/* * Cavium ThunderX memory controller kernel module * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright Cavium, Inc. (C) 2015-2017. All rights reserved. * */ #include <linux/module.h> #include <linux/pci.h> #include <linux/edac.h> #include <linux/interrupt.h> #include <linux/string.h> #include <linux/stop_machine.h> #include <linux/delay.h> #include <linux/sizes.h> #include <linux/atomic.h> #include <linux/bitfield.h> #include <linux/circ_buf.h> #include <asm/page.h> #include "edac_module.h" #define phys_to_pfn(phys) (PFN_DOWN(phys)) #define THUNDERX_NODE GENMASK(45, 44) enum { ERR_CORRECTED = 1, ERR_UNCORRECTED = 2, ERR_UNKNOWN = 3, }; #define MAX_SYNDROME_REGS 4 struct error_syndrome { u64 reg[MAX_SYNDROME_REGS]; }; struct error_descr { int type; u64 mask; char *descr; }; static void decode_register(char *str, size_t size, const struct error_descr *descr, const uint64_t reg) { int ret = 0; while (descr->type && descr->mask && descr->descr) { if (reg & descr->mask) { ret = snprintf(str, size, "\n\t%s, %s", descr->type == ERR_CORRECTED ? "Corrected" : "Uncorrected", descr->descr); str += ret; size -= ret; } descr++; } } static unsigned long get_bits(unsigned long data, int pos, int width) { return (data >> pos) & ((1 << width) - 1); } #define L2C_CTL 0x87E080800000 #define L2C_CTL_DISIDXALIAS BIT(0) #define PCI_DEVICE_ID_THUNDER_LMC 0xa022 #define LMC_FADR 0x20 #define LMC_FADR_FDIMM(x) ((x >> 37) & 0x1) #define LMC_FADR_FBUNK(x) ((x >> 36) & 0x1) #define LMC_FADR_FBANK(x) ((x >> 32) & 0xf) #define LMC_FADR_FROW(x) ((x >> 14) & 0xffff) #define LMC_FADR_FCOL(x) ((x >> 0) & 0x1fff) #define LMC_NXM_FADR 0x28 #define LMC_ECC_SYND 0x38 #define LMC_ECC_PARITY_TEST 0x108 #define LMC_INT_W1S 0x150 #define LMC_INT_ENA_W1C 0x158 #define LMC_INT_ENA_W1S 0x160 #define LMC_CONFIG 0x188 #define LMC_CONFIG_BG2 BIT(62) #define LMC_CONFIG_RANK_ENA BIT(42) #define LMC_CONFIG_PBANK_LSB(x) (((x) >> 5) & 0xF) #define LMC_CONFIG_ROW_LSB(x) (((x) >> 2) & 0x7) #define LMC_CONTROL 0x190 #define LMC_CONTROL_XOR_BANK BIT(16) #define LMC_INT 0x1F0 #define LMC_INT_DDR_ERR BIT(11) #define LMC_INT_DED_ERR (0xFUL << 5) #define LMC_INT_SEC_ERR (0xFUL << 1) #define LMC_INT_NXM_WR_MASK BIT(0) #define LMC_DDR_PLL_CTL 0x258 #define LMC_DDR_PLL_CTL_DDR4 BIT(29) #define LMC_FADR_SCRAMBLED 0x330 #define LMC_INT_UE (LMC_INT_DDR_ERR | LMC_INT_DED_ERR | \ LMC_INT_NXM_WR_MASK) #define LMC_INT_CE (LMC_INT_SEC_ERR) static const struct error_descr lmc_errors[] = { { .type = ERR_CORRECTED, .mask = LMC_INT_SEC_ERR, .descr = "Single-bit ECC error", }, { .type = ERR_UNCORRECTED, .mask = LMC_INT_DDR_ERR, .descr = "DDR chip error", }, { .type = ERR_UNCORRECTED, .mask = LMC_INT_DED_ERR, .descr = "Double-bit ECC error", }, { .type = ERR_UNCORRECTED, .mask = LMC_INT_NXM_WR_MASK, .descr = "Non-existent memory write", }, {0, 0, NULL}, }; #define LMC_INT_EN_DDR_ERROR_ALERT_ENA BIT(5) #define LMC_INT_EN_DLCRAM_DED_ERR BIT(4) #define LMC_INT_EN_DLCRAM_SEC_ERR BIT(3) #define LMC_INT_INTR_DED_ENA BIT(2) #define LMC_INT_INTR_SEC_ENA BIT(1) #define LMC_INT_INTR_NXM_WR_ENA BIT(0) #define LMC_INT_ENA_ALL GENMASK(5, 0) #define LMC_DDR_PLL_CTL 0x258 #define LMC_DDR_PLL_CTL_DDR4 BIT(29) #define LMC_CONTROL 0x190 #define LMC_CONTROL_RDIMM BIT(0) #define LMC_SCRAM_FADR 0x330 #define LMC_CHAR_MASK0 0x228 #define LMC_CHAR_MASK2 0x238 #define RING_ENTRIES 8 struct debugfs_entry { const char *name; umode_t mode; const struct file_operations fops; }; struct lmc_err_ctx { u64 reg_int; u64 reg_fadr; u64 reg_nxm_fadr; u64 reg_scram_fadr; u64 reg_ecc_synd; }; struct thunderx_lmc { void __iomem *regs; struct pci_dev *pdev; struct msix_entry msix_ent; atomic_t ecc_int; u64 mask0; u64 mask2; u64 parity_test; u64 node; int xbits; int bank_width; int pbank_lsb; int dimm_lsb; int rank_lsb; int bank_lsb; int row_lsb; int col_hi_lsb; int xor_bank; int l2c_alias; struct page *mem; struct lmc_err_ctx err_ctx[RING_ENTRIES]; unsigned long ring_head; unsigned long ring_tail; }; #define ring_pos(pos, size) ((pos) & (size - 1)) #define DEBUGFS_STRUCT(_name, _mode, _write, _read) \ static struct debugfs_entry debugfs_##_name = { \ .name = __stringify(_name), \ .mode = VERIFY_OCTAL_PERMISSIONS(_mode), \ .fops = { \ .open = simple_open, \ .write = _write, \ .read = _read, \ .llseek = generic_file_llseek, \ }, \ } #define DEBUGFS_FIELD_ATTR(_type, _field) \ static ssize_t thunderx_##_type##_##_field##_read(struct file *file, \ char __user *data, \ size_t count, loff_t *ppos) \ { \ struct thunderx_##_type *pdata = file->private_data; \ char buf[20]; \ \ snprintf(buf, count, "0x%016llx", pdata->_field); \ return simple_read_from_buffer(data, count, ppos, \ buf, sizeof(buf)); \ } \ \ static ssize_t thunderx_##_type##_##_field##_write(struct file *file, \ const char __user *data, \ size_t count, loff_t *ppos) \ { \ struct thunderx_##_type *pdata = file->private_data; \ int res; \ \ res = kstrtoull_from_user(data, count, 0, &pdata->_field); \ \ return res ? res : count; \ } \ \ DEBUGFS_STRUCT(_field, 0600, \ thunderx_##_type##_##_field##_write, \ thunderx_##_type##_##_field##_read) \ #define DEBUGFS_REG_ATTR(_type, _name, _reg) \ static ssize_t thunderx_##_type##_##_name##_read(struct file *file, \ char __user *data, \ size_t count, loff_t *ppos) \ { \ struct thunderx_##_type *pdata = file->private_data; \ char buf[20]; \ \ sprintf(buf, "0x%016llx", readq(pdata->regs + _reg)); \ return simple_read_from_buffer(data, count, ppos, \ buf, sizeof(buf)); \ } \ \ static ssize_t thunderx_##_type##_##_name##_write(struct file *file, \ const char __user *data, \ size_t count, loff_t *ppos) \ { \ struct thunderx_##_type *pdata = file->private_data; \ u64 val; \ int res; \ \ res = kstrtoull_from_user(data, count, 0, &val); \ \ if (!res) { \ writeq(val, pdata->regs + _reg); \ res = count; \ } \ \ return res; \ } \ \ DEBUGFS_STRUCT(_name, 0600, \ thunderx_##_type##_##_name##_write, \ thunderx_##_type##_##_name##_read) #define LMC_DEBUGFS_ENT(_field) DEBUGFS_FIELD_ATTR(lmc, _field) /* * To get an ECC error injected, the following steps are needed: * - Setup the ECC injection by writing the appropriate parameters: * echo <bit mask value> > /sys/kernel/debug/<device number>/ecc_mask0 * echo <bit mask value> > /sys/kernel/debug/<device number>/ecc_mask2 * echo 0x802 > /sys/kernel/debug/<device number>/ecc_parity_test * - Do the actual injection: * echo 1 > /sys/kernel/debug/<device number>/inject_ecc */ static ssize_t thunderx_lmc_inject_int_write(struct file *file, const char __user *data, size_t count, loff_t *ppos) { struct thunderx_lmc *lmc = file->private_data; u64 val; int res; res = kstrtoull_from_user(data, count, 0, &val); if (!res) { /* Trigger the interrupt */ writeq(val, lmc->regs + LMC_INT_W1S); res = count; } return res; } static ssize_t thunderx_lmc_int_read(struct file *file, char __user *data, size_t count, loff_t *ppos) { struct thunderx_lmc *lmc = file->private_data; char buf[20]; u64 lmc_int = readq(lmc->regs + LMC_INT); snprintf(buf, sizeof(buf), "0x%016llx", lmc_int); return simple_read_from_buffer(data, count, ppos, buf, sizeof(buf)); } #define TEST_PATTERN 0xa5 static int inject_ecc_fn(void *arg) { struct thunderx_lmc *lmc = arg; uintptr_t addr, phys; unsigned int cline_size = cache_line_size(); const unsigned int lines = PAGE_SIZE / cline_size; unsigned int i, cl_idx; addr = (uintptr_t)page_address(lmc->mem); phys = (uintptr_t)page_to_phys(lmc->mem); cl_idx = (phys & 0x7f) >> 4; lmc->parity_test &= ~(7ULL << 8); lmc->parity_test |= (cl_idx << 8); writeq(lmc->mask0, lmc->regs + LMC_CHAR_MASK0); writeq(lmc->mask2, lmc->regs + LMC_CHAR_MASK2); writeq(lmc->parity_test, lmc->regs + LMC_ECC_PARITY_TEST); readq(lmc->regs + LMC_CHAR_MASK0); readq(lmc->regs + LMC_CHAR_MASK2); readq(lmc->regs + LMC_ECC_PARITY_TEST); for (i = 0; i < lines; i++) { memset((void *)addr, TEST_PATTERN, cline_size); barrier(); /* * Flush L1 cachelines to the PoC (L2). * This will cause cacheline eviction to the L2. */ asm volatile("dc civac, %0\n" "dsb sy\n" : : "r"(addr + i * cline_size)); } for (i = 0; i < lines; i++) { /* * Flush L2 cachelines to the DRAM. * This will cause cacheline eviction to the DRAM * and ECC corruption according to the masks set. */ __asm__ volatile("sys #0,c11,C1,#2, %0\n" : : "r"(phys + i * cline_size)); } for (i = 0; i < lines; i++) { /* * Invalidate