// SPDX-License-Identifier: Apache-2.0 OR MIT //! This module provides the macros that actually implement the proc-macros `pin_data` and //! `pinned_drop`. It also contains `__init_internal` the implementation of the `{try_}{pin_}init!` //! macros. //! //! These macros should never be called directly, since they expect their input to be //! in a certain format which is internal. If used incorrectly, these macros can lead to UB even in //! safe code! Use the public facing macros instead. //! //! This architecture has been chosen because the kernel does not yet have access to `syn` which //! would make matters a lot easier for implementing these as proc-macros. //! //! # Macro expansion example //! //! This section is intended for readers trying to understand the macros in this module and the //! `pin_init!` macros from `init.rs`. //! //! We will look at the following example: //! //! ```rust,ignore //! # use kernel::init::*; //! # use core::pin::Pin; //! #[pin_data] //! #[repr(C)] //! struct Bar<T> { //! #[pin] //! t: T, //! pub x: usize, //! } //! //! impl<T> Bar<T> { //! fn new(t: T) -> impl PinInit<Self> { //! pin_init!(Self { t, x: 0 }) //! } //! } //! //! #[pin_data(PinnedDrop)] //! struct Foo { //! a: usize, //! #[pin] //! b: Bar<u32>, //! } //! //! #[pinned_drop] //! impl PinnedDrop for Foo { //! fn drop(self: Pin<&mut Self>) { //! pr_info!("{self:p} is getting dropped."); //! } //! } //! //! let a = 42; //! let initializer = pin_init!(Foo { //! a, //! b <- Bar::new(36), //! }); //! ``` //! //! This example includes the most common and important features of the pin-init API. //! //! Below you can find individual section about the different macro invocations. Here are some //! general things we need to take into account when designing macros: //! - use global paths, similarly to file paths, these start with the separator: `::core::panic!()` //! this ensures that the correct item is used, since users could define their own `mod core {}` //! and then their own `panic!` inside to execute arbitrary code inside of our macro. //! - macro `unsafe` hygiene: we need to ensure that we do not expand arbitrary, user-supplied //! expressions inside of an `unsafe` block in the macro, because this would allow users to do //! `unsafe` operations without an associated `unsafe` block. //! //! ## `#[pin_data]` on `Bar` //! //! This macro is used to specify which fields are structurally pinned and which fields are not. It //! is placed on the struct definition and allows `#[pin]` to be placed on the fields. //! //! Here is the definition of `Bar` from our example: //! //! ```rust,ignore //! # use kernel::init::*; //! #[pin_data] //! #[repr(C)] //! struct Bar<T> { //! #[pin] //! t: T, //! pub x: usize, //! } //! ``` //! //! This expands to the following code: //! //! ```rust,ignore //! // Firstly the normal definition of the struct, attributes are preserved: //! #[repr(C)] //! struct Bar<T> { //! t: T, //! pub x: usize, //! } //! // Then an anonymous constant is defined, this is because we do not want any code to access the //! // types that we define inside: //! const _: () = { //! // We define the pin-data carrying struct, it is a ZST and needs to have the same generics, //! // since we need to implement access functions for each field and thus need to know its //! // type. //! struct __ThePinData<T> { //! __phantom: ::core::marker::PhantomData<fn(Bar<T>) -> Bar<T>>, //! } //! // We implement `Copy` for the pin-data struct, since all functions it defines will take //! // `self` by value. //! impl<T> ::core::clone::Clone for __ThePinData<T> { //! fn clone(&self) -> Self { //! *self //! } //! } //! impl<T> ::core::marker::Copy for __ThePinData<T> {} //! // For every field of `Bar`, the pin-data struct will define a function with the same name //! // and accessor (`pub` or `pub(crate)` etc.). This function will take a pointer to the //! // field (`slot`) and a `PinInit` or `Init` depending on the projection kind of the field //! // (if pinning is structural for the field, then `PinInit` otherwise `Init`). //! #[allow(dead_code)] //! impl<T> __ThePinData<T> { //! unsafe fn t<E>( //! self, //! slot: *mut T, //! // Since `t` is `#[pin]`, this is `PinInit`. //! init: impl ::kernel::init::PinInit<T, E>, //! ) -> ::core::result::Result<(), E> { //! unsafe { ::kernel::init::PinInit::__pinned_init(init, slot) } //! } //! pub unsafe fn x<E>( //! self, //! slot: *mut usize, //! // Since `x` is not `#[pin]`, this is `Init`. //! init: impl ::kernel::init::Init<usize, E>, //! ) -> ::core::result::Result<(), E> { //! unsafe { ::kernel::init::Init::__init(init, slot) } //! } //! } //! // Implement the internal `HasPinData` trait that associates `Bar` with the pin-data struct //! // that we constructed above. //! unsafe impl<T> ::kernel::init::__internal::HasPinData for Bar<T> { //! type PinData = __ThePinData<T>; //! unsafe fn __pin_data() -> Self::PinData { //! __ThePinData { //! __phantom: ::core::marker::PhantomData, //! } //! } //! } //! // Implement the internal `PinData` trait that marks the pin-data struct as a pin-data //! // struct. This is important to ensure that no user can implement a rouge `__pin_data` //! // function without using `unsafe`. //! unsafe impl<T> ::kernel::init::__internal::PinData for __ThePinData<T> { //! type Datee = Bar<T>; //! } //! // Now we only want to implement `Unpin` for `Bar` when every structurally pinned field is //! // `Unpin`. In other words, whether `Bar` is `Unpin` only depends on structurally pinned //! // fields (those marked with `#[pin]`). These fields will be listed in this struct, in our //! // case no such fields exist, hence this is almost empty. The two phantomdata fields exist //! // for two reasons: //! // - `__phantom`: every generic must be used, since we cannot really know which generics //! // are used, we declere all and then use everything here once. //! // - `__phantom_pin`: uses the `'__pin` lifetime and ensures that this struct is invariant //! // over it. The lifetime is needed to work around the limitation that trait bounds must //! // not be trivial, e.g. the user has a `#[pin] PhantomPinned` field -- this is //! // unconditionally `!Unpin` and results in an error. The lifetime tricks the compiler //! // into accepting these bounds regardless. //! #[allow(dead_code)] //! struct __Unpin<'__pin, T> { //! __phantom_pin: ::core::marker::PhantomData<fn(&'__pin ()) -> &'__pin ()>, //! __phantom: ::core::marker::PhantomData<fn(Bar<T>) -> Bar<T>>, //! // Our only `#[pin]` field is `t`. //! t: T, //! } //! #[doc(hidden)] //! impl<'__pin, T> ::core::marker::Unpin for Bar<T> //! where //! __Unpin<'__pin, T>: ::core::marker::Unpin, //! {} //! // Now we need to ensure that `Bar` does not implement `Drop`, since that would give users //! // access to `&mut self` inside of `drop` even if the struct was pinned. This could lead to //! // UB with only safe code, so we disallow this by giving a trait implementation error using //! // a direct impl and a blanket implementation. //! trait MustNotImplDrop {} //! // Normally `Drop` bounds do not have the correct semantics, but for this purpose they do //! // (normally people want to know if a type has any kind of drop glue at all, here we want //! // to know if it has any kind of custom drop glue, which is exactly what this bound does). //! #[allow(drop_bounds)] //! impl<T: ::core::ops::Drop> MustNotImplDrop for T {} //! impl<T> MustNotImplDrop for Bar<T> {} //! // Here comes a convenience check, if one implemented `PinnedDrop`, but forgot to add it to //! // `#[pin_data]`, then this will error with the same mechanic as above, this is not needed //! // for safety, but a good sanity check, since no normal code calls `PinnedDrop::drop`. //! #[allow(non_camel_case_types)] //! trait UselessPinnedDropImpl_you_need_to_specify_PinnedDrop {} //! impl< //! T: ::kernel::init::PinnedDrop, //! > UselessPinnedDropImpl_you_need_to_specify_PinnedDrop for T {} //! impl<T> UselessPinnedDropImpl_you_need_to_specify_PinnedDrop for Bar<T> {} //! }; //! ``` //! //! ## `pin_init!` in `impl Bar` //! //! This macro creates an pin-initializer for the given struct. It requires that the struct is //! annotated by `#[pin_data]`. //! //! Here is the impl on `Bar` defining the new function: //! //! ```rust,ignore //! impl<T> Bar<T> { //! fn new(t: T) -> impl PinInit<Self> { //! pin_init!(Self { t, x: 0 }) //! } //! } //! ``` //! //! This expands to the following code: //! //! ```rust,ignore //! impl<T> Bar<T> { //! fn new(t: T) -> impl PinInit<Self> { //! { //! // We do not want to allow arbitrary returns, so we declare this type as the `Ok` //! // return type and shadow it later when we insert the arbitrary user code. That way //! // there will be no possibility of returning without `unsafe`. //! struct __InitOk; //! // Get the data about fields from the supplied type. //! // - the function is unsafe, hence the unsafe block //! // - we `use` the `HasPinData` trait in the block, it is only available in that //! // scope. //! let data = unsafe { //! use ::kernel::init::__internal::HasPinData; //! Self::__pin_data() //! }; //! // Ensure that `data` really is of type `PinData` and help with type inference: //! let init = ::kernel::init::__internal::PinData::make_closure::< //! _, //! __InitOk, //! ::core::convert::Infallible, //! >(data, move |slot| { //! { //! // Shadow the structure so it cannot be used to return early. If a user //! // tries to write `return Ok(__InitOk)`, then they get a type error, //! // since that will refer to this struct instead of the one defined //! // above. //! struct __InitOk; //! // This is the expansion of `t,`, which is syntactic sugar for `t: t,`. //! { //! unsafe { ::core::ptr::write(::core::addr_of_mut!((*slot).t), t) }; //! } //! // Since initialization could fail later (not in this case, since the //! // error type is `Infallible`) we will need to drop this field if there //! // is an error later. This `DropGuard` will drop the field when it gets //! // dropped and has not yet been forgotten. //! let t = unsafe { //! ::pinned_init::__internal::DropGuard::new(::core::addr_of_mut!((*slot).t)) //! }; //! // Expansion of `x: 0,`: //! // Since this can be an arbitrary expression we cannot place it inside //! // of the `unsafe` block, so we bind it here. //! { //! let x = 0; //! unsafe { ::core::ptr::write(::core::addr_of_mut!((*slot).x), x) }; //! } //! // We again create a `DropGuard`. //! let x = unsafe { //! ::kernel::init::__internal::DropGuard::new(::core::addr_of_mut!((*slot).x)) //! }; //! // Since initialization has successfully completed, we can now forget //! // the guards. This is not `mem::forget`, since we only have //! // `&DropGuard`. //! ::core::mem::forget(x); //! ::core::mem::forget(t); //! // Here we use the type checker to ensure that every field has been //! // initialized exactly once, since this is `if false` it will never get //! // executed, but still type-checked. //! // Additionally we abuse `slot` to automatically infer the correct type //! // for the struct. This is also another check that every field is //! // accessible from this scope. //! #[allow(unreachable_code, clippy::diverging_sub_expression)] //! let _ = || { //! unsafe { //! ::core::ptr::write( //! slot, //! Self { //! // We only care about typecheck finding every field //! // here, the expression does not matter, just conjure //! // one using `panic!