (c) 2005 Benjamin Herrenschmidt, IBM Corp * <benh@kernel.crashing.org> * Merge ppc32 and ppc64 implementations */ #include <linux/kernel.h> #include <linux/mm.h> #include <asm/processor.h> #include <linux/uaccess.h> #include <asm/cache.h> #include <asm/cputable.h> #include <asm/emulated_ops.h> #include <asm/switch_to.h> #include <asm/disassemble.h> #include <asm/cpu_has_feature.h> #include <asm/sstep.h> #include <asm/inst.h> struct aligninfo { unsigned char len; unsigned char flags; }; #define INVALID { 0, 0 } /* Bits in the flags field */ #define LD 0 /* load */ #define ST 1 /* store */ #define SE 2 /* sign-extend value, or FP ld/st as word */ #define SW 0x20 /* byte swap */ #define E4 0x40 /* SPE endianness is word */ #define E8 0x80 /* SPE endianness is double word */ #ifdef CONFIG_SPE static struct aligninfo spe_aligninfo[32] = { { 8, LD+E8 }, /* 0 00 00: evldd[x] */ { 8, LD+E4 }, /* 0 00 01: evldw[x] */ { 8, LD }, /* 0 00 10: evldh[x] */ INVALID, /* 0 00 11 */ { 2, LD }, /* 0 01 00: evlhhesplat[x] */ INVALID, /* 0 01 01 */ { 2, LD }, /* 0 01 10: evlhhousplat[x] */ { 2, LD+SE }, /* 0 01 11: evlhhossplat[x] */ { 4, LD }, /* 0 10 00: evlwhe[x] */ INVALID, /* 0 10 01 */ { 4, LD }, /* 0 10 10: evlwhou[x] */ { 4, LD+SE }, /* 0 10 11: evlwhos[x] */ { 4, LD+E4 }, /* 0 11 00: evlwwsplat[x] */ INVALID, /* 0 11 01 */ { 4, LD }, /* 0 11 10: evlwhsplat[x] */ INVALID, /* 0 11 11 */ { 8, ST+E8 }, /* 1 00 00: evstdd[x] */ { 8, ST+E4 }, /* 1 00 01: evstdw[x] */ { 8, ST }, /* 1 00 10: evstdh[x] */ INVALID, /* 1 00 11 */ INVALID, /* 1 01 00 */ INVALID, /* 1 01 01 */ INVALID, /* 1 01 10 */ INVALID, /* 1 01 11 */ { 4, ST }, /* 1 10 00: evstwhe[x] */ INVALID, /* 1 10 01 */ { 4, ST }, /* 1 10 10: evstwho[x] */ INVALID, /* 1 10 11 */ { 4, ST+E4 }, /* 1 11 00: evstwwe[x] */ INVALID, /* 1 11 01 */ { 4, ST+E4 }, /* 1 11 10: evstwwo[x] */ INVALID, /* 1 11 11 */ }; #define EVLDD 0x00 #define EVLDW 0x01 #define EVLDH 0x02 #define EVLHHESPLAT 0x04 #define EVLHHOUSPLAT 0x06 #define EVLHHOSSPLAT 0x07 #define EVLWHE 0x08 #define EVLWHOU 0x0A #define EVLWHOS 0x0B #define EVLWWSPLAT 0x0C #define EVLWHSPLAT 0x0E #define EVSTDD 0x10 #define EVSTDW 0x11 #define EVSTDH 0x12 #define EVSTWHE 0x18 #define EVSTWHO 0x1A #define EVSTWWE 0x1C #define EVSTWWO 0x1E /* * Emulate SPE loads and stores. * Only Book-E has these instructions, and it does true little-endian, * so we don't need the address swizzling. */ static int emulate_spe(struct pt_regs *regs, unsigned int reg, ppc_inst_t ppc_instr) { union { u64 ll; u32 w[2]; u16 h[4]; u8 v[8]; } data, temp; unsigned char __user *p, *addr; unsigned long *evr = ¤t->thread.evr[reg]; unsigned int nb, flags, instr; instr = ppc_inst_val(ppc_instr); instr = (instr >> 1) & 0x1f; /* DAR has the operand effective address */ addr = (unsigned char __user *)regs->dar; nb = spe_aligninfo[instr].len; flags = spe_aligninfo[instr].flags; /* userland only */ if (unlikely(!user_mode(regs))) return 0; flush_spe_to_thread(current); /* If we are loading, get the data from user space, else * get it from register values */ if (flags & ST) { data.ll = 0; switch (instr) { case EVSTDD: case EVSTDW: case EVSTDH: data.w[0] = *evr; data.w[1] = regs->gpr[reg]; break; case EVSTWHE: data.h[2] = *evr >> 16; data.h[3] = regs->gpr[reg] >> 16; break; case EVSTWHO: data.h[2] = *evr & 0xffff; data.h[3] = regs->gpr[reg] & 0xffff; break; case EVSTWWE: data.w[1] = *evr; break; case EVSTWWO: data.w[1] = regs->gpr[reg]; break; default: return -EINVAL; } } else { temp.ll = data.ll = 0; p = addr; if (!user_read_access_begin(addr, nb)) return -EFAULT; switch (nb) { case 8: unsafe_get_user(temp.v[0], p++, Efault_read); unsafe_get_user(temp.v[1], p++, Efault_read); unsafe_get_user(temp.v[2], p++, Efault_read); unsafe_get_user(temp.v[3], p++, Efault_read); fallthrough; case 4: unsafe_get_user(temp.v[4], p++, Efault_read); unsafe_get_user(temp.v[5], p++, Efault_read); fallthrough; case 2: unsafe_get_user(temp.v[6], p++, Efault_read); unsafe_get_user(temp.v[7], p++, Efault_read); } user_read_access_end(); switch (instr) { case EVLDD: case EVLDW: case EVLDH: data.ll = temp.ll; break; case EVLHHESPLAT: data.h[0] = temp.h[3]; data.h[2] = temp.h[3]; break; case EVLHHOUSPLAT: case EVLHHOSSPLAT: data.h[1] = temp.h[3]; data.h[3] = temp.h[3]; break; case EVLWHE: data.h[0] = temp.h[2]; data.h[2] = temp.h[3]; break; case EVLWHOU: case EVLWHOS: data.h[1] = temp.h[2]; data.h[3] = temp.h[3]; break; case EVLWWSPLAT: data.w[0] = temp.w[1]; data.w[1] = temp.w[1]; break; case EVLWHSPLAT: data.h[0] = temp.h[2]; data.h[1] = temp.h[2]; data.h[2] = temp.h[3]; data.h[3] = temp.h[3]; break; default: return -EINVAL; } } if (flags & SW) { switch (flags & 0xf0) { case E8: data.ll = swab64(data.ll); break; case E4: data.w[0] = swab32(data.w[0]); data.w[1] = swab32(data.w[1]); break; /* Its half word endian */ default: data.h[0] = swab16(data.h[0]); data.h[1] = swab16(data.h[1]); data.h[2] = swab16(data.h[2]); data.h[3] = swab16(data.h[3]); break; } } if (flags & SE) { data.w[0] = (s16)data.h[1]; data.w[1] = (s16)data.h[3]; } /* Store result to memory or update registers */ if (flags & ST) { p = addr; if (!user_write_access_begin(addr, nb)) return -EFAULT; switch (nb) { case 8: unsafe_put_user(data.v[0], p++, Efault_write); unsafe_put_user(data.v[1], p++, Efault_write); unsafe_put_user(data.v[2], p++, Efault_write); unsafe_put_user(data.v[3], p++, Efault_write); fallthrough; case 4: unsafe_put_user(data.v[4], p++, Efault_write); unsafe_put_user(data.v[5], p++, Efault_write); fallthrough; case 2: unsafe_put_user(data.v[6], p++, Efault_write); unsafe_put_user(data.v[7], p++, Efault_write); } user_write_access_end(); } else { *evr = data.w[0]; regs->gpr[reg] = data.w[1]; } return 1; Efault_read: user_read_access_end(); return -EFAULT; Efault_write: user_write_access_end(); return -EFAULT; } #endif /* CONFIG_SPE */ /* * Called on alignment exception. Attempts to fixup * * Return 1 on success * Return 0 if unable to handle the interrupt * Return -EFAULT if data address is bad * Other negative return values indicate that the instruction can't * be emulated, and the process should be given a SIGBUS. */ int fix_alignment(struct pt_regs *regs) { ppc_inst_t instr; struct instruction_op op; int r, type; if (is_kernel_addr(regs->nip)) r = copy_inst_from_kernel_nofault(&instr, (void *)regs->nip); else r = __get_user_instr(instr, (void __user *)regs->nip); if (unlikely(r)) return -EFAULT; if ((regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE)) { /* We don't handle PPC little-endian any more... */ if (cpu_has_feature(CPU_FTR_PPC_LE)) return -EIO; instr = ppc_inst_swab(instr); } #ifdef CONFIG_SPE if (ppc_inst_primary_opcode(instr) == 0x4) { int reg = (ppc_inst_val(instr) >> 21) & 0x1f; PPC_WARN_ALIGNMENT(spe, regs); return emulate_spe(regs, reg, instr); } #endif /* * ISA 3.0 (such as P9) copy, copy_first, paste and paste_last alignment * check. * * Send a SIGBUS to the process that caused the fault. * * We do not emulate these because paste may contain additional metadata * when pasting to a co-processor. Furthermore, paste_last is the * synchronisation point for preceding copy/paste sequences. */ if ((ppc_inst_val(instr) & 0xfc0006fe) == (PPC_INST_COPY & 0xfc0006fe)) return -EIO; r = analyse_instr(&op, regs, instr); if (r < 0) return -EINVAL; type = GETTYPE(op.type); if (!OP_IS_LOAD_STORE(type)) { if (op.type != CACHEOP + DCBZ) return -EINVAL; PPC_WARN_ALIGNMENT(dcbz, regs); WARN_ON_ONCE(!user_mode(regs)); r = emulate_dcbz(op.ea, regs); } else { if (type == LARX || type == STCX) return -EIO; PPC_WARN_ALIGNMENT(unaligned, regs); r = emulate_loadstore(regs, &op); } if (!r) return 1; return r; }