// SPDX-License-Identifier: GPL-2.0-only /* * Hash algorithms supported by the CESA: MD5, SHA1 and SHA256. * * Author: Boris Brezillon <boris.brezillon@free-electrons.com> * Author: Arnaud Ebalard <arno@natisbad.org> * * This work is based on an initial version written by * Sebastian Andrzej Siewior < sebastian at breakpoint dot cc > */ #include <crypto/hmac.h> #include <crypto/md5.h> #include <crypto/sha1.h> #include <crypto/sha2.h> #include <linux/device.h> #include <linux/dma-mapping.h> #include "cesa.h" struct mv_cesa_ahash_dma_iter { struct mv_cesa_dma_iter base; struct mv_cesa_sg_dma_iter src; }; static inline void mv_cesa_ahash_req_iter_init(struct mv_cesa_ahash_dma_iter *iter, struct ahash_request *req) { struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); unsigned int len = req->nbytes + creq->cache_ptr; if (!creq->last_req) len &= ~CESA_HASH_BLOCK_SIZE_MSK; mv_cesa_req_dma_iter_init(&iter->base, len); mv_cesa_sg_dma_iter_init(&iter->src, req->src, DMA_TO_DEVICE); iter->src.op_offset = creq->cache_ptr; } static inline bool mv_cesa_ahash_req_iter_next_op(struct mv_cesa_ahash_dma_iter *iter) { iter->src.op_offset = 0; return mv_cesa_req_dma_iter_next_op(&iter->base); } static inline int mv_cesa_ahash_dma_alloc_cache(struct mv_cesa_ahash_dma_req *req, gfp_t flags) { req->cache = dma_pool_alloc(cesa_dev->dma->cache_pool, flags, &req->cache_dma); if (!req->cache) return -ENOMEM; return 0; } static inline void mv_cesa_ahash_dma_free_cache(struct mv_cesa_ahash_dma_req *req) { if (!req->cache) return; dma_pool_free(cesa_dev->dma->cache_pool, req->cache, req->cache_dma); } static int mv_cesa_ahash_dma_alloc_padding(struct mv_cesa_ahash_dma_req *req, gfp_t flags) { if (req->padding) return 0; req->padding = dma_pool_alloc(cesa_dev->dma->padding_pool, flags, &req->padding_dma); if (!req->padding) return -ENOMEM; return 0; } static void mv_cesa_ahash_dma_free_padding(struct mv_cesa_ahash_dma_req *req) { if (!req->padding) return; dma_pool_free(cesa_dev->dma->padding_pool, req->padding, req->padding_dma); req->padding = NULL; } static inline void mv_cesa_ahash_dma_last_cleanup(struct ahash_request *req) { struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); mv_cesa_ahash_dma_free_padding(&creq->req.dma); } static inline void mv_cesa_ahash_dma_cleanup(struct ahash_request *req) { struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents, DMA_TO_DEVICE); mv_cesa_ahash_dma_free_cache(&creq->req.dma); mv_cesa_dma_cleanup(&creq->base); } static inline void mv_cesa_ahash_cleanup(struct ahash_request *req) { struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ) mv_cesa_ahash_dma_cleanup(req); } static void mv_cesa_ahash_last_cleanup(struct ahash_request *req) { struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ) mv_cesa_ahash_dma_last_cleanup(req); } static int mv_cesa_ahash_pad_len(struct mv_cesa_ahash_req *creq) { unsigned int index, padlen; index = creq->len & CESA_HASH_BLOCK_SIZE_MSK; padlen = (index < 56) ? (56 - index) : (64 + 56 - index); return padlen; } static int mv_cesa_ahash_pad_req(struct mv_cesa_ahash_req *creq, u8 *buf) { unsigned int padlen; buf[0] = 0x80; /* Pad out to 56 mod 64 */ padlen = mv_cesa_ahash_pad_len(creq); memset(buf + 1, 0, padlen - 1); if (creq->algo_le) { __le64 bits = cpu_to_le64(creq->len << 3); memcpy(buf + padlen, &bits, sizeof(bits)); } else { __be64 bits = cpu_to_be64(creq->len << 3); memcpy(buf + padlen, &bits, sizeof(bits)); } return padlen + 8; } static void mv_cesa_ahash_std_step(struct ahash_request *req) { struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); struct mv_cesa_ahash_std_req *sreq = &creq->req.std; struct mv_cesa_engine *engine = creq->base.engine; struct mv_cesa_op_ctx *op; unsigned int new_cache_ptr = 0; u32 frag_mode; size_t len; unsigned int digsize; int i; mv_cesa_adjust_op(engine, &creq->op_tmpl); if (engine->pool) memcpy(engine->sram_pool, &creq->op_tmpl, sizeof(creq->op_tmpl)); else memcpy_toio(engine->sram, &creq->op_tmpl, sizeof(creq->op_tmpl)); if (!sreq->offset) { digsize = crypto_ahash_digestsize(crypto_ahash_reqtfm(req)); for (i = 0; i < digsize / 4; i++) writel_relaxed(creq->state[i], engine->regs + CESA_IVDIG(i)); } if (creq->cache_ptr) { if (engine->pool) memcpy(engine->sram_pool + CESA_SA_DATA_SRAM_OFFSET, creq->cache, creq->cache_ptr); else memcpy_toio(engine->sram + CESA_SA_DATA_SRAM_OFFSET, creq->cache, creq->cache_ptr); } len = min_t(size_t, req->nbytes + creq->cache_ptr - sreq->offset, CESA_SA_SRAM_PAYLOAD_SIZE); if (!creq->last_req) { new_cache_ptr = len & CESA_HASH_BLOCK_SIZE_MSK; len &= ~CESA_HASH_BLOCK_SIZE_MSK; } if (len - creq->cache_ptr) sreq->offset += mv_cesa_sg_copy_to_sram( engine, req->src, creq->src_nents, CESA_SA_DATA_SRAM_OFFSET + creq->cache_ptr, len - creq->cache_ptr, sreq->offset); op = &creq->op_tmpl; frag_mode = mv_cesa_get_op_cfg(op) & CESA_SA_DESC_CFG_FRAG_MSK; if (creq->last_req && sreq->offset == req->nbytes && creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX) { if (frag_mode == CESA_SA_DESC_CFG_FIRST_FRAG) frag_mode = CESA_SA_DESC_CFG_NOT_FRAG; else if (frag_mode == CESA_SA_DESC_CFG_MID_FRAG) frag_mode = CESA_SA_DESC_CFG_LAST_FRAG; } if (frag_mode == CESA_SA_DESC_CFG_NOT_FRAG || frag_mode == CESA_SA_DESC_CFG_LAST_FRAG) { if (len && creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX) { mv_cesa_set_mac_op_total_len(op, creq->len); } else { int trailerlen = mv_cesa_ahash_pad_len(creq) + 8; if (len + trailerlen > CESA_SA_SRAM_PAYLOAD_SIZE) { len &= CESA_HASH_BLOCK_SIZE_MSK; new_cache_ptr = 64 - trailerlen; if (engine->pool) memcpy(creq->cache, engine->sram_pool + CESA_SA_DATA_SRAM_OFFSET + len, new_cache_ptr); else memcpy_fromio(creq->cache, engine->sram + CESA_SA_DATA_SRAM_OFFSET + len, new_cache_ptr); } else { i = mv_cesa_ahash_pad_req(creq, creq->cache); len += i; if (engine->pool) memcpy(engine->sram_pool + len + CESA_SA_DATA_SRAM_OFFSET, creq->cache, i); else memcpy_toio(engine->sram + len + CESA_SA_DATA_SRAM_OFFSET, creq->cache, i); } if (frag_mode == CESA_SA_DESC_CFG_LAST_FRAG) frag_mode = CESA_SA_DESC_CFG_MID_FRAG; else frag_mode = CESA_SA_DESC_CFG_FIRST_FRAG; } } mv_cesa_set_mac_op_frag_len(op, len); mv_cesa_update_op_cfg(op, frag_mode, CESA_SA_DESC_CFG_FRAG_MSK); /* FIXME: only update enc_len field */ if (engine->pool) memcpy(engine->sram_pool, op, sizeof(*op)); else memcpy_toio(engine->sram, op, sizeof(*op)); if (frag_mode == CESA_SA_DESC_CFG_FIRST_FRAG) mv_cesa_update_op_cfg(op, CESA_SA_DESC_CFG_MID_FRAG, CESA_SA_DESC_CFG_FRAG_MSK); creq->cache_ptr = new_cache_ptr; mv_cesa_set_int_mask(engine, CESA_SA_INT_ACCEL0_DONE); writel_relaxed(CESA_SA_CFG_PARA_DIS, engine->regs + CESA_SA_CFG); WARN_ON(readl(engine->regs + CESA_SA_CMD) & CESA_SA_CMD_EN_CESA_SA_ACCL0); writel(CESA_SA_CMD_EN_CESA_SA_ACCL0, engine->regs + CESA_SA_CMD); } static int mv_cesa_ahash_std_process(struct ahash_request *req, u32 status) { struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); struct mv_cesa_ahash_std_req *sreq = &creq->req.std; if (sreq->offset < (req->nbytes - creq->cache_ptr)) return -EINPROGRESS; return 0; } static inline void mv_cesa_ahash_dma_prepare(struct ahash_request *req) { struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); struct mv_cesa_req *basereq = &creq->base; mv_cesa_dma_prepare(basereq, basereq->engine); } static void mv_cesa_ahash_std_prepare(struct ahash_request *req) { struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); struct mv_cesa_ahash_std_req *sreq = &creq->req.std; sreq->offset = 0; } static void mv_cesa_ahash_dma_step(struct ahash_request *req) { struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); struct mv_cesa_req *base = &creq->base; /* We must explicitly set the digest state. */ if (base->chain.first->flags & CESA_TDMA_SET_STATE) { struct mv_cesa_engine *engine = base->engine; int i; /* Set the hash state in the IVDIG regs. */ for (i = 0; i < ARRAY_SIZE(creq->state); i++) writel_relaxed(creq->state[i], engine->regs + CESA_IVDIG(i)); } mv_cesa_dma_step(base); } static void mv_cesa_ahash_step(struct crypto_async_request *req) { struct ahash_request *ahashreq = ahash_request_cast(req); struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq); if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ) mv_cesa_ahash_dma_step(ahashreq); else mv_cesa_ahash_std_step(ahashreq); } static int mv_cesa_ahash_process(struct