()`: //! t: ::core::panic!(), //! x: ::core::panic!(), //! }, //! ); //! }; //! }; //! } //! // We leave the scope above and gain access to the previously shadowed //! // `__InitOk` that we need to return. //! Ok(__InitOk) //! }); //! // Change the return type from `__InitOk` to `()`. //! let init = move | //! slot, //! | -> ::core::result::Result<(), ::core::convert::Infallible> { //! init(slot).map(|__InitOk| ()) //! }; //! // Construct the initializer. //! let init = unsafe { //! ::kernel::init::pin_init_from_closure::< //! _, //! ::core::convert::Infallible, //! >(init) //! }; //! init //! } //! } //! } //! ``` //! //! ## `#[pin_data]` on `Foo` //! //! Since we already took a look at `#[pin_data]` on `Bar`, this section will only explain the //! differences/new things in the expansion of the `Foo` definition: //! //! ```rust,ignore //! #[pin_data(PinnedDrop)] //! struct Foo { //! a: usize, //! #[pin] //! b: Bar<u32>, //! } //! ``` //! //! This expands to the following code: //! //! ```rust,ignore //! struct Foo { //! a: usize, //! b: Bar<u32>, //! } //! const _: () = { //! struct __ThePinData { //! __phantom: ::core::marker::PhantomData<fn(Foo) -> Foo>, //! } //! impl ::core::clone::Clone for __ThePinData { //! fn clone(&self) -> Self { //! *self //! } //! } //! impl ::core::marker::Copy for __ThePinData {} //! #[allow(dead_code)] //! impl __ThePinData { //! unsafe fn b<E>( //! self, //! slot: *mut Bar<u32>, //! init: impl ::kernel::init::PinInit<Bar<u32>, E>, //! ) -> ::core::result::Result<(), E> { //! unsafe { ::kernel::init::PinInit::__pinned_init(init, slot) } //! } //! unsafe fn a<E>( //! self, //! slot: *mut usize, //! init: impl ::kernel::init::Init<usize, E>, //! ) -> ::core::result::Result<(), E> { //! unsafe { ::kernel::init::Init::__init(init, slot) } //! } //! } //! unsafe impl ::kernel::init::__internal::HasPinData for Foo { //! type PinData = __ThePinData; //! unsafe fn __pin_data() -> Self::PinData { //! __ThePinData { //! __phantom: ::core::marker::PhantomData, //! } //! } //! } //! unsafe impl ::kernel::init::__internal::PinData for __ThePinData { //! type Datee = Foo; //! } //! #[allow(dead_code)] //! struct __Unpin<'__pin> { //! __phantom_pin: ::core::marker::PhantomData<fn(&'__pin ()) -> &'__pin ()>, //! __phantom: ::core::marker::PhantomData<fn(Foo) -> Foo>, //! b: Bar<u32>, //! } //! #[doc(hidden)] //! impl<'__pin> ::core::marker::Unpin for Foo //! where //! __Unpin<'__pin>: ::core::marker::Unpin, //! {} //! // Since we specified `PinnedDrop` as the argument to `#[pin_data]`, we expect `Foo` to //! // implement `PinnedDrop`. Thus we do not need to prevent `Drop` implementations like //! // before, instead we implement `Drop` here and delegate to `PinnedDrop`. //! impl ::core::ops::Drop for Foo { //! fn drop(&mut self) { //! // Since we are getting dropped, no one else has a reference to `self` and thus we //! // can assume that we never move. //! let pinned = unsafe { ::core::pin::Pin::new_unchecked(self) }; //! // Create the unsafe token that proves that we are inside of a destructor, this //! // type is only allowed to be created in a destructor. //! let token = unsafe { ::kernel::init::__internal::OnlyCallFromDrop::new() }; //! ::kernel::init::PinnedDrop::drop(pinned, token); //! } //! } //! }; //! ``` //! //! ## `#[pinned_drop]` on `impl PinnedDrop for Foo` //! //! This macro is used to implement the `PinnedDrop` trait, since that trait is `unsafe` and has an //! extra parameter that should not be used at all. The macro hides that parameter. //! //! Here is the `PinnedDrop` impl for `Foo`: //! //! ```rust,ignore //! #[pinned_drop] //! impl PinnedDrop for Foo { //! fn drop(self: Pin<&mut Self>) { //! pr_info!("{self:p} is getting dropped."); //! } //! } //! ``` //! //! This expands to the following code: //! //! ```rust,ignore //! // `unsafe`, full path and the token parameter are added, everything else stays the same. //! unsafe impl ::kernel::init::PinnedDrop for Foo { //! fn drop(self: Pin<&mut Self>, _: ::kernel::init::__internal::OnlyCallFromDrop) { //! pr_info!("{self:p} is getting dropped."); //! } //! } //! ``` //! //! ## `pin_init!` on `Foo` //! //! Since we already took a look at `pin_init!` on `Bar`, this section will only show the expansion //! of `pin_init!` on `Foo`: //! //! ```rust,ignore //! let a = 42; //! let initializer = pin_init!(Foo { //! a, //! b <- Bar::new(36), //! }); //! ``` //! //! This expands to the following code: //! //! ```rust,ignore //! let a = 42; //! let initializer = { //! struct __InitOk; //! let data = unsafe { //! use ::kernel::init::__internal::HasPinData; //! Foo::__pin_data() //! }; //! let init = ::kernel::init::__internal::PinData::make_closure::< //! _, //! __InitOk, //! ::core::convert::Infallible, //! >(data, move |slot| { //! { //! struct __InitOk; //! { //! unsafe { ::core::ptr::write(::core::addr_of_mut!((*slot).a), a) }; //! } //! let a = unsafe { //! ::kernel::init::__internal::DropGuard::new(::core::addr_of_mut!((*slot).a)) //! }; //! let init = Bar::new(36); //! unsafe { data.b(::core::addr_of_mut!((*slot).b), b)? }; //! let b = unsafe { //! ::kernel::init::__internal::DropGuard::new(::core::addr_of_mut!