L2 cachelines. * The subsequent load will cause cacheline fetch * from the DRAM and an error interrupt */ __asm__ volatile("sys #0,c11,C1,#1, %0" : : "r"(phys + i * cline_size)); } for (i = 0; i < lines; i++) { /* * Invalidate L1 cachelines. * The subsequent load will cause cacheline fetch * from the L2 and/or DRAM */ asm volatile("dc ivac, %0\n" "dsb sy\n" : : "r"(addr + i * cline_size)); } return 0; } static ssize_t thunderx_lmc_inject_ecc_write(struct file *file, const char __user *data, size_t count, loff_t *ppos) { struct thunderx_lmc *lmc = file->private_data; unsigned int cline_size = cache_line_size(); u8 *tmp; void __iomem *addr; unsigned int offs, timeout = 100000; atomic_set(&lmc->ecc_int, 0); lmc->mem = alloc_pages_node(lmc->node, GFP_KERNEL, 0); if (!lmc->mem) return -ENOMEM; tmp = kmalloc(cline_size, GFP_KERNEL); if (!tmp) { __free_pages(lmc->mem, 0); return -ENOMEM; } addr = page_address(lmc->mem); while (!atomic_read(&lmc->ecc_int) && timeout--) { stop_machine(inject_ecc_fn, lmc, NULL); for (offs = 0; offs < PAGE_SIZE; offs += cline_size) { /* * Do a load from the previously rigged location * This should generate an error interrupt. */ memcpy(tmp, addr + offs, cline_size); asm volatile("dsb ld\n"); } } kfree(tmp); __free_pages(lmc->mem, 0); return count; } LMC_DEBUGFS_ENT(mask0); LMC_DEBUGFS_ENT(mask2); LMC_DEBUGFS_ENT(parity_test); DEBUGFS_STRUCT(inject_int, 0200, thunderx_lmc_inject_int_write, NULL); DEBUGFS_STRUCT(inject_ecc, 0200, thunderx_lmc_inject_ecc_write, NULL); DEBUGFS_STRUCT(int_w1c, 0400, NULL, thunderx_lmc_int_read); static struct debugfs_entry *lmc_dfs_ents[] = { &debugfs_mask0, &debugfs_mask2, &debugfs_parity_test, &debugfs_inject_ecc, &debugfs_inject_int, &debugfs_int_w1c, }; static int thunderx_create_debugfs_nodes(struct dentry *parent, struct debugfs_entry *attrs[], void *data, size_t num) { int i; struct dentry *ent; if (!IS_ENABLED(CONFIG_EDAC_DEBUG)) return 0; if (!parent) return -ENOENT; for (i = 0; i < num; i++) { ent = edac_debugfs_create_file(attrs[i]->name, attrs[i]->mode, parent, data, &attrs[i]->fops); if (IS_ERR(ent)) break; } return i; } static phys_addr_t thunderx_faddr_to_phys(u64 faddr, struct thunderx_lmc *lmc) { phys_addr_t addr = 0; int bank, xbits; addr |= lmc->node << 40; addr |= LMC_FADR_FDIMM(faddr) << lmc->dimm_lsb; addr |= LMC_FADR_FBUNK(faddr) << lmc->rank_lsb; addr |= LMC_FADR_FROW(faddr) << lmc->row_lsb; addr |= (LMC_FADR_FCOL(faddr) >> 4) << lmc->col_hi_lsb; bank = LMC_FADR_FBANK(faddr) << lmc->bank_lsb; if (lmc->xor_bank) bank ^= get_bits(addr, 12 + lmc->xbits, lmc->bank_width); addr |= bank << lmc->bank_lsb; xbits = PCI_FUNC(lmc->pdev->devfn); if (lmc->l2c_alias) xbits ^= get_bits(addr, 20, lmc->xbits) ^ get_bits(addr, 12, lmc->xbits); addr |= xbits << 7; return addr; } static unsigned int thunderx_get_num_lmcs(unsigned int node) { unsigned int number = 0; struct pci_dev *pdev = NULL; do { pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, PCI_DEVICE_ID_THUNDER_LMC, pdev); if (pdev) { #ifdef CONFIG_NUMA if (pdev->dev.numa_node == node) number++; #else number++; #endif } } while (pdev); return number; } #define LMC_MESSAGE_SIZE 120 #define LMC_OTHER_SIZE (50 * ARRAY_SIZE(lmc_errors)) static irqreturn_t thunderx_lmc_err_isr(int irq, void *dev_id) { struct mem_ctl_info *mci = dev_id; struct thunderx_lmc *lmc = mci->pvt_info; unsigned long head = ring_pos(lmc->ring_head, ARRAY_SIZE(lmc->err_ctx)); struct lmc_err_ctx *ctx = &lmc->err_ctx[head]; writeq(0, lmc->regs + LMC_CHAR_MASK0); writeq(0, lmc->regs + LMC_CHAR_MASK2); writeq(0x2, lmc->regs + LMC_ECC_PARITY_TEST); ctx->reg_int = readq(lmc->regs + LMC_INT); ctx->reg_fadr = readq(lmc->regs + LMC_FADR); ctx->reg_nxm_fadr = readq(lmc->regs + LMC_NXM_FADR); ctx->reg_scram_fadr = readq(lmc->regs + LMC_SCRAM_FADR); ctx->reg_ecc_synd = readq(lmc->regs + LMC_ECC_SYND); lmc->ring_head++; atomic_set(&lmc->ecc_int, 1); /* Clear the interrupt */ writeq(ctx->reg_int, lmc->regs + LMC_INT); return IRQ_WAKE_THREAD; } static irqreturn_t thunderx_lmc_threaded_isr(int irq, void *dev_id) { struct mem_ctl_info *mci = dev_id; struct thunderx_lmc *lmc = mci->pvt_info; phys_addr_t