crypto_async_request *req, u32 status) { struct ahash_request *ahashreq = ahash_request_cast(req); struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq); if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ) return mv_cesa_dma_process(&creq->base, status); return mv_cesa_ahash_std_process(ahashreq, status); } static void mv_cesa_ahash_complete(struct crypto_async_request *req) { struct ahash_request *ahashreq = ahash_request_cast(req); struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq); struct mv_cesa_engine *engine = creq->base.engine; unsigned int digsize; int i; digsize = crypto_ahash_digestsize(crypto_ahash_reqtfm(ahashreq)); if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ && (creq->base.chain.last->flags & CESA_TDMA_TYPE_MSK) == CESA_TDMA_RESULT) { __le32 *data = NULL; /* * Result is already in the correct endianness when the SA is * used */ data = creq->base.chain.last->op->ctx.hash.hash; for (i = 0; i < digsize / 4; i++) creq->state[i] = le32_to_cpu(data[i]); memcpy(ahashreq->result, data, digsize); } else { for (i = 0; i < digsize / 4; i++) creq->state[i] = readl_relaxed(engine->regs + CESA_IVDIG(i)); if (creq->last_req) { /* * Hardware's MD5 digest is in little endian format, but * SHA in big endian format */ if (creq->algo_le) { __le32 *result = (void *)ahashreq->result; for (i = 0; i < digsize / 4; i++) result[i] = cpu_to_le32(creq->state[i]); } else { __be32 *result = (void *)ahashreq->result; for (i = 0; i < digsize / 4; i++) result[i] = cpu_to_be32(creq->state[i]); } } } atomic_sub(ahashreq->nbytes, &engine->load); } static void mv_cesa_ahash_prepare(struct crypto_async_request *req, struct mv_cesa_engine *engine) { struct ahash_request *ahashreq = ahash_request_cast(req); struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq); creq->base.engine = engine; if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ) mv_cesa_ahash_dma_prepare(ahashreq); else mv_cesa_ahash_std_prepare(ahashreq); } static void mv_cesa_ahash_req_cleanup(struct crypto_async_request *req) { struct ahash_request *ahashreq = ahash_request_cast(req); struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq); if (creq->last_req) mv_cesa_ahash_last_cleanup(ahashreq); mv_cesa_ahash_cleanup(ahashreq); if (creq->cache_ptr) sg_pcopy_to_buffer(ahashreq->src, creq->src_nents, creq->cache, creq->cache_ptr, ahashreq->nbytes - creq->cache_ptr); } static const struct mv_cesa_req_ops mv_cesa_ahash_req_ops = { .step = mv_cesa_ahash_step, .process = mv_cesa_ahash_process, .cleanup = mv_cesa_ahash_req_cleanup, .complete = mv_cesa_ahash_complete, }; static void mv_cesa_ahash_init(struct ahash_request *req, struct mv_cesa_op_ctx *tmpl, bool algo_le) { struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); memset(creq, 0, sizeof(*creq)); mv_cesa_update_op_cfg(tmpl, CESA_SA_DESC_CFG_OP_MAC_ONLY | CESA_SA_DESC_CFG_FIRST_FRAG, CESA_SA_DESC_CFG_OP_MSK | CESA_SA_DESC_CFG_FRAG_MSK); mv_cesa_set_mac_op_total_len(tmpl, 0); mv_cesa_set_mac_op_frag_len(tmpl, 0); creq->op_tmpl = *tmpl; creq->len = 0; creq->algo_le = algo_le; } static inline int mv_cesa_ahash_cra_init(struct crypto_tfm *tfm) { struct mv_cesa_hash_ctx *ctx = crypto_tfm_ctx(tfm); ctx->base.ops = &mv_cesa_ahash_req_ops; crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), sizeof(struct mv_cesa_ahash_req)); return 0; } static bool mv_cesa_ahash_cache_req(struct ahash_request *req) { struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); bool cached = false; if (creq->cache_ptr + req->nbytes < CESA_MAX_HASH_BLOCK_SIZE && !creq->last_req) { cached = true; if (!req->nbytes) return cached; sg_pcopy_to_buffer(req->src, creq->src_nents, creq->cache + creq->cache_ptr, req->nbytes, 0); creq->cache_ptr += req->nbytes; } return cached; } static struct mv_cesa_op_ctx * mv_cesa_dma_add_frag(struct mv_cesa_tdma_chain *chain, struct mv_cesa_op_ctx *tmpl, unsigned int frag_len, gfp_t flags) { struct mv_cesa_op_ctx *op; int ret; op = mv_cesa_dma_add_op(chain, tmpl, false, flags); if (IS_ERR(op)) return op; /* Set the operation block fragment length. */ mv_cesa_set_mac_op_frag_len(op, frag_len); /* Append dummy desc to launch operation */ ret = mv_cesa_dma_add_dummy_launch(chain, flags); if (ret) return ERR_PTR(ret); if (mv_cesa_mac_op_is_first_frag(tmpl)) mv_cesa_update_op_cfg(tmpl, CESA_SA_DESC_CFG_MID_FRAG, CESA_SA_DESC_CFG_FRAG_MSK); return op; } static int mv_cesa_ahash_dma_add_cache(struct mv_cesa_tdma_chain *chain, struct mv_cesa_ahash_req *creq, gfp_t flags) { struct mv_cesa_ahash_dma_req *ahashdreq = &creq->req.dma; int ret; if (!creq->cache_ptr) return 0; ret = mv_cesa_ahash_dma_alloc_cache(ahashdreq, flags); if (ret) return ret; memcpy(ahashdreq->cache, creq->cache, creq->cache_ptr); return mv_cesa_dma_add_data_transfer(chain, CESA_SA_DATA_SRAM_OFFSET, ahashdreq->cache_dma, creq->cache_ptr, CESA_TDMA_DST_IN_SRAM, flags); } static struct mv_cesa_op_ctx * mv_cesa_ahash_dma_last_req(struct mv_cesa_tdma_chain *chain, struct mv_cesa_ahash_dma_iter *dma_iter, struct mv_cesa_ahash_req *creq, unsigned int frag_len, gfp_t flags) { struct mv_cesa_ahash_dma_req *ahashdreq = &creq->req.dma; unsigned int len, trailerlen, padoff = 0; struct mv_cesa_op_ctx *op; int ret; /* * If the transfer is smaller than our maximum length, and we have * some data outstanding, we can ask the engine to finish the hash. */ if (creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX && frag_len) { op = mv_cesa_dma_add_frag(chain, &creq->op_tmpl, frag_len, flags); if (IS_ERR(op)) return op; mv_cesa_set_mac_op_total_len(op, creq->len); mv_cesa_update_op_cfg(op, mv_cesa_mac_op_is_first_frag(op) ? CESA_SA_DESC_CFG_NOT_FRAG : CESA_SA_DESC_CFG_LAST_FRAG, CESA_SA_DESC_CFG_FRAG_MSK); ret = mv_cesa_dma_add_result_op(chain, CESA_SA_CFG_SRAM_OFFSET, CESA_SA_DATA_SRAM_OFFSET, CESA_TDMA_SRC_IN_SRAM, flags); if (ret) return ERR_PTR(-ENOMEM); return op; } /* * The request is longer than the engine can handle, or we have * no data outstanding. Manually generate the padding, adding it * as a "mid" fragment. */ ret = mv_cesa_ahash_dma_alloc_padding(ahashdreq, flags); if (ret) return ERR_PTR(ret); trailerlen = mv_cesa_ahash_pad_req(creq, ahashdreq->padding); len = min(CESA_SA_SRAM_PAYLOAD_SIZE - frag_len, trailerlen); if (len) { ret = mv_cesa_dma_add_data_transfer(chain, CESA_SA_DATA_SRAM_OFFSET + frag_len, ahashdreq->padding_dma, len, CESA_TDMA_DST_IN_SRAM, flags); if (ret) return ERR_PTR(ret); op = mv_cesa_dma_add_frag(chain, &creq->op_tmpl, frag_len + len, flags); if (IS_ERR(op)) return op; if (len == trailerlen) return op; padoff += len; } ret = mv_cesa_dma_add_data_transfer(chain, CESA_SA_DATA_SRAM_OFFSET, ahashdreq->padding_dma + padoff, trailerlen - padoff, CESA_TDMA_DST_IN_SRAM, flags); if (ret) return ERR_PTR(ret); return mv_cesa_dma_add_frag(chain, &creq->op_tmpl, trailerlen - padoff, flags); } static int mv_cesa_ahash_dma_req_init(struct ahash_request *req) { struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL : GFP_ATOMIC; struct mv_cesa_req *basereq = &creq->base; struct mv_cesa_ahash_dma_iter iter; struct mv_cesa_op_ctx *op = NULL; unsigned int frag_len; bool set_state = false; int ret; u32 type; basereq->chain.first = NULL; basereq->chain.last = NULL; if (!mv_cesa_mac_op_is_first_frag(&creq->op_tmpl)) set_state = true; if (creq->src_nents) { ret = dma_map_sg(cesa_dev->dev, req->src, creq->src_nents, DMA_TO_DEVICE); if (!ret) { ret = -ENOMEM; goto err; } } mv_cesa_tdma_desc_iter_init(&basereq->chain); mv_cesa_ahash_req_iter_init(&iter, req); /* * Add the cache (left-over data from a previous block) first. * This will never overflow the SRAM size. */ ret = mv_cesa_ahash_dma_add_cache(&basereq->chain, creq, flags); if (ret) goto err_free_tdma; if (iter.src.sg) { /* * Add all the new data, inserting an operation block and * launch command between each full SRAM block-worth of * data. We intentionally do not add the final op block. */ while (true) { ret = mv_cesa_dma_add_op_transfers(&basereq->chain, &iter.base, &iter.src, flags); if (ret) goto err_free_tdma; frag_len = iter.base.op_len; if (!mv_cesa_ahash_req_iter_next_op(&iter)) break; op = mv_cesa_dma_add_frag(&basereq->chain, &creq->op_tmpl, frag_len, flags); if (IS_ERR(op)) { ret = PTR_ERR(op); goto err_free_tdma; } } } else { /* Account for the data that was in the cache. */ frag_len = iter.base.op_len; } /* * At