((*slot).b)) //! }; //! ::core::mem::forget(b); //! ::core::mem::forget(a); //! #[allow(unreachable_code, clippy::diverging_sub_expression)] //! let _ = || { //! unsafe { //! ::core::ptr::write( //! slot, //! Foo { //! a: ::core::panic!(), //! b: ::core::panic!(), //! }, //! ); //! }; //! }; //! } //! Ok(__InitOk) //! }); //! let init = move | //! slot, //! | -> ::core::result::Result<(), ::core::convert::Infallible> { //! init(slot).map(|__InitOk| ()) //! }; //! let init = unsafe { //! ::kernel::init::pin_init_from_closure::<_, ::core::convert::Infallible>(init) //! }; //! init //! }; //! ``` /// Creates a `unsafe impl<...> PinnedDrop for $type` block. /// /// See [`PinnedDrop`] for more information. #[doc(hidden)] #[macro_export] macro_rules! __pinned_drop { ( @impl_sig($($impl_sig:tt)*), @impl_body( $(#[$($attr:tt)*])* fn drop($($sig:tt)*) { $($inner:tt)* } ), ) => { unsafe $($impl_sig)* { // Inherit all attributes and the type/ident tokens for the signature. $(#[$($attr)*])* fn drop($($sig)*, _: $crate::init::__internal::OnlyCallFromDrop) { $($inner)* } } } } /// This macro first parses the struct definition such that it separates pinned and not pinned /// fields. Afterwards it declares the struct and implement the `PinData` trait safely. #[doc(hidden)] #[macro_export] macro_rules! __pin_data { // Proc-macro entry point, this is supplied by the proc-macro pre-parsing. (parse_input: @args($($pinned_drop:ident)?), @sig( $(#[$($struct_attr:tt)*])* $vis:vis struct $name:ident $(where $($whr:tt)*)? ), @impl_generics($($impl_generics:tt)*), @ty_generics($($ty_generics:tt)*), @body({ $($fields:tt)* }), ) => { // We now use token munching to iterate through all of the fields. While doing this we // identify fields marked with `#[pin]`, these fields are the 'pinned fields'. The user // wants these to be structurally pinned. The rest of the fields are the // 'not pinned fields'. Additionally we collect all fields, since we need them in the right // order to declare the struct. // // In this call we also put some explaining comments for the parameters. $crate::__pin_data!(find_pinned_fields: // Attributes on the struct itself, these will just be propagated to be put onto the // struct definition. @struct_attrs($(#[$($struct_attr)*])*), // The visibility of the struct. @vis($vis), // The name of the struct. @name($name), // The 'impl generics', the generics that will need to be specified on the struct inside // of an `impl<$ty_generics>` block. @impl_generics($($impl_generics)*), // The 'ty generics', the generics that will need to be specified on the impl blocks. @ty_generics($($ty_generics)*), // The where clause of any impl block and the declaration. @where($($($whr)*)?), // The remaining fields tokens that need to be processed. // We add a `,` at the end to ensure correct parsing. @fields_munch($($fields)* ,), // The pinned fields. @pinned(), // The not pinned fields. @not_pinned(), // All fields. @fields(), // The accumulator containing all attributes already parsed. @accum(), // Contains `yes` or `` to indicate if `#[pin]` was found on the current field. @is_pinned(), // The proc-macro argument, this should be `PinnedDrop` or ``. @pinned_drop($($pinned_drop)?), ); }; (find_pinned_fields: @struct_attrs($($struct_attrs:tt)*), @vis($vis:vis), @name($name:ident), @impl_generics($($impl_generics:tt)*), @ty_generics($($ty_generics:tt)*), @where($($whr:tt)*), // We found a PhantomPinned field, this should generally be pinned! @fields_munch($field:ident : $($($(::)?core::)?marker::)?PhantomPinned, $($rest:tt)*), @pinned($($pinned:tt)*), @not_pinned($($not_pinned:tt)*), @fields($($fields:tt)*), @accum($($accum:tt)*), // This field is not pinned. @is_pinned(), @pinned_drop($($pinned_drop:ident)?), ) => { ::core::compile_error!(concat!( "The field `", stringify!($field), "` of type `PhantomPinned` only has an effect, if it has the `#[pin]` attribute.", )); $crate::__pin_data!(find_pinned_fields: @struct_attrs($($struct_attrs)*), @vis($vis), @name($name), @impl_generics($($impl_generics)*), @ty_generics($($ty_generics)*), @where($($whr)*), @fields_munch($($rest)*), @pinned($($pinned)* $($accum)* $field: ::core::marker::PhantomPinned,), @not_pinned($($not_pinned)*), @fields($($fields)* $($accum)* $field: ::core::marker::PhantomPinned,), @accum(), @is_pinned(), @pinned_drop($($pinned_drop)?), ); }; (find_pinned_fields: @struct_attrs($($struct_attrs:tt)*), @vis($vis:vis), @name($name:ident), @impl_generics($($impl_generics:tt)*), @ty_generics($($ty_generics:tt)*), @where($($whr:tt)*), // We reached the field declaration. @fields_munch($field:ident : $type:ty, $($rest:tt)*), @pinned($($pinned:tt)*), @not_pinned($($not_pinned:tt)*), @fields($($fields:tt)*), @accum($($accum:tt)*), // This field is pinned. @is_pinned(yes), @pinned_drop($($pinned_drop:ident)?), ) => { $crate::__pin_data!(find_pinned_fields: @struct_attrs($($struct_attrs)*), @vis($vis), @name($name), @impl_generics($($impl_generics)*), @ty_generics($($ty_generics)*), @where($($whr)*), @fields_munch($($rest)*), @pinned($($pinned)* $($accum)* $field: $type,), @not_pinned($($not_pinned)*), @fields($($fields)* $($accum)* $field: $type,), @accum(), @is_pinned(), @pinned_drop($($pinned_drop)?), ); }; (find_pinned_fields: @struct_attrs($($struct_attrs:tt)*), @vis($vis:vis), @name($name:ident), @impl_generics($($impl_generics:tt)*), @ty_generics($($ty_generics:tt)*), @where($($whr:tt)*), // We reached the field declaration. @fields_munch($field:ident : $type:ty, $($rest:tt)*), @pinned($($pinned:tt)*), @not_pinned($($not_pinned:tt)*), @fields($($fields:tt)*), @accum($($accum:tt)*), // This field is not pinned. @is_pinned(), @pinned_drop($($pinned_drop:ident)?), ) => { $crate::__pin_data!(find_pinned_fields: @struct_attrs($($struct_attrs)*), @vis($vis), @name($name), @impl_generics($($impl_generics)*), @ty_generics($($ty_generics)*), @where($($whr)*), @fields_munch($($rest)*), @pinned($($pinned)*), @not_pinned($($not_pinned)* $($accum)* $field: $type,), @fields($($fields)* $($accum)* $field: $type,), @accum(), @is_pinned(), @pinned_drop($($pinned_drop)?), ); }; (find_pinned_fields: @struct_attrs($($struct_attrs:tt)*), @vis($vis:vis), @name($name:ident), @impl_generics($($impl_generics:tt)*), @ty_generics($($ty_generics:tt)*), @where($($whr:tt)*), // We found the `#[pin]` attr. @fields_munch(#[pin] $($rest:tt)*), @pinned($($pinned:tt)*), @not_pinned($($not_pinned:tt)*), @fields($($fields:tt)*), @accum($($accum:tt)*), @is_pinned($($is_pinned:ident)?), @pinned_drop($($pinned_drop:ident)?), ) => { $crate::__pin_data!(find_pinned_fields: @struct_attrs($($struct_attrs)*), @vis($vis), @name($name), @impl_generics($($impl_generics)*), @ty_generics($($ty_generics)*), @where($($whr)*), @fields_munch($($rest)*), // We do not include `#[pin]` in the list of attributes, since it is not actually an // attribute that is defined somewhere. @pinned($($pinned)*), @not_pinned($($not_pinned)*), @fields($($fields)*), @accum($($accum)*), // Set this to `yes`. @is_pinned(yes), @pinned_drop($($pinned_drop)?), ); }; (find_pinned_fields: @struct_attrs($($struct_attrs:tt)*), @vis($vis:vis), @name($name:ident), @impl_generics($($impl_generics:tt)*), @ty_generics($($ty_generics:tt)*), @where($($whr:tt)*), // We reached the field declaration with visibility, for simplicity we only munch the // visibility and put it into `$accum`. @fields_munch($fvis:vis $field:ident $($rest:tt)*), @pinned($($pinned:tt)*), @not_pinned($($not_pinned:tt)*), @fields($($fields:tt)*), @accum($($accum:tt)*), @is_pinned($($is_pinned:ident)?), @pinned_drop($($pinned_drop:ident)?), ) => { $crate::__pin_data!(find_pinned_fields: @struct_attrs($($struct_attrs)*), @vis($vis), @name($name), @impl_generics($($impl_generics)*), @ty_generics($($ty_generics)*), @where($($whr)*), @fields_munch($field $($rest)*), @pinned($($pinned)*), @not_pinned($($not_pinned)*), @fields($($fields)*), @accum($($accum)* $fvis), @is_pinned($($is_pinned)?), @pinned_drop($($pinned_drop)?), ); }; (find_pinned_fields: @struct_attrs($($struct_attrs:tt)*), @vis($vis:vis), @name($name:ident), @impl_generics($($impl_generics:tt)*), @ty_generics($($ty_generics:tt)*), @where($($whr:tt)*), // Some other attribute, just put it into `$accum`. @fields_munch(#[$($attr:tt)*] $($rest:tt)*), @pinned($($pinned:tt)*), @not_pinned($($not_pinned:tt)*), @fields($($fields:tt)*), @accum($($accum:tt)*), @is_pinned($($is_pinned:ident)?), @pinned_drop($($pinned_drop:ident)?), ) => { $crate::__pin_data!(find_pinned_fields: @struct_attrs($($struct_attrs)*), @vis($vis), @name($name), @impl_generics($($impl_generics)*), @ty_generics($($ty_generics)*), @where($($whr)*), @fields_munch($($rest)*), @pinned($($pinned)*), @not_pinned($($not_pinned)*), @fields($($fields)*), @accum($($accum)* #[$($attr)*]), @is_pinned($($is_pinned)?), @pinned_drop($($pinned_drop)?), ); }; (find_pinned_fields: @struct_attrs($($struct_attrs:tt)*), @vis($vis:vis), @name($name:ident), @impl_generics($($impl_generics:tt)*), @ty_generics($($ty_generics:tt)*), @where($($whr:tt)*), // We reached the end of the fields, plus an optional additional comma, since we added one // before and the user is also allowed to put a trailing comma. @fields_munch($(,)?), @pinned($($pinned:tt)*), @not_pinned($($not_pinned:tt)*), @fields($($fields:tt)*), @accum(), @is_pinned(), @pinned_drop($($pinned_drop:ident)?), ) => { // Declare the struct with all fields in the correct order. $($struct_attrs)* $vis struct $name <$($impl_generics)*> where $($whr)* { $($fields)* } // We put the rest into this const item, because it then will not be accessible to anything // outside. const _: () = { // We declare this struct which will host all of the projection function for our type. // it will be invariant over all generic parameters which are inherited from the // struct. $vis struct __ThePinData<$($impl_generics)*> where $($whr)* { __phantom: ::core::marker::PhantomData< fn($name<$($ty_generics)*>) -> $name<$($ty_generics)*> >, } impl<$($impl_generics)*> ::core::clone::Clone for __ThePinData<$($ty_generics)*> where $($whr)* { fn clone(&self) -> Self { *self } } impl<$($impl_generics)*> ::core::marker::Copy for __ThePinData<$($ty_generics)*> where $($whr)* {} // Make all projection functions. $crate::__pin_data!