phys_addr; unsigned long tail; struct lmc_err_ctx *ctx; irqreturn_t ret = IRQ_NONE; char *msg; char *other; msg = kmalloc(LMC_MESSAGE_SIZE, GFP_KERNEL); other = kmalloc(LMC_OTHER_SIZE, GFP_KERNEL); if (!msg || !other) goto err_free; while (CIRC_CNT(lmc->ring_head, lmc->ring_tail, ARRAY_SIZE(lmc->err_ctx))) { tail = ring_pos(lmc->ring_tail, ARRAY_SIZE(lmc->err_ctx)); ctx = &lmc->err_ctx[tail]; dev_dbg(&lmc->pdev->dev, "LMC_INT: %016llx\n", ctx->reg_int); dev_dbg(&lmc->pdev->dev, "LMC_FADR: %016llx\n", ctx->reg_fadr); dev_dbg(&lmc->pdev->dev, "LMC_NXM_FADR: %016llx\n", ctx->reg_nxm_fadr); dev_dbg(&lmc->pdev->dev, "LMC_SCRAM_FADR: %016llx\n", ctx->reg_scram_fadr); dev_dbg(&lmc->pdev->dev, "LMC_ECC_SYND: %016llx\n", ctx->reg_ecc_synd); snprintf(msg, LMC_MESSAGE_SIZE, "DIMM %lld rank %lld bank %lld row %lld col %lld", LMC_FADR_FDIMM(ctx->reg_scram_fadr), LMC_FADR_FBUNK(ctx->reg_scram_fadr), LMC_FADR_FBANK(ctx->reg_scram_fadr), LMC_FADR_FROW(ctx->reg_scram_fadr), LMC_FADR_FCOL(ctx->reg_scram_fadr)); decode_register(other, LMC_OTHER_SIZE, lmc_errors, ctx->reg_int); phys_addr = thunderx_faddr_to_phys(ctx->reg_fadr, lmc); if (ctx->reg_int & LMC_INT_UE) edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, phys_to_pfn(phys_addr), offset_in_page(phys_addr), 0, -1, -1, -1, msg, other); else if (ctx->reg_int & LMC_INT_CE) edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, phys_to_pfn(phys_addr), offset_in_page(phys_addr), 0, -1, -1, -1, msg, other); lmc->ring_tail++; } ret = IRQ_HANDLED; err_free: kfree(msg); kfree(other); return ret; } static const struct pci_device_id thunderx_lmc_pci_tbl[] = { { PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVICE_ID_THUNDER_LMC) }, { 0, }, }; static inline int pci_dev_to_mc_idx(struct pci_dev *pdev) { int node = dev_to_node(&pdev->dev); int ret = PCI_FUNC(pdev->devfn); ret += max(node, 0) << 3; return ret; } static int thunderx_lmc_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct thunderx_lmc *lmc; struct edac_mc_layer layer; struct mem_ctl_info *mci; u64 lmc_control, lmc_ddr_pll_ctl, lmc_config; int ret; u64 lmc_int; void *l2c_ioaddr; layer.type = EDAC_MC_LAYER_SLOT; layer.size = 2; layer.is_virt_csrow = false; ret = pcim_enable_device(pdev); if (ret) { dev_err(&pdev->dev, "Cannot enable PCI device: %d\n", ret); return ret; } ret = pcim_iomap_regions(pdev, BIT(0), "thunderx_lmc"); if (ret) { dev_err(&pdev->dev, "Cannot map PCI resources: %d\n", ret); return ret; } mci = edac_mc_alloc(pci_dev_to_mc_idx(pdev), 1, &layer, sizeof(struct thunderx_lmc)); if (!mci) return -ENOMEM; mci->pdev = &pdev->dev; lmc = mci->pvt_info; pci_set_drvdata(pdev, mci); lmc->regs = pcim_iomap_table(pdev)[0]; lmc_control = readq(lmc->regs + LMC_CONTROL); lmc_ddr_pll_ctl = readq(lmc->regs + LMC_DDR_PLL_CTL); lmc_config = readq(lmc->regs + LMC_CONFIG); if (lmc_control & LMC_CONTROL_RDIMM) { mci->mtype_cap = FIELD_GET(LMC_DDR_PLL_CTL_DDR4, lmc_ddr_pll_ctl) ? MEM_RDDR4 : MEM_RDDR3; } else { mci->mtype_cap = FIELD_GET(LMC_DDR_PLL_CTL_DDR4, lmc_ddr_pll_ctl) ? MEM_DDR4 : MEM_DDR3; } mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED; mci->edac_cap = EDAC_FLAG_SECDED; mci->mod_name = "thunderx-lmc"; mci->ctl_name = "thunderx-lmc"; mci->dev_name = dev_name(&pdev->dev); mci->scrub_mode = SCRUB_NONE; lmc->pdev = pdev; lmc->msix_ent.entry = 0; lmc->ring_head = 0; lmc->ring_tail = 0; ret = pci_enable_msix_exact(pdev, &lmc->msix_ent, 1); if (ret) { dev_err(&pdev->dev, "Cannot enable interrupt: %d\n", ret); goto err_free; } ret = devm_request_threaded_irq(&pdev->dev, lmc->msix_ent.vector, thunderx_lmc_err_isr, thunderx_lmc_threaded_isr, 0, "[EDAC] ThunderX LMC", mci); if (ret) { dev_err(&pdev->dev, "Cannot set ISR: %d\n", ret); goto err_free; } lmc->node = FIELD_GET(THUNDERX_NODE, pci_resource_start(pdev, 0)); lmc->xbits = thunderx_get_num_lmcs(lmc->node) >> 1; lmc->bank_width = (FIELD_GET(LMC_DDR_PLL_CTL_DDR4, lmc_ddr_pll_ctl) && FIELD_GET(LMC_CONFIG_BG2, lmc_config)) ? 4 : 3; lmc->pbank_lsb = (lmc_config >> 5) & 0xf; lmc->dimm_lsb = 28 + lmc->pbank_lsb + lmc->xbits; lmc->rank_lsb = lmc->dimm_lsb; lmc->rank_lsb -= FIELD_GET(LMC_CONFIG_RANK_ENA, lmc_config) ? 