// SPDX-License-Identifier: GPL-2.0-or-later /* * Linux/PA-RISC Project (http://www.parisc-linux.org/) * * Floating-point emulation code * Copyright (C) 2001 Hewlett-Packard (Paul Bame) <bame@debian.org> */ /* * BEGIN_DESC * * File: * @(#) pa/spmath/dfadd.c $Revision: 1.1 $ * * Purpose: * Double_add: add two double precision values. * * External Interfaces: * dbl_fadd(leftptr, rightptr, dstptr, status) * * Internal Interfaces: * * Theory: * <<please update with a overview of the operation of this file>> * * END_DESC */ #include "float.h" #include "dbl_float.h" /* * Double_add: add two double precision values. */ dbl_fadd( dbl_floating_point *leftptr, dbl_floating_point *rightptr, dbl_floating_point *dstptr, unsigned int *status) { register unsigned int signless_upper_left, signless_upper_right, save; register unsigned int leftp1, leftp2, rightp1, rightp2, extent; register unsigned int resultp1 = 0, resultp2 = 0; register int result_exponent, right_exponent, diff_exponent; register int sign_save, jumpsize; register boolean inexact = FALSE; register boolean underflowtrap; /* Create local copies of the numbers */ Dbl_copyfromptr(leftptr,leftp1,leftp2); Dbl_copyfromptr(rightptr,rightp1,rightp2); /* A zero "save" helps discover equal operands (for later), * * and is used in swapping operands (if needed). */ Dbl_xortointp1(leftp1,rightp1,/*to*/save); /* * check first operand for NaN's or infinity */ if ((result_exponent = Dbl_exponent(leftp1)) == DBL_INFINITY_EXPONENT) { if (Dbl_iszero_mantissa(leftp1,leftp2)) { if (Dbl_isnotnan(rightp1,rightp2)) { if (Dbl_isinfinity(rightp1,rightp2) && save!=0) { /* * invalid since operands are opposite signed infinity's */ if (Is_invalidtrap_enabled()) return(INVALIDEXCEPTION); Set_invalidflag(); Dbl_makequietnan(resultp1,resultp2); Dbl_copytoptr(resultp1,resultp2,dstptr); return(NOEXCEPTION); } /* * return infinity */ Dbl_copytoptr(leftp1,leftp2,dstptr); return(NOEXCEPTION); } } else { /* * is NaN; signaling or quiet? */ if (Dbl_isone_signaling(leftp1)) { /* trap if INVALIDTRAP enabled */ if (Is_invalidtrap_enabled()) return(INVALIDEXCEPTION); /* make NaN quiet */ Set_invalidflag(); Dbl_set_quiet(leftp1); } /* * is second operand a signaling NaN? */ else if (Dbl_is_signalingnan(rightp1)) { /* trap if INVALIDTRAP enabled */ if (Is_invalidtrap_enabled()) return(INVALIDEXCEPTION); /* make NaN quiet */ Set_invalidflag(); Dbl_set_quiet(rightp1); Dbl_copytoptr(rightp1,rightp2,dstptr); return(NOEXCEPTION); } /* * return quiet NaN */ Dbl_copytoptr(leftp1,leftp2,dstptr); return(NOEXCEPTION); } } /* End left NaN or Infinity processing */ /* * check second operand for NaN's or infinity */ if (Dbl_isinfinity_exponent(rightp1)) { if (Dbl_iszero_mantissa(rightp1,rightp2)) { /* return infinity */ Dbl_copytoptr(rightp1,rightp2,dstptr); return(NOEXCEPTION); } /* * is NaN; signaling or quiet? */ if (Dbl_isone_signaling(rightp1)) { /* trap if INVALIDTRAP enabled */ if (Is_invalidtrap_enabled()) return(INVALIDEXCEPTION); /* make NaN quiet */ Set_invalidflag(); Dbl_set_quiet(rightp1); } /* * return quiet NaN */ Dbl_copytoptr(rightp1,rightp2,dstptr); return(NOEXCEPTION); } /* End right NaN or Infinity processing */ /* Invariant: Must be dealing with finite numbers */ /* Compare operands by removing the sign */ Dbl_copytoint_exponentmantissap1(leftp1,signless_upper_left); Dbl_copytoint_exponentmantissap1(rightp1,signless_upper_right); /* sign difference selects add or sub operation. */ if(Dbl_ismagnitudeless(leftp2,rightp2,signless_upper_left,signless_upper_right)) { /* Set the left operand to the larger one by XOR swap * * First finish the first word using "save" */ Dbl_xorfromintp1(save,rightp1,/*to*/rightp1); Dbl_xorfromintp1(save,leftp1,/*to*/leftp1); Dbl_swap_lower(leftp2,rightp2); result_exponent = Dbl_exponent(leftp1); } /* Invariant: left is not smaller than right. */ if((right_exponent = Dbl_exponent(rightp1)) == 0) { /* Denormalized operands. First look for zeroes */ if(Dbl_iszero_mantissa(rightp1,rightp2)) { /* right is zero */ if(Dbl_iszero_exponentmantissa(leftp1,leftp2)) { /* Both operands are zeros */ if(Is_rounding_mode(ROUNDMINUS)) { Dbl_or_signs(leftp1,/*with*/rightp1); } else { Dbl_and_signs(leftp1,/*with*/rightp1); } } else { /* Left is not a zero and must be the result. Trapped * underflows are signaled if left is denormalized. Result * is always exact. */ if( (result_exponent == 0) && Is_underflowtrap_enabled() ) { /* need to normalize results mantissa */ sign_save = Dbl_signextendedsign(leftp1); Dbl_leftshiftby1(leftp1,leftp2); Dbl_normalize(leftp1,leftp2,result_exponent); Dbl_set_sign(leftp1,/*using*/sign_save); Dbl_setwrapped_exponent(leftp1,result_exponent,unfl); Dbl_copytoptr(leftp1,leftp2,dstptr); /* inexact = FALSE */ return(UNDERFLOWEXCEPTION); } } Dbl_copytoptr(leftp1,leftp2,dstptr); return(NOEXCEPTION); } /* Neither are zeroes */ Dbl_clear_sign(rightp1); /* Exponent is already cleared */ if(result_exponent == 0 ) { /* Both operands are denormalized. The result must be exact * and is simply calculated. A sum could become normalized and a * difference could cancel to a true zero. */ if( (/*signed*/int) save < 0 ) { Dbl_subtract(leftp1,leftp2,/*minus*/rightp1,rightp2, /*into*/resultp1,resultp2); if(Dbl_iszero_mantissa(resultp1,resultp2)) { if(Is_rounding_mode(ROUNDMINUS)) { Dbl_setone_sign(resultp1); } else { Dbl_setzero_sign(resultp1); } Dbl_copytoptr(resultp1,resultp2,dstptr); return(NOEXCEPTION); } } else { Dbl_addition(leftp1,leftp2,rightp1,rightp2, /*into*/resultp1,resultp2); if(Dbl_isone_hidden(resultp1)) { Dbl_copytoptr(resultp1,resultp2,dstptr); return(NOEXCEPTION); } } if(Is_underflowtrap_enabled()) { /* need to normalize result */ sign_save = Dbl_signextendedsign(resultp1); Dbl_leftshiftby1(resultp1,resultp2); Dbl_normalize(resultp1,resultp2,result_exponent); Dbl_set_sign(resultp1,/*using*/sign_save); Dbl_setwrapped_exponent(resultp1,result_exponent,unfl); Dbl_copytoptr(resultp1,resultp2,dstptr); /* inexact = FALSE */ return(UNDERFLOWEXCEPTION); } Dbl_copytoptr(resultp1,resultp2,dstptr); return(NOEXCEPTION); } right_exponent = 1; /* Set exponent to reflect different bias * with denormalized numbers. */ } else { Dbl_clear_signexponent_set_hidden(rightp1); } Dbl_clear_exponent_set_hidden(leftp1); diff_exponent = result_exponent - right_exponent; /* * Special case alignment of operands that would force alignment * beyond the extent of the extension. A further optimization * could special case this but only reduces