(make_pin_data: @pin_data(__ThePinData), @impl_generics($($impl_generics)*), @ty_generics($($ty_generics)*), @where($($whr)*), @pinned($($pinned)*), @not_pinned($($not_pinned)*), ); // SAFETY: We have added the correct projection functions above to `__ThePinData` and // we also use the least restrictive generics possible. unsafe impl<$($impl_generics)*> $crate::init::__internal::HasPinData for $name<$($ty_generics)*> where $($whr)* { type PinData = __ThePinData<$($ty_generics)*>; unsafe fn __pin_data() -> Self::PinData { __ThePinData { __phantom: ::core::marker::PhantomData } } } unsafe impl<$($impl_generics)*> $crate::init::__internal::PinData for __ThePinData<$($ty_generics)*> where $($whr)* { type Datee = $name<$($ty_generics)*>; } // This struct will be used for the unpin analysis. Since only structurally pinned // fields are relevant whether the struct should implement `Unpin`. #[allow(dead_code)] struct __Unpin <'__pin, $($impl_generics)*> where $($whr)* { __phantom_pin: ::core::marker::PhantomData<fn(&'__pin ()) -> &'__pin ()>, __phantom: ::core::marker::PhantomData< fn($name<$($ty_generics)*>) -> $name<$($ty_generics)*> >, // Only the pinned fields. $($pinned)* } #[doc(hidden)] impl<'__pin, $($impl_generics)*> ::core::marker::Unpin for $name<$($ty_generics)*> where __Unpin<'__pin, $($ty_generics)*>: ::core::marker::Unpin, $($whr)* {} // We need to disallow normal `Drop` implementation, the exact behavior depends on // whether `PinnedDrop` was specified as the parameter. $crate::__pin_data!(drop_prevention: @name($name), @impl_generics($($impl_generics)*), @ty_generics($($ty_generics)*), @where($($whr)*), @pinned_drop($($pinned_drop)?), ); }; }; // When no `PinnedDrop` was specified, then we have to prevent implementing drop. (drop_prevention: @name($name:ident), @impl_generics($($impl_generics:tt)*), @ty_generics($($ty_generics:tt)*), @where($($whr:tt)*), @pinned_drop(), ) => { // We prevent this by creating a trait that will be implemented for all types implementing // `Drop`. Additionally we will implement this trait for the struct leading to a conflict, // if it also implements `Drop` trait MustNotImplDrop {} #[allow(drop_bounds)] impl<T: ::core::ops::Drop> MustNotImplDrop for T {} impl<$($impl_generics)*> MustNotImplDrop for $name<$($ty_generics)*> where $($whr)* {} // We also take care to prevent users from writing a useless `PinnedDrop` implementation. // They might implement `PinnedDrop` correctly for the struct, but forget to give // `PinnedDrop` as the parameter to `#[pin_data]`. #[allow(non_camel_case_types)] trait UselessPinnedDropImpl_you_need_to_specify_PinnedDrop {} impl<T: $crate::init::PinnedDrop> UselessPinnedDropImpl_you_need_to_specify_PinnedDrop for T {} impl<$($impl_generics)*> UselessPinnedDropImpl_you_need_to_specify_PinnedDrop for $name<$($ty_generics)*> where $($whr)* {} }; // When `PinnedDrop` was specified we just implement `Drop` and delegate. (drop_prevention: @name($name:ident), @impl_generics($($impl_generics:tt)*), @ty_generics($($ty_generics:tt)*), @where($($whr:tt)*), @pinned_drop(PinnedDrop), ) => { impl<$($impl_generics)*> ::core::ops::Drop for $name<$($ty_generics)*> where $($whr)* { fn drop(&mut self) { // SAFETY: Since this is a destructor, `self` will not move after this function // terminates, since it is inaccessible. let pinned = unsafe { ::core::pin::Pin::new_unchecked(self) }; // SAFETY: Since this is a drop function, we can create this token to call the // pinned destructor of this type. let token = unsafe { $crate::init::__internal::OnlyCallFromDrop::new() }; $crate::init::PinnedDrop::drop(pinned, token); } } }; // If some other parameter was specified, we emit a readable error. (drop_prevention: @name($name:ident), @impl_generics($($impl_generics:tt)*), @ty_generics($($ty_generics:tt)*), @where($($whr:tt)*), @pinned_drop($($rest:tt)*), ) => { compile_error!( "Wrong parameters to `#[pin_data]`, expected nothing or `PinnedDrop`, got '{}'.", stringify!($($rest)*), ); }; (make_pin_data: @pin_data($pin_data:ident), @impl_generics($($impl_generics:tt)*), @ty_generics($($ty_generics:tt)*), @where($($whr:tt)*), @pinned($($(#[$($p_attr:tt)*])* $pvis:vis $p_field:ident : $p_type:ty),* $(,)?), @not_pinned($($(#[$($attr:tt)*])* $fvis:vis $field:ident : $type:ty),* $(,)?), ) => { // For every field, we create a projection function according to its projection type. If a // field is structurally pinned, then it must be initialized via `PinInit`, if it is not // structurally pinned, then it can be initialized via `Init`. // // The functions are `unsafe` to prevent accidentally calling them. #[allow(dead_code)] impl<$($impl_generics)*> $pin_data<$($ty_generics)*> where $($whr)* { $( $(#[$($p_attr)*])* $pvis unsafe fn $p_field<E>( self, slot: *mut $p_type, init: impl $crate::init::PinInit<$p_type, E>, ) -> ::core::result::Result<(), E> { unsafe { $crate::init::PinInit::__pinned_init(init, slot) } } )* $( $(#[$($attr)*])* $fvis unsafe fn $field<E>( self, slot: *mut $type, init: impl $crate::init::Init<$type, E>, ) -> ::core::result::Result<(), E> { unsafe { $crate::init::Init::__init(init, slot) } } )* } }; } /// The internal init macro. Do not call manually! /// /// This is called by the `{try_}{pin_}init!` macros with various inputs. /// /// This macro has multiple internal call configurations, these are always the very first ident: /// - nothing: this is the base case and called by the `{try_}{pin_}init!` macros. /// - `with_update_parsed`: when the `..Zeroable::zeroed()` syntax has been handled. /// - `init_slot`: recursively creates the code that initializes all fields in `slot`. /// - `make_initializer`: recursively create the struct initializer that guarantees that every /// field has been initialized exactly once. #[doc(hidden)] #[macro_export] macro_rules! __init_internal { ( @this($($this:ident)?), @typ($t:path), @fields($($fields:tt)*), @error($err:ty), // Either `PinData` or `InitData`, `$use_data` should only be present in the `PinData` // case. @data($data:ident, $($use_data:ident)?), // `HasPinData` or `HasInitData`. @has_data($has_data:ident, $get_data:ident), // `pin_init_from_closure` or `init_from_closure`. @construct_closure($construct_closure:ident), @munch_fields(), ) => { $crate::__init_internal!(with_update_parsed: @this($($this)?), @typ($t), @fields($($fields)*), @error($err), @data($data, $($use_data)?), @has_data($has_data, $get_data), @construct_closure($construct_closure), @zeroed(), // Nothing means default behavior. ) }; ( @this($($this:ident)?), @typ($t:path), @fields($($fields:tt)*), @error($err:ty), // Either `PinData` or `InitData`, `$use_data` should only be present in the `PinData` // case. @data($data:ident, $($use_data:ident)?), // `HasPinData` or `HasInitData`. @has_data($has_data:ident, $get_data:ident), // `pin_init_from_closure` or `init_from_closure`. @construct_closure($construct_closure:ident), @munch_fields(..Zeroable::zeroed()), ) => { $crate::__init_internal!(with_update_parsed: @this($($this)?), @typ($t), @fields($($fields)*), @error($err), @data($data, $($use_data)?), @has_data($has_data, $get_data), @construct_closure($construct_closure), @zeroed(()), // `()` means zero all fields not mentioned. ) }; ( @this($($this:ident)?), @typ($t:path), @fields($($fields:tt)*), @error($err:ty), // Either `PinData` or `InitData`, `$use_data` should only be present in the `PinData` // case. @data($data:ident, $($use_data:ident)?), // `HasPinData` or `HasInitData`. @has_data($has_data:ident, $get_data:ident), // `pin_init_from_closure` or `init_from_closure`. @construct_closure($construct_closure:ident), @munch_fields($ignore:tt $($rest:tt)*), ) => { $crate::__init_internal!( @this($($this)?), @typ($t), @fields($($fields)*), @error($err), @data($data, $($use_data)?), @has_data($has_data, $get_data), @construct_closure($construct_closure), @munch_fields($($rest)*), ) }; (with_update_parsed: @this($($this:ident)?), @typ($t:path), @fields($($fields:tt)*), @error($err:ty), // Either `PinData` or `InitData`, `$use_data` should only be present in the `PinData` // case. @data($data:ident, $($use_data:ident)?), // `HasPinData` or `HasInitData`. @has_data($has_data:ident, $get_data:ident), // `pin_init_from_closure` or `init_from_closure`. @construct_closure($construct_closure:ident), @zeroed($($init_zeroed:expr)?), ) => {{ // We do not want to allow arbitrary returns, so we declare this type as the `Ok` return // type and shadow it later when we insert the arbitrary user code. That way there will be // no possibility of returning without `unsafe`. struct __InitOk; // Get the data about fields from the supplied type. let data = unsafe { use $crate::init::__internal::$has_data; // Here we abuse `paste!` to retokenize `$t`. Declarative macros have some internal // information that is associated to already parsed fragments, so a path fragment // cannot be used in this position. Doing the retokenization results in valid rust // code. ::kernel::macros::paste!($t::$get_data()) }; // Ensure that `data` really is of type `$data` and help with type inference: let init = $crate::init::__internal::$data::make_closure::<_, __InitOk, $err>( data, move |slot| { { // Shadow the structure so it cannot be used to return early. struct __InitOk; // If `$init_zeroed` is present we should zero the slot now and not emit an // error when fields are missing (since they will be zeroed). We also have to // check that the type actually implements `Zeroable`. $({ fn assert_zeroable<T: $crate::init::Zeroable>(_: *mut T) {} // Ensure that the struct is indeed `Zeroable`. assert_zeroable(slot); // SAFETY: The type implements `Zeroable` by the check above. unsafe { ::core::ptr::write_bytes(slot, 0, 1) }; $init_zeroed // This will be `()` if set. })? // Create the `this` so it can be referenced by the user inside of the // expressions creating the individual fields. $(let $this = unsafe { ::core::ptr::NonNull::new_unchecked(slot) };)? // Initialize every field. $crate::__init_internal!(init_slot($($use_data)?): @data(data), @slot(slot), @guards(), @munch_fields($($fields)*,), ); // We use unreachable code to ensure that all fields have been mentioned exactly // once, this struct initializer will still be type-checked and complain with a // very natural error message if a field is forgotten/mentioned more than once. #[allow(unreachable_code, clippy::diverging_sub_expression)] let _ = || { $crate::__init_internal!(make_initializer: @slot(slot), @type_name($t), @munch_fields($($fields)*,), @acc(), ); }; } Ok(__InitOk) } ); let init = move |slot| -> ::core::result::Result<(), $err> { init(slot).map(|__InitOk| ()) }; let init = unsafe { $crate::init::$construct_closure::<_, $err>(init) }; init }}; (init_slot($($use_data:ident)?): @data($data:ident), @slot($slot:ident), @guards($($guards:ident,)*), @munch_fields($(..Zeroable::zeroed())? $(,)?), ) => { // Endpoint of munching, no fields are left. If execution reaches this point, all fields // have been initialized. Therefore we can now dismiss the guards by forgetting them. $(::core::mem::forget($guards);)* }; (init_slot($use_data:ident): // `use_data` is present, so we use the `data` to init fields. @data($data:ident), @slot($slot:ident), @guards($($guards:ident,)*), // In-place initialization syntax. @munch_fields($field:ident <- $val:expr, $($rest:tt)*), ) => { let init = $val; // Call the initializer. // // SAFETY: `slot` is valid, because we are inside of an initializer closure, we // return when an error/panic occurs. // We also use the `data` to require the correct trait (`Init` or `PinInit`) for `$field`. unsafe { $data.$field(::core::ptr::addr_of_mut!((*$slot).$field), init)? }; // Create the drop guard: // // We rely on macro hygiene to make it impossible for users to access this local variable. // We use `paste!