this point, frag_len indicates whether we have any data * outstanding which needs an operation. Queue up the final * operation, which depends whether this is the final request. */ if (creq->last_req) op = mv_cesa_ahash_dma_last_req(&basereq->chain, &iter, creq, frag_len, flags); else if (frag_len) op = mv_cesa_dma_add_frag(&basereq->chain, &creq->op_tmpl, frag_len, flags); if (IS_ERR(op)) { ret = PTR_ERR(op); goto err_free_tdma; } /* * If results are copied via DMA, this means that this * request can be directly processed by the engine, * without partial updates. So we can chain it at the * DMA level with other requests. */ type = basereq->chain.last->flags & CESA_TDMA_TYPE_MSK; if (op && type != CESA_TDMA_RESULT) { /* Add dummy desc to wait for crypto operation end */ ret = mv_cesa_dma_add_dummy_end(&basereq->chain, flags); if (ret) goto err_free_tdma; } if (!creq->last_req) creq->cache_ptr = req->nbytes + creq->cache_ptr - iter.base.len; else creq->cache_ptr = 0; basereq->chain.last->flags |= CESA_TDMA_END_OF_REQ; if (type != CESA_TDMA_RESULT) basereq->chain.last->flags |= CESA_TDMA_BREAK_CHAIN; if (set_state) { /* * Put the CESA_TDMA_SET_STATE flag on the first tdma desc to * let the step logic know that the IVDIG registers should be * explicitly set before launching a TDMA chain. */ basereq->chain.first->flags |= CESA_TDMA_SET_STATE; } return 0; err_free_tdma: mv_cesa_dma_cleanup(basereq); dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents, DMA_TO_DEVICE); err: mv_cesa_ahash_last_cleanup(req); return ret; } static int mv_cesa_ahash_req_init(struct ahash_request *req, bool *cached) { struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); creq->src_nents = sg_nents_for_len(req->src, req->nbytes); if (creq->src_nents < 0) { dev_err(cesa_dev->dev, "Invalid number of src SG"); return creq->src_nents; } *cached = mv_cesa_ahash_cache_req(req); if (*cached) return 0; if (cesa_dev->caps->has_tdma) return mv_cesa_ahash_dma_req_init(req); else return 0; } static int mv_cesa_ahash_queue_req(struct ahash_request *req) { struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); struct mv_cesa_engine *engine; bool cached = false; int ret; ret = mv_cesa_ahash_req_init(req, &cached); if (ret) return ret; if (cached) return 0; engine = mv_cesa_select_engine(req->nbytes); mv_cesa_ahash_prepare(&req->base, engine); ret = mv_cesa_queue_req(&req->base, &creq->base); if (mv_cesa_req_needs_cleanup(&req->base, ret)) mv_cesa_ahash_cleanup(req); return ret; } static int mv_cesa_ahash_update(struct ahash_request *req) { struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); creq->len += req->nbytes; return mv_cesa_ahash_queue_req(req); } static int mv_cesa_ahash_final(struct ahash_request *req) { struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); struct mv_cesa_op_ctx *tmpl = &creq->op_tmpl; mv_cesa_set_mac_op_total_len(tmpl, creq->len); creq->last_req = true; req->nbytes = 0; return mv_cesa_ahash_queue_req(req); } static int mv_cesa_ahash_finup(struct ahash_request *req) { struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); struct mv_cesa_op_ctx *tmpl = &creq->op_tmpl; creq->len += req->nbytes; mv_cesa_set_mac_op_total_len(tmpl, creq->len); creq->last_req = true; return mv_cesa_ahash_queue_req(req); } static int mv_cesa_ahash_export(struct ahash_request *req, void *hash, u64 *len, void *cache) { struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); unsigned int digsize = crypto_ahash_digestsize(ahash); unsigned int blocksize; blocksize = crypto_ahash_blocksize(ahash); *len = creq->len; memcpy(hash, creq->state, digsize); memset(cache, 0, blocksize); memcpy(cache, creq->cache, creq->cache_ptr); return 0; } static int mv_cesa_ahash_import(struct ahash_request *req, const void *hash, u64 len, const void *cache) { struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); unsigned int digsize = crypto_ahash_digestsize(ahash); unsigned int blocksize; unsigned int cache_ptr; int ret; ret = crypto_ahash_init(req); if (ret) return ret; blocksize = crypto_ahash_blocksize(ahash); if (len >= blocksize) mv_cesa_update_op_cfg(&creq->op_tmpl, CESA_SA_DESC_CFG_MID_FRAG, CESA_SA_DESC_CFG_FRAG_MSK); creq->len = len; memcpy(creq->state, hash, digsize); creq->cache_ptr = 0; cache_ptr = do_div(len, blocksize); if (!cache_ptr) return 0; memcpy(creq->cache, cache, cache_ptr); creq->cache_ptr = cache_ptr; return 0; } static int mv_cesa_md5_init(struct ahash_request *req) { struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); struct mv_cesa_op_ctx tmpl = { }; mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_MD5); mv_cesa_ahash_init(req, &tmpl, true); creq->state[0] = MD5_H0; creq->state[1] = MD5_H1; creq->state[2] = MD5_H2; creq->state[3] = MD5_H3; return 0; } static int mv_cesa_md5_export(struct ahash_request *req, void *out) { struct md5_state *out_state = out; return mv_cesa_ahash_export(req, out_state->hash, &out_state->byte_count, out_state->block); } static int mv_cesa_md5_import(struct ahash_request *req, const void *in) { const struct md5_state *in_state = in; return mv_cesa_ahash_import(req, in_state->hash, in_state->byte_count, in_state->block); } static int mv_cesa_md5_digest(struct ahash_request *req) { int ret; ret = mv_cesa_md5_init(req); if (ret) return ret; return mv_cesa_ahash_finup(req); } struct ahash_alg mv_md5_alg = { .init = mv_cesa_md5_init, .update = mv_cesa_ahash_update, .final = mv_cesa_ahash_final, .finup = mv_cesa_ahash_finup, .digest = mv_cesa_md5_digest, .export = mv_cesa_md5_export, .import = mv_cesa_md5_import, .halg = { .digestsize = MD5_DIGEST_SIZE, .statesize = sizeof(struct md5_state), .base = { .cra_name = "md5", .cra_driver_name = "mv-md5", .cra_priority = 300, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = MD5_HMAC_BLOCK_SIZE, .cra_ctxsize = sizeof(struct mv_cesa_hash_ctx), .cra_init = mv_cesa_ahash_cra_init, .cra_module = THIS_MODULE, } } }; static int mv_cesa_sha1_init(struct ahash_request *req) { struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); struct mv_cesa_op_ctx tmpl = { }; mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_SHA1); mv_cesa_ahash_init(req, &tmpl, false); creq->state[0] = SHA1_H0; creq->state[1] = SHA1_H1; creq->state[2] = SHA1_H2; creq->state[3] = SHA1_H3; creq->state[4] = SHA1_H4; return 0; } static int mv_cesa_sha1_export(struct ahash_request *req, void *out) { struct sha1_state *out_state = out; return mv_cesa_ahash_export(req, out_state->state, &out_state->count, out_state->buffer); } static int mv_cesa_sha1_import(struct ahash_request *req, const void *in) { const struct sha1_state *in_state = in; return mv_cesa_ahash_import(req, in_state->state, in_state->count, in_state->buffer); } static int mv_cesa_sha1_digest(struct ahash_request *req) { int ret; ret = mv_cesa_sha1_init(req); if (ret) return ret; return mv_cesa_ahash_finup(req); } struct ahash_alg mv_sha1_alg = { .init = mv_cesa_sha1_init, .update = mv_cesa_ahash_update, .final = mv_cesa_ahash_final, .finup = mv_cesa_ahash_finup, .digest = mv_cesa_sha1_digest, .export = mv_cesa_sha1_export, .import = mv_cesa_sha1_import, .halg = { .digestsize = SHA1_DIGEST_SIZE, .statesize = sizeof(struct sha1_state), .base = { .cra_name = "sha1", .cra_driver_name = "mv-sha1", .cra_priority = 300, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_ctxsize = sizeof(struct mv_cesa_hash_ctx), .cra_init = mv_cesa_ahash_cra_init, .cra_module = THIS_MODULE, } } }; static int mv_cesa_sha256_init(struct ahash_request *req) { struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); struct mv_cesa_op_ctx tmpl = { }; mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_SHA256); mv_cesa_ahash_init(req, &tmpl, false); creq->state[0] = SHA256_H0; creq->state[1] = SHA256_H1; creq->state[2] = SHA256_H2; creq->state[3] = SHA256_H3; creq->state[4] = SHA256_H4; creq->state[5] = SHA256_H5; creq->state[6] = SHA256_H6; creq->state[7] = SHA256_H7; return 0; } static int mv_cesa_sha256_digest(struct ahash_request *req) { int ret; ret = mv_cesa_sha256_init(req); if (ret) return ret; return mv_cesa_ahash_finup(req); } static int mv_cesa_sha256_export(struct ahash_request *req, void *out) { struct sha256_state *out_state = out; return mv_cesa_ahash_export(req, out_state->state, &out_state->count, out_state->buf); } static int mv_cesa_sha256_import(struct ahash_request *req, const void *in) { const struct sha256_state *in_state = in; return mv_cesa_ahash_import(req, in_state->state, in_state->count, in_state->buf); } struct ahash_alg mv_sha256_alg = { .init = mv_cesa_sha256_init, .update = mv_cesa_ahash_update, .final = mv_cesa_ahash_final, .finup = mv_cesa_ahash_finup, .digest = mv_cesa_sha256_digest, .export = mv_cesa_sha256_export, .import = mv_cesa_sha256_import, .halg = { .digestsize = SHA256_DIGEST_SIZE, .statesize = sizeof(struct sha256_state), .base = { .cra_name = "sha256", .cra_driver_name = "mv-sha256", .cra_priority = 300, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA256_BLOCK_SIZE, .cra_ctxsize = sizeof(struct mv_cesa_hash_ctx), .cra_init = mv_cesa_ahash_cra_init, .cra_module = THIS_MODULE, } } }; static int mv_cesa_ahmac_iv_state_init(struct ahash_request *req, u8 *pad, void *state, unsigned int blocksize) { DECLARE_CRYPTO_WAIT(result); struct scatterlist sg; int ret; ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, crypto_req_done, &result); sg_init_one(&sg, pad, blocksize); ahash_request_set_crypt(req, &sg, pad, blocksize); ret = crypto_ahash_init(req); if (ret) return ret; ret = crypto_ahash_update(req); ret = crypto_wait_req(ret, &result); if (ret) return ret; ret = crypto_ahash_export(req, state); if (ret) return ret; return 0; } static int mv_cesa_ahmac_pad_init(struct ahash_request *req, const u8 *key, unsigned int keylen, u8 *ipad, u8 *opad, unsigned int blocksize) { DECLARE_CRYPTO_WAIT(result); struct scatterlist sg; int ret; int i; if (keylen <= blocksize) { memcpy(ipad, key, keylen); } else { u8 *keydup = kmemdup(key, keylen, GFP_KERNEL); if (!keydup) return -ENOMEM; ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, crypto_req_done, &result); sg_init_one(&sg, keydup, keylen); ahash_request_set_crypt(req, &sg, ipad, keylen); ret = crypto_ahash_digest(req); ret = crypto_wait_req(ret, &result); /* Set the memory region to 0 to avoid any leak. */ kfree_sensitive(keydup); if (ret) return ret; keylen = crypto_ahash_digestsize(crypto_ahash_reqtfm(req)); } memset(ipad + keylen, 0, blocksize - keylen); memcpy(opad, ipad, blocksize); for (i = 0; i < blocksize; i++) { ipad[i] ^= HMAC_IPAD_VALUE; opad[i] ^= HMAC_OPAD_VALUE; } return 0; } static int mv_cesa_ahmac_setkey(const char *hash_alg_name, const u8 *key, unsigned int keylen, void *istate, void *ostate) { struct ahash_request *req; struct crypto_ahash *tfm; unsigned int blocksize; u8 *ipad = NULL; u8 *opad; int ret; tfm = crypto_alloc_ahash(hash_alg_name, 0, 0); if (IS_ERR(tfm)) return PTR_ERR(tfm); req = ahash_request_alloc(tfm, GFP_KERNEL); if (!req) { ret = -ENOMEM; goto free_ahash; } crypto_ahash_clear_flags(tfm, ~0); blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); ipad = kcalloc(2, blocksize, GFP_KERNEL); if (!ipad) { ret = -ENOMEM; goto free_req; } opad = ipad + blocksize; ret = mv_cesa_ahmac_pad_init(req, key, keylen, ipad, opad, blocksize); if (ret) goto free_ipad; ret = mv_cesa_ahmac_iv_state_init(req, ipad, istate, blocksize); if (ret) goto free_ipad; ret = mv_cesa_ahmac_iv_state_init(req, opad, ostate, blocksize); free_ipad: kfree(ipad); free_req: ahash_request_free(req); free_ahash: crypto_free_ahash(tfm); return ret; } static int mv_cesa_ahmac_cra_init(struct crypto_tfm *tfm) { struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(tfm); ctx->base.ops = &mv_cesa_ahash_req_ops; crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), sizeof(struct mv_cesa_ahash_req)); return 0; } static int mv_cesa_ahmac_md5_init(struct ahash_request *req) { struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct mv_cesa_op_ctx tmpl = { }; mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_MD5); memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv)); mv_cesa_ahash_init(req, &tmpl, true); return 0; } static int mv_cesa_ahmac_md5_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen) { struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm)); struct md5_state istate, ostate; int ret, i; ret = mv_cesa_ahmac_setkey("mv-md5", key, keylen, &istate, &ostate); if (ret) return ret; for (i = 0; i < ARRAY_SIZE(istate.hash); i++) ctx->iv[i] = cpu_to_be32(istate.hash[i]); for (i = 0; i < ARRAY_SIZE(ostate.hash); i++) ctx->iv[i + 8] = cpu_to_be32(ostate.hash[i]); return 0; } static int mv_cesa_ahmac_md5_digest(struct ahash_request *req) { int ret; ret = mv_cesa_ahmac_md5_init(req); if (ret) return ret; return mv_cesa_ahash_finup(req); } struct ahash_alg mv_ahmac_md5_alg = { .init = mv_cesa_ahmac_md5_init, .update = mv_cesa_ahash_update, .final = mv_cesa_ahash_final, .finup = mv_cesa_ahash_finup, .digest = mv_cesa_ahmac_md5_digest, .setkey = mv_cesa_ahmac_md5_setkey, .export = mv_cesa_md5_export, .import = mv_cesa_md5_import, .halg = { .digestsize = MD5_DIGEST_SIZE, .statesize = sizeof(struct md5_state), .base = { .cra_name = "hmac(md5)", .cra_driver_name = "mv-hmac-md5", .cra_priority = 300, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = MD5_HMAC_BLOCK_SIZE, .cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx), .cra_init = mv_cesa_ahmac_cra_init, .cra_module = THIS_MODULE, } } }; static int mv_cesa_ahmac_sha1_init(struct ahash_request *req) { struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct mv_cesa_op_ctx tmpl = { }; mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_SHA1); memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv)); mv_cesa_ahash_init(req, &tmpl, false); return 0; } static int mv_cesa_ahmac_sha1_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen) { struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm)); struct sha1_state istate, ostate; int ret, i; ret = mv_cesa_ahmac_setkey("mv-sha1", key, keylen, &istate, &ostate); if (ret) return ret; for (i = 0; i < ARRAY_SIZE(istate.state); i++) ctx->iv[i] = cpu_to_be32(istate.state[i]); for (i = 0; i < ARRAY_SIZE(ostate.state); i++) ctx->iv[i + 8] = cpu_to_be32(ostate.state[i]); return 0; } static int mv_cesa_ahmac_sha1_digest(struct ahash_request *req) { int ret; ret = mv_cesa_ahmac_sha1_init(req); if (ret) return ret; return mv_cesa_ahash_finup(req); } struct ahash_alg mv_ahmac_sha1_alg = { .init = mv_cesa_ahmac_sha1_init, .update = mv_cesa_ahash_update, .final = mv_cesa_ahash_final, .finup = mv_cesa_ahash_finup, .digest = mv_cesa_ahmac_sha1_digest, .setkey = mv_cesa_ahmac_sha1_setkey, .export = mv_cesa_sha1_export, .import = mv_cesa_sha1_import, .halg = { .digestsize = SHA1_DIGEST_SIZE, .statesize = sizeof(struct sha1_state), .base = { .cra_name = "hmac(sha1)", .cra_driver_name = "mv-hmac-sha1", .cra_priority = 300, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx), .cra_init = mv_cesa_ahmac_cra_init, .cra_module = THIS_MODULE, } } }; static int mv_cesa_ahmac_sha256_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen) { struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm)); struct sha256_state istate, ostate; int ret, i; ret = mv_cesa_ahmac_setkey("mv-sha256", key, keylen, &istate, &ostate); if (ret) return ret; for (i = 0; i < ARRAY_SIZE(istate.state); i++) ctx->iv[i] = cpu_to_be32(istate.state[i]); for (i = 0; i < ARRAY_SIZE(ostate.state); i++) ctx->iv[i + 8] = cpu_to_be32(ostate.state[i]); return 0; } static int mv_cesa_ahmac_sha256_init(struct ahash_request *req) { struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct mv_cesa_op_ctx tmpl = { }; mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_SHA256); memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv)); mv_cesa_ahash_init(req, &tmpl, false); return 0; } static int mv_cesa_ahmac_sha256_digest(struct ahash_request *req) { int ret; ret = mv_cesa_ahmac_sha256_init(req); if (ret) return ret; return mv_cesa_ahash_finup(req); } struct ahash_alg mv_ahmac_sha256_alg = { .init = mv_cesa_ahmac_sha256_init, .update = mv_cesa_ahash_update, .final = mv_cesa_ahash_final, .finup = mv_cesa_ahash_finup, .digest = mv_cesa_ahmac_sha256_digest, .setkey = mv_cesa_ahmac_sha256_setkey, .export = mv_cesa_sha256_export, .import = mv_cesa_sha256_import, .halg = { .digestsize = SHA256_DIGEST_SIZE, .statesize = sizeof(struct sha256_state), .base = { .cra_name = "hmac(sha256)", .cra_driver_name = "mv-hmac-sha256", .cra_priority = 300, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA256_BLOCK_SIZE, .cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx), .cra_init = mv_cesa_ahmac_cra_init, .cra_module = THIS_MODULE, } } };