the path length for this * infrequent case. */ if(diff_exponent > DBL_THRESHOLD) { diff_exponent = DBL_THRESHOLD; } /* Align right operand by shifting to right */ Dbl_right_align(/*operand*/rightp1,rightp2,/*shifted by*/diff_exponent, /*and lower to*/extent); /* Treat sum and difference of the operands separately. */ if( (/*signed*/int) save < 0 ) { /* * Difference of the two operands. Their can be no overflow. A * borrow can occur out of the hidden bit and force a post * normalization phase. */ Dbl_subtract_withextension(leftp1,leftp2,/*minus*/rightp1,rightp2, /*with*/extent,/*into*/resultp1,resultp2); if(Dbl_iszero_hidden(resultp1)) { /* Handle normalization */ /* A straight forward algorithm would now shift the result * and extension left until the hidden bit becomes one. Not * all of the extension bits need participate in the shift. * Only the two most significant bits (round and guard) are * needed. If only a single shift is needed then the guard * bit becomes a significant low order bit and the extension * must participate in the rounding. If more than a single * shift is needed, then all bits to the right of the guard * bit are zeros, and the guard bit may or may not be zero. */ sign_save = Dbl_signextendedsign(resultp1); Dbl_leftshiftby1_withextent(resultp1,resultp2,extent,resultp1,resultp2); /* Need to check for a zero result. The sign and exponent * fields have already been zeroed. The more efficient test * of the full object can be used. */ if(Dbl_iszero(resultp1,resultp2)) /* Must have been "x-x" or "x+(-x)". */ { if(Is_rounding_mode(ROUNDMINUS)) Dbl_setone_sign(resultp1); Dbl_copytoptr(resultp1,resultp2,dstptr); return(NOEXCEPTION); } result_exponent--; /* Look to see if normalization is finished. */ if(Dbl_isone_hidden(resultp1)) { if(result_exponent==0) { /* Denormalized, exponent should be zero. Left operand * * was normalized, so extent (guard, round) was zero */ goto underflow; } else { /* No further normalization is needed. */ Dbl_set_sign(resultp1,/*using*/sign_save); Ext_leftshiftby1(extent); goto round; } } /* Check for denormalized, exponent should be zero. Left * * operand was normalized, so extent (guard, round) was zero */ if(!(underflowtrap = Is_underflowtrap_enabled()) && result_exponent==0) goto underflow; /* Shift extension to complete one bit of normalization and * update exponent. */ Ext_leftshiftby1(extent); /* Discover first one bit to determine shift amount. Use a * modified binary search. We have already shifted the result * one position right and still not found a one so the remainder * of the extension must be zero and simplifies rounding. */ /* Scan bytes */ while(Dbl_iszero_hiddenhigh7mantissa(resultp1)) { Dbl_leftshiftby8(resultp1,resultp2); if((result_exponent -= 8) <= 0 && !underflowtrap) goto underflow; } /* Now narrow it down to the nibble */ if(Dbl_iszero_hiddenhigh3mantissa(resultp1)) { /* The lower nibble contains the normalizing one */ Dbl_leftshiftby4(resultp1,resultp2); if((result_exponent -= 4) <= 0 && !underflowtrap) goto underflow; } /* Select case were first bit is set (already normalized) * otherwise select the proper shift. */ if((jumpsize = Dbl_hiddenhigh3mantissa(resultp1)) > 7) { /* Already normalized */ if(result_exponent <= 0) goto underflow; Dbl_set_sign(resultp1,/*using*/sign_save); Dbl_set_exponent(resultp1,/*using*/result_exponent); Dbl_copytoptr(resultp1,resultp2,dstptr); return(NOEXCEPTION); } Dbl_sethigh4bits(resultp1,/*using*/sign_save); switch(jumpsize) { case 1: { Dbl_leftshiftby3(resultp1,resultp2); result_exponent -= 3; break; } case 2: case 3: { Dbl_leftshiftby2(resultp1,resultp2); result_exponent -= 2; break; } case 4: case 5: case 6: case 7: { Dbl_leftshiftby1(resultp1,resultp2); result_exponent -= 1; break; } } if(result_exponent > 0) { Dbl_set_exponent(resultp1,/*using*/result_exponent); Dbl_copytoptr(resultp1,resultp2,dstptr); return(NOEXCEPTION); /* Sign bit is already set */ } /* Fixup potential underflows */ underflow: if(Is_underflowtrap_enabled()) { Dbl_set_sign(resultp1,sign_save); Dbl_setwrapped_exponent(resultp1,result_exponent,unfl); Dbl_copytoptr(resultp1,resultp2,dstptr); /* inexact = FALSE */ return(UNDERFLOWEXCEPTION); } /* * Since we cannot get an inexact denormalized result, * we can now return. */ Dbl_fix_overshift(resultp1,resultp2,(1-result_exponent),extent); Dbl_clear_signexponent(resultp1); Dbl_set_sign(resultp1,sign_save); Dbl_copytoptr(resultp1,resultp2,dstptr); return(NOEXCEPTION); } /* end if(hidden...)... */ /* Fall through and round */ } /* end if(save < 0)... */ else { /* Add magnitudes */ Dbl_addition(leftp1,leftp2,rightp1,rightp2,/*to*/resultp1,resultp2); if(Dbl_isone_hiddenoverflow(resultp1)) { /* Prenormalization required. */ Dbl_rightshiftby1_withextent(resultp2,extent,extent); Dbl_arithrightshiftby1(resultp1,resultp2); result_exponent++; } /* end if hiddenoverflow... */ } /* end else ...add magnitudes... */ /* Round the result. If the extension is all zeros,then the result is * exact. Otherwise round in the correct direction. No underflow is * possible. If a postnormalization is necessary, then the mantissa is * all zeros so no shift is needed. */ round: if(Ext_isnotzero(extent)) { inexact = TRUE; switch(Rounding_mode()) { case ROUNDNEAREST: /* The default. */ if(Ext_isone_sign(extent)) { /* at least 1/2 ulp */ if(Ext_isnotzero_lower(extent) || Dbl_isone_lowmantissap2(resultp2)) { /* either exactly half way and odd or more than 1/2ulp */ Dbl_increment(resultp1,resultp2); } } break; case ROUNDPLUS: if(Dbl_iszero_sign(resultp1)) { /* Round up positive results */ Dbl_increment(resultp1,resultp2); } break; case ROUNDMINUS: if(Dbl_isone_sign(resultp1)) { /* Round down negative results */ Dbl_increment(resultp1,resultp2); } case ROUNDZERO:; /* truncate is simple */ } /* end switch... */ if(Dbl_isone_hiddenoverflow(resultp1)) result_exponent++; } if(result_exponent == DBL_INFINITY_EXPONENT) { /* Overflow */ if(Is_overflowtrap_enabled()) { Dbl_setwrapped_exponent(resultp1,result_exponent,ovfl); Dbl_copytoptr(resultp1,resultp2,dstptr); if (inexact) if (Is_inexacttrap_enabled()) return(OVERFLOWEXCEPTION | INEXACTEXCEPTION); else Set_inexactflag(); return(OVERFLOWEXCEPTION); } else { inexact = TRUE; Set_overflowflag(); Dbl_setoverflow(resultp1,resultp2); } } else Dbl_set_exponent(resultp1,result_exponent); Dbl_copytoptr(resultp1,resultp2,dstptr); if(inexact) if(Is_inexacttrap_enabled()) return(INEXACTEXCEPTION); else Set_inexactflag(); return(NOEXCEPTION); }