` to create new hygiene for `$field`. ::kernel::macros::paste! { // SAFETY: We forget the guard later when initialization has succeeded. let [<$field>] = unsafe { $crate::init::__internal::DropGuard::new(::core::ptr::addr_of_mut!((*$slot).$field)) }; $crate::__init_internal!(init_slot($use_data): @data($data), @slot($slot), @guards([<$field>], $($guards,)*), @munch_fields($($rest)*), ); } }; (init_slot(): // No `use_data`, so we use `Init::__init` directly. @data($data:ident), @slot($slot:ident), @guards($($guards:ident,)*), // In-place initialization syntax. @munch_fields($field:ident <- $val:expr, $($rest:tt)*), ) => { let init = $val; // Call the initializer. // // SAFETY: `slot` is valid, because we are inside of an initializer closure, we // return when an error/panic occurs. unsafe { $crate::init::Init::__init(init, ::core::ptr::addr_of_mut!((*$slot).$field))? }; // Create the drop guard: // // We rely on macro hygiene to make it impossible for users to access this local variable. // We use `paste!` to create new hygiene for `$field`. ::kernel::macros::paste! { // SAFETY: We forget the guard later when initialization has succeeded. let [<$field>] = unsafe { $crate::init::__internal::DropGuard::new(::core::ptr::addr_of_mut!((*$slot).$field)) }; $crate::__init_internal!(init_slot(): @data($data), @slot($slot), @guards([<$field>], $($guards,)*), @munch_fields($($rest)*), ); } }; (init_slot($($use_data:ident)?): @data($data:ident), @slot($slot:ident), @guards($($guards:ident,)*), // Init by-value. @munch_fields($field:ident $(: $val:expr)?, $($rest:tt)*), ) => { { $(let $field = $val;)? // Initialize the field. // // SAFETY: The memory at `slot` is uninitialized. unsafe { ::core::ptr::write(::core::ptr::addr_of_mut!((*$slot).$field), $field) }; } // Create the drop guard: // // We rely on macro hygiene to make it impossible for users to access this local variable. // We use `paste!` to create new hygiene for `$field`. ::kernel::macros::paste! { // SAFETY: We forget the guard later when initialization has succeeded. let [<$field>] = unsafe { $crate::init::__internal::DropGuard::new(::core::ptr::addr_of_mut!((*$slot).$field)) }; $crate::__init_internal!(init_slot($($use_data)?): @data($data), @slot($slot), @guards([<$field>], $($guards,)*), @munch_fields($($rest)*), ); } }; (make_initializer: @slot($slot:ident), @type_name($t:path), @munch_fields(..Zeroable::zeroed() $(,)?), @acc($($acc:tt)*), ) => { // Endpoint, nothing more to munch, create the initializer. Since the users specified // `..Zeroable::zeroed()`, the slot will already have been zeroed and all field that have // not been overwritten are thus zero and initialized. We still check that all fields are // actually accessible by using the struct update syntax ourselves. // We are inside of a closure that is never executed and thus we can abuse `slot` to // get the correct type inference here: #[allow(unused_assignments)] unsafe { let mut zeroed = ::core::mem::zeroed(); // We have to use type inference here to make zeroed have the correct type. This does // not get executed, so it has no effect. ::core::ptr::write($slot, zeroed); zeroed = ::core::mem::zeroed(); // Here we abuse `paste!` to retokenize `$t`. Declarative macros have some internal // information that is associated to already parsed fragments, so a path fragment // cannot be used in this position. Doing the retokenization results in valid rust // code. ::kernel::macros::paste!( ::core::ptr::write($slot, $t { $($acc)* ..zeroed }); ); } }; (make_initializer: @slot($slot:ident), @type_name($t:path), @munch_fields($(,)?), @acc($($acc:tt)*), ) => { // Endpoint, nothing more to munch, create the initializer. // Since we are in the closure that is never called, this will never get executed. // We abuse `slot` to get the correct type inference here: unsafe { // Here we abuse `paste!` to retokenize `$t`. Declarative macros have some internal // information that is associated to already parsed fragments, so a path fragment // cannot be used in this position. Doing the retokenization results in valid rust // code. ::kernel::macros::paste!( ::core::ptr::write($slot, $t { $($acc)* }); ); } }; (make_initializer: @slot($slot:ident), @type_name($t:path), @munch_fields($field:ident <- $val:expr, $($rest:tt)*), @acc($($acc:tt)*), ) => { $crate::__init_internal!(make_initializer: @slot($slot), @type_name($t), @munch_fields($($rest)*), @acc($($acc)* $field: ::core::panic!(),), ); }; (make_initializer: @slot($slot:ident), @type_name($t:path), @munch_fields($field:ident $(: $val:expr)?, $($rest:tt)*), @acc($($acc:tt)*), ) => { $crate::__init_internal!(make_initializer: @slot($slot), @type_name($t), @munch_fields($($rest)*), @acc($($acc)* $field: ::core::panic!(),), ); }; } #[doc(hidden)] #[macro_export] macro_rules! __derive_zeroable { (parse_input: @sig( $(#[$($struct_attr:tt)*])* $vis:vis struct $name:ident $(where $($whr:tt)*)? ), @impl_generics($($impl_generics:tt)*), @ty_generics($($ty_generics:tt)*), @body({ $( $(#[$($field_attr:tt)*])* $field:ident : $field_ty:ty ),* $(,)? }), ) => { // SAFETY: Every field type implements `Zeroable` and padding bytes may be zero. #[automatically_derived] unsafe impl<$($impl_generics)*> $crate::init::Zeroable for $name<$($ty_generics)*> where $($($whr)*)? {} const _: () = { fn assert_zeroable<T: ?::core::marker::Sized + $crate::init::Zeroable>() {} fn ensure_zeroable<$($impl_generics)*>() where $($($whr)*)? { $(assert_zeroable::<$field_ty>();)* } }; }; }