1 : 0; lmc->bank_lsb = 7 + lmc->xbits; lmc->row_lsb = 14 + LMC_CONFIG_ROW_LSB(lmc_config) + lmc->xbits; lmc->col_hi_lsb = lmc->bank_lsb + lmc->bank_width; lmc->xor_bank = lmc_control & LMC_CONTROL_XOR_BANK; l2c_ioaddr = ioremap(L2C_CTL | FIELD_PREP(THUNDERX_NODE, lmc->node), PAGE_SIZE); if (!l2c_ioaddr) { dev_err(&pdev->dev, "Cannot map L2C_CTL\n"); ret = -ENOMEM; goto err_free; } lmc->l2c_alias = !(readq(l2c_ioaddr) & L2C_CTL_DISIDXALIAS); iounmap(l2c_ioaddr); ret = edac_mc_add_mc(mci); if (ret) { dev_err(&pdev->dev, "Cannot add the MC: %d\n", ret); goto err_free; } lmc_int = readq(lmc->regs + LMC_INT); writeq(lmc_int, lmc->regs + LMC_INT); writeq(LMC_INT_ENA_ALL, lmc->regs + LMC_INT_ENA_W1S); if (IS_ENABLED(CONFIG_EDAC_DEBUG)) { ret = thunderx_create_debugfs_nodes(mci->debugfs, lmc_dfs_ents, lmc, ARRAY_SIZE(lmc_dfs_ents)); if (ret != ARRAY_SIZE(lmc_dfs_ents)) { dev_warn(&pdev->dev, "Error creating debugfs entries: %d%s\n", ret, ret >= 0 ? " created" : ""); } } return 0; err_free: pci_set_drvdata(pdev, NULL); edac_mc_free(mci); return ret; } static void thunderx_lmc_remove(struct pci_dev *pdev) { struct mem_ctl_info *mci = pci_get_drvdata(pdev); struct thunderx_lmc *lmc = mci->pvt_info; writeq(LMC_INT_ENA_ALL, lmc->regs + LMC_INT_ENA_W1C); edac_mc_del_mc(&pdev->dev); edac_mc_free(mci); } MODULE_DEVICE_TABLE(pci, thunderx_lmc_pci_tbl); static struct pci_driver thunderx_lmc_driver = { .name = "thunderx_lmc_edac", .probe = thunderx_lmc_probe, .remove = thunderx_lmc_remove, .id_table = thunderx_lmc_pci_tbl, }; /*---------------------- OCX driver ---------------------------------*/ #define PCI_DEVICE_ID_THUNDER_OCX 0xa013 #define OCX_LINK_INTS 3 #define OCX_INTS (OCX_LINK_INTS + 1) #define OCX_RX_LANES 24 #define OCX_RX_LANE_STATS 15 #define OCX_COM_INT 0x100 #define OCX_COM_INT_W1S 0x108 #define OCX_COM_INT_ENA_W1S 0x110 #define OCX_COM_INT_ENA_W1C 0x118 #define OCX_COM_IO_BADID BIT(54) #define OCX_COM_MEM_BADID BIT(53) #define OCX_COM_COPR_BADID BIT(52) #define OCX_COM_WIN_REQ_BADID BIT(51) #define OCX_COM_WIN_REQ_TOUT BIT(50) #define OCX_COM_RX_LANE GENMASK(23, 0) #define OCX_COM_INT_CE (OCX_COM_IO_BADID | \ OCX_COM_MEM_BADID | \ OCX_COM_COPR_BADID | \ OCX_COM_WIN_REQ_BADID | \ OCX_COM_WIN_REQ_TOUT) static const struct error_descr ocx_com_errors[] = { { .type = ERR_CORRECTED, .mask = OCX_COM_IO_BADID, .descr = "Invalid IO transaction node ID", }, { .type = ERR_CORRECTED, .mask = OCX_COM_MEM_BADID, .descr = "Invalid memory transaction node ID", }, { .type = ERR_CORRECTED, .mask = OCX_COM_COPR_BADID, .descr = "Invalid coprocessor transaction node ID", }, { .type = ERR_CORRECTED, .mask = OCX_COM_WIN_REQ_BADID, .descr = "Invalid SLI transaction node ID", }, { .type = ERR_CORRECTED, .mask = OCX_COM_WIN_REQ_TOUT, .descr = "Window/core request timeout", }, {0, 0, NULL}, }; #define OCX_COM_LINKX_INT(x) (0x120 + (x) * 8) #define OCX_COM_LINKX_INT_W1S(x) (0x140 + (x) * 8) #define OCX_COM_LINKX_INT_ENA_W1S(x) (0x160 + (x) * 8) #define OCX_COM_LINKX_INT_ENA_W1C(x) (0x180 + (x) * 8) #define OCX_COM_LINK_BAD_WORD BIT(13) #define OCX_COM_LINK_ALIGN_FAIL BIT(12) #define OCX_COM_LINK_ALIGN_DONE BIT(11) #define OCX_COM_LINK_UP BIT(10) #define OCX_COM_LINK_STOP BIT(9) #define OCX_COM_LINK_BLK_ERR BIT(8) #define OCX_COM_LINK_REINIT BIT(7) #define OCX_COM_LINK_LNK_DATA BIT(6) #define OCX_COM_LINK_RXFIFO_DBE BIT(5) #define OCX_COM_LINK_RXFIFO_SBE BIT(4) #define OCX_COM_LINK_TXFIFO_DBE BIT(3) #define OCX_COM_LINK_TXFIFO_SBE BIT(2) #define OCX_COM_LINK_REPLAY_DBE BIT(1) #define OCX_COM_LINK_REPLAY_SBE BIT(0) static const struct error_descr ocx_com_link_errors[] = { { .type = ERR_CORRECTED, .mask = OCX_COM_LINK_REPLAY_SBE, .descr = "Replay buffer single-bit error", }, { .type = ERR_CORRECTED, .mask = OCX_COM_LINK_TXFIFO_SBE, .descr = "TX FIFO single-bit error", }, { .type = ERR_CORRECTED, .mask = OCX_COM_LINK_RXFIFO_SBE, .descr = "RX FIFO single-bit error", }, { .type = ERR_CORRECTED, .mask = OCX_COM_LINK_BLK_ERR, .descr = "Block code error", }, { .type = ERR_CORRECTED, .mask = OCX_COM_LINK_ALIGN_FAIL, .descr = "Link alignment failure", }, { .type = ERR_CORRECTED, .mask = OCX_COM_LINK_BAD_WORD, .descr = "Bad code word", }, { .type = ERR_UNCORRECTED, .mask = OCX_COM_LINK_REPLAY_DBE, .descr = "Replay buffer double-bit error", }, { .type = ERR_UNCORRECTED, .mask = OCX_COM_LINK_TXFIFO_DBE, .descr = "TX FIFO double-bit error", }, { .type = ERR_UNCORRECTED, .mask = OCX_COM_LINK_RXFIFO_DBE, .descr = "RX FIFO double-bit error", }, { .type = ERR_UNCORRECTED, .mask = OCX_COM_LINK_STOP, .descr = "Link stopped", }, {0, 0, NULL}, }; #define OCX_COM_LINK_INT_UE (OCX_COM_LINK_REPLAY_DBE | \ OCX_COM_LINK_TXFIFO_DBE | \ OCX_COM_LINK_RXFIFO_DBE | \ OCX_COM_LINK_STOP) #define OCX_COM_LINK_INT_CE (OCX_COM_LINK_REPLAY_SBE | \ OCX_COM_LINK_TXFIFO_SBE | \ OCX_COM_LINK_RXFIFO_SBE | \ OCX_COM_LINK_BLK_ERR | \ OCX_COM_LINK_ALIGN_FAIL | \ OCX_COM_LINK_BAD_WORD) #define OCX_LNE_INT(x) (0x8018 + (x) * 0x100) #define OCX_LNE_INT_EN(x) (0x8020 + (x) * 0x100) #define OCX_LNE_BAD_CNT(x) (0x8028 + (x) * 0x100) #define OCX_LNE_CFG(x) (0x8000 + (x) * 0x100) #define OCX_LNE_STAT(x, y) (0x8040 + (x) * 0x100 + (y) * 8) #define OCX_LNE_CFG_RX_BDRY_LOCK_DIS BIT(8) #define OCX_LNE_CFG_RX_STAT_WRAP_DIS BIT(2) #define OCX_LNE_CFG_RX_STAT_RDCLR BIT(1) #define OCX_LNE_CFG_RX_STAT_ENA BIT(0) #define OCX_LANE_BAD_64B67B BIT(8) #define OCX_LANE_DSKEW_FIFO_OVFL BIT(5) #define OCX_LANE_SCRM_SYNC_LOSS BIT(4) #define OCX_LANE_UKWN_CNTL_WORD BIT(3) #define OCX_LANE_CRC32_ERR BIT(2) #define OCX_LANE_BDRY_SYNC_LOSS BIT(1) #define OCX_LANE_SERDES_LOCK_LOSS BIT(0) #define OCX_COM_LANE_INT_UE (0) #define OCX_COM_LANE_INT_CE (OCX_LANE_SERDES_LOCK_LOSS | \ OCX_LANE_BDRY_SYNC_LOSS | \ OCX_LANE_CRC32_ERR | \ OCX_LANE_UKWN_CNTL_WORD | \ OCX_LANE_SCRM_SYNC_LOSS | \ OCX_LANE_DSKEW_FIFO_OVFL | \ OCX_LANE_BAD_64B67B) static const struct error_descr ocx_lane_errors[] = { { .type = ERR_CORRECTED, .mask = OCX_LANE_SERDES_LOCK_LOSS, .descr = "RX SerDes lock lost", }, { .type = ERR_CORRECTED, .mask = OCX_LANE_BDRY_SYNC_LOSS, .descr = "RX word boundary lost", }, { .type = ERR_CORRECTED, .mask = OCX_LANE_CRC32_ERR, .descr = "CRC32 error", }, { .type = ERR_CORRECTED, .mask = OCX_LANE_UKWN_CNTL_WORD, .descr = "Unknown control word", }, { .type = ERR_CORRECTED, .mask = OCX_LANE_SCRM_SYNC_LOSS, .descr = "Scrambler synchronization lost", }, { .type = ERR_CORRECTED, .mask = OCX_LANE_DSKEW_FIFO_OVFL, .descr = "RX deskew FIFO overflow", }, { .type = ERR_CORRECTED, .mask = OCX_LANE_BAD_64B67B, .descr = "Bad 64B/67B codeword", }, {0, 0, NULL}, }; #define OCX_LNE_INT_ENA_ALL (GENMASK(9, 8) | GENMASK(6, 0)) #define OCX_COM_INT_ENA_ALL (GENMASK(54, 50) | GENMASK(23, 0)) #define OCX_COM_LINKX_INT_ENA_ALL (GENMASK(13, 12) | \ GENMASK(9, 7) | GENMASK(5, 0)) #define OCX_TLKX_ECC_CTL(x) (0x10018 + (x) * 0x2000) #define OCX_RLKX_ECC_CTL(x) (0x18018 + (x) * 0x2000) struct ocx_com_err_ctx { u64 reg_com_int; u64 reg_lane_int[OCX_RX_LANES]; u64 reg_lane_stat11[OCX_RX_LANES]; }; struct ocx_link_err_ctx { u64 reg_com_link_int; int link; }; struct thunderx_ocx { void __iomem *regs; int com_link; struct pci_dev *pdev; struct edac_device_ctl_info *edac_dev; struct dentry *debugfs; struct msix_entry msix_ent[OCX_INTS]; struct ocx_com_err_ctx com_err_ctx[RING_ENTRIES]; struct ocx_link_err_ctx link_err_ctx[RING_ENTRIES]; unsigned long com_ring_head; unsigned long com_ring_tail; unsigned long link_ring_head; unsigned long link_ring_tail; }; #define OCX_MESSAGE_SIZE SZ_1K #define OCX_OTHER_SIZE (50 * ARRAY_SIZE(ocx_com_link_errors)) /* This handler is threaded */ static irqreturn_t thunderx_ocx_com_isr(int irq, void *irq_id) { struct msix_entry *msix = irq_id; struct thunderx_ocx *ocx = container_of(msix, struct thunderx_ocx, msix_ent[msix->entry]); int lane; unsigned long head = ring_pos(ocx->com_ring_head, ARRAY_SIZE(ocx->com_err_ctx)); struct ocx_com_err_ctx *ctx = &ocx->com_err_ctx[head]; ctx->reg_com_int = readq(ocx->regs + OCX_COM_INT); for (lane = 0; lane < OCX_RX_LANES; lane++) { ctx->reg_lane_int[lane] = readq(ocx->regs + OCX_LNE_INT(lane)); ctx->reg_lane_stat11[lane] = readq(ocx->regs + OCX_LNE_STAT(lane, 11)); writeq(ctx->reg_lane_int[lane], ocx->regs + OCX_LNE_INT(lane)); } writeq(ctx->reg_com_int, ocx->regs + OCX_COM_INT); ocx->com_ring_head++; return IRQ_WAKE_THREAD; } static irqreturn_t thunderx_ocx_com_threaded_isr(int irq, void *irq_id) { struct msix_entry *msix = irq_id; struct thunderx_ocx *ocx = container_of(msix, struct thunderx_ocx, msix_ent[msix->entry]); irqreturn_t ret = IRQ_NONE; unsigned long tail; struct ocx_com_err_ctx *ctx; int lane; char *msg; char *other; msg = kmalloc(OCX_MESSAGE_SIZE, GFP_KERNEL); other = kmalloc(OCX_OTHER_SIZE, GFP_KERNEL); if (!msg || !other) goto err_free; while (CIRC_CNT(ocx->com_ring_head, ocx->com_ring_tail, ARRAY_SIZE(ocx->com_err_ctx))) { tail = ring_pos(ocx->com_ring_tail, ARRAY_SIZE(ocx->com_err_ctx)); ctx = &ocx->com_err_ctx[tail]; snprintf(msg, OCX_MESSAGE_SIZE, "%s: OCX_COM_INT: %016llx", ocx->edac_dev->ctl_name, ctx->reg_com_int); decode_register(other, OCX_OTHER_SIZE, ocx_com_errors, ctx->reg_com_int); strncat(msg, other, OCX_MESSAGE_SIZE); for (lane = 0; lane < OCX_RX_LANES; lane++) if (ctx->reg_com_int & BIT(lane)) { snprintf(other, OCX_OTHER_SIZE, "\n\tOCX_LNE_INT[%02d]: %016llx OCX_LNE_STAT11[%02d]: %016llx", lane, ctx->reg_lane_int[lane], lane, ctx->reg_lane_stat11[lane]); strncat(msg, other, OCX_MESSAGE_SIZE); decode_register(other, OCX_OTHER_SIZE, ocx_lane_errors, ctx->reg_lane_int[lane]); strncat(msg, other, OCX_MESSAGE_SIZE); } if (ctx->reg_com_int & OCX_COM_INT_CE) edac_device_handle_ce(ocx->edac_dev, 0, 0, msg); ocx->com_ring_tail++; } ret = IRQ_HANDLED; err_free: kfree(other); kfree(msg); return ret; } static irqreturn_t thunderx_ocx_lnk_isr(int irq, void *irq_id) { struct msix_entry *msix = irq_id; struct thunderx_ocx *ocx = container_of(msix, struct thunderx_ocx, msix_ent[msix->entry]); unsigned long head = ring_pos(ocx->link_ring_head, ARRAY_SIZE(ocx->link_err_ctx)); struct ocx_link_err_ctx *ctx = &ocx->link_err_ctx[head]; ctx->link = msix->entry; ctx->reg_com_link_int = readq(ocx->regs + OCX_COM_LINKX_INT(ctx->link)); writeq(ctx->reg_com_link_int, ocx->regs + OCX_COM_LINKX_INT(ctx->link)); ocx->link_ring_head++; return IRQ_WAKE_THREAD; } static irqreturn_t thunderx_ocx_lnk_threaded_isr(int irq, void *irq_id) { struct msix_entry *msix = irq_id; struct thunderx_ocx *ocx = container_of(msix, struct thunderx_ocx, msix_ent[msix->entry]); irqreturn_t ret = IRQ_NONE; unsigned long tail; struct ocx_link_err_ctx *ctx; char *msg; char *other; msg = kmalloc(OCX_MESSAGE_SIZE, GFP_KERNEL); other = kmalloc(OCX_OTHER_SIZE, GFP_KERNEL); if (!msg || !other) goto err_free; while (CIRC_CNT(ocx->link_ring_head, ocx->link_ring_tail, ARRAY_SIZE(ocx->link_err_ctx))) { tail = ring_pos(ocx->link_ring_head, ARRAY_SIZE(ocx->link_err_ctx)); ctx = &ocx->link_err_ctx[tail]; snprintf(msg, OCX_MESSAGE_SIZE, "%s: OCX_COM_LINK_INT[%d]: %016llx", ocx->edac_dev->ctl_name, ctx->link, ctx->reg_com_link_int); decode_register(other, OCX_OTHER_SIZE, ocx_com_link_errors, ctx->reg_com_link_int); strncat(msg, other, OCX_MESSAGE_SIZE); if (ctx->reg_com_link_int & OCX_COM_LINK_INT_UE) edac_device_handle_ue(ocx->edac_dev, 0, 0, msg); else if (ctx->reg_com_link_int & OCX_COM_LINK_INT_CE) edac_device_handle_ce(ocx->edac_dev, 0, 0, msg); ocx->link_ring_tail++; } ret = IRQ_HANDLED; err_free: kfree(other); kfree(msg); return ret; } #define OCX_DEBUGFS_ATTR(_name, _reg) DEBUGFS_REG_ATTR(ocx, _name, _reg) OCX_DEBUGFS_ATTR(tlk0_ecc_ctl, OCX_TLKX_ECC_CTL(0)); OCX_DEBUGFS_ATTR(tlk1_ecc_ctl, OCX_TLKX_ECC_CTL(1)); OCX_DEBUGFS_ATTR(tlk2_ecc_ctl, OCX_TLKX_ECC_CTL(2)); OCX_DEBUGFS_ATTR(rlk0_ecc_ctl, OCX_RLKX_ECC_CTL(0)); OCX_DEBUGFS_ATTR(rlk1_ecc_ctl, OCX_RLKX_ECC_CTL(1)); OCX_DEBUGFS_ATTR(rlk2_ecc_ctl, OCX_RLKX_ECC_CTL(2)); OCX_DEBUGFS_ATTR(com_link0_int, OCX_COM_LINKX_INT_W1S(0)); OCX_DEBUGFS_ATTR(com_link1_int, OCX_COM_LINKX_INT_W1S(1)); OCX_DEBUGFS_ATTR(com_link2_int, OCX_COM_LINKX_INT_W1S(2)); OCX_DEBUGFS_ATTR(lne00_badcnt, OCX_LNE_BAD_CNT(0)); OCX_DEBUGFS_ATTR(lne01_badcnt, OCX_LNE_BAD_CNT(1)); OCX_DEBUGFS_ATTR(lne02_badcnt, OCX_LNE_BAD_CNT(2)); OCX_DEBUGFS_ATTR(lne03_badcnt, OCX_LNE_BAD_CNT(3)); OCX_DEBUGFS_ATTR(lne04_badcnt, OCX_LNE_BAD_CNT(4)); OCX_DEBUGFS_ATTR(lne05_badcnt, OCX_LNE_BAD_CNT(5)); OCX_DEBUGFS_ATTR(lne06_badcnt, OCX_LNE_BAD_CNT(6)); OCX_DEBUGFS_ATTR(lne07_badcnt, OCX_LNE_BAD_CNT(7)); OCX_DEBUGFS_ATTR(lne08_badcnt, OCX_LNE_BAD_CNT(8)); OCX_DEBUGFS_ATTR(lne09_badcnt, OCX_LNE_BAD_CNT(9)); OCX_DEBUGFS_ATTR(lne10_badcnt, OCX_LNE_BAD_CNT(10)); OCX_DEBUGFS_ATTR(lne11_badcnt, OCX_LNE_BAD_CNT(11)); OCX_DEBUGFS_ATTR(lne12_badcnt, OCX_LNE_BAD_CNT(12)); OCX_DEBUGFS_ATTR(lne13_badcnt, OCX_LNE_BAD_CNT(13)); OCX_DEBUGFS_ATTR(lne14_badcnt, OCX_LNE_BAD_CNT(14)); OCX_DEBUGFS_ATTR(lne15_badcnt, OCX_LNE_BAD_CNT(15)); OCX_DEBUGFS_ATTR(lne16_badcnt, OCX_LNE_BAD_CNT(16)); OCX_DEBUGFS_ATTR(lne17_badcnt, OCX_LNE_BAD_CNT(17)); OCX_DEBUGFS_ATTR(lne18_badcnt, OCX_LNE_BAD_CNT(18)); OCX_DEBUGFS_ATTR(lne19_badcnt, OCX_LNE_BAD_CNT(19)); OCX_DEBUGFS_ATTR(lne20_badcnt, OCX_LNE_BAD_CNT(20)); OCX_DEBUGFS_ATTR(lne21_badcnt, OCX_LNE_BAD_CNT(21)); OCX_DEBUGFS_ATTR(lne22_badcnt, OCX_LNE_BAD_CNT(22)); OCX_DEBUGFS_ATTR(lne23_badcnt, OCX_LNE_BAD_CNT(23)); OCX_DEBUGFS_ATTR(com_int, OCX_COM_INT_W1S); static struct debugfs_entry *ocx_dfs_ents[] = { &debugfs_tlk0_ecc_ctl, &debugfs_tlk1_ecc_ctl, &debugfs_tlk2_ecc_ctl, &debugfs_rlk0_ecc_ctl, &debugfs_rlk1_ecc_ctl, &debugfs_rlk2_ecc_ctl, &debugfs_com_link0_int, &debugfs_com_link1_int, &debugfs_com_link2_int, &debugfs_lne00_badcnt, &debugfs_lne01_badcnt, &debugfs_lne02_badcnt, &debugfs_lne03_badcnt, &debugfs_lne04_badcnt, &debugfs_lne05_badcnt, &debugfs_lne06_badcnt, &debugfs_lne07_badcnt, &debugfs_lne08_badcnt, &debugfs_lne09_badcnt, &debugfs_lne10_badcnt, &debugfs_lne11_badcnt, &debugfs_lne12_badcnt, &debugfs_lne13_badcnt, &debugfs_lne14_badcnt, &debugfs_lne15_badcnt, &debugfs_lne16_badcnt, &debugfs_lne17_badcnt, &debugfs_lne18_badcnt, &debugfs_lne19_badcnt, &debugfs_lne20_badcnt, &debugfs_lne21_badcnt, &debugfs_lne22_badcnt, &debugfs_lne23_badcnt, &debugfs_com_int, }; static const struct pci_device_id thunderx_ocx_pci_tbl[] = { { PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVICE_ID_THUNDER_OCX) }, { 0, }, }; static void thunderx_ocx_clearstats(struct thunderx_ocx *ocx) { int lane, stat, cfg; for (lane = 0; lane < OCX_RX_LANES; lane++) { cfg = readq(ocx->regs + OCX_LNE_CFG(lane)); cfg |= OCX_LNE_CFG_RX_STAT_RDCLR; cfg &= ~OCX_LNE_CFG_RX_STAT_ENA; writeq(cfg, ocx->regs + OCX_LNE_CFG(lane)); for (stat = 0; stat < OCX_RX_LANE_STATS; stat++) readq(ocx->regs + OCX_LNE_STAT(lane, stat)); } } static int thunderx_ocx_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct thunderx_ocx *ocx; struct edac_device_ctl_info *edac_dev; char name[32]; int idx; int i; int ret; u64 reg; ret = pcim_enable_device(pdev); if (ret) { dev_err(&pdev->dev, "Cannot enable PCI device: %d\n", ret); return ret; } ret = pcim_iomap_regions(pdev, BIT(0), "thunderx_ocx"); if (ret) { dev_err(&pdev->dev, "Cannot map PCI resources: %d\n", ret); return ret; } idx = edac_device_alloc_index(); snprintf(name, sizeof(name), "OCX%d", idx); edac_dev = edac_device_alloc_ctl_info(sizeof(struct thunderx_ocx), name, 1, "CCPI", 1, 0, NULL, 0, idx); if (!edac_dev) { dev_err(&pdev->dev, "Cannot allocate EDAC device\n"); return -ENOMEM; } ocx = edac_dev->pvt_info; ocx->edac_dev = edac_dev; ocx->com_ring_head = 0; ocx->com_ring_tail = 0; ocx->link_ring_head = 0; ocx->link_ring_tail = 0; ocx->regs = pcim_iomap_table(pdev)[0]; if (!ocx->regs) { dev_err(&pdev->dev, "Cannot map PCI resources\n"); ret = -ENODEV; goto err_free; } ocx->pdev = pdev; for (i = 0; i < OCX_INTS; i++) { ocx->msix_ent[i].entry = i; ocx->msix_ent[i].vector = 0; } ret = pci_enable_msix_exact(pdev, ocx->msix_ent, OCX_INTS); if (ret) { dev_err(&pdev->dev, "Cannot enable interrupt: %d\n", ret); goto err_free; } for (i = 0; i < OCX_INTS; i++) { ret = devm_request_threaded_irq(&pdev->dev, ocx->msix_ent[i].vector, (i == 3) ? thunderx_ocx_com_isr : thunderx_ocx_lnk_isr, (i == 3) ? thunderx_ocx_com_threaded_isr : thunderx_ocx_lnk_threaded_isr, 0, "[EDAC] ThunderX OCX", &ocx->msix_ent[i]); if (ret) goto err_free; } edac_dev->dev = &pdev->dev; edac_dev->dev_name = dev_name(&pdev->dev); edac_dev->mod_name = "thunderx-ocx"; edac_dev->ctl_name = "thunderx-ocx"; ret = edac_device_add_device(edac_dev); if (ret) { dev_err(&pdev->dev, "Cannot add EDAC device: %d\n", ret); goto err_free; } if (IS_ENABLED(CONFIG_EDAC_DEBUG)) { ocx->debugfs = edac_debugfs_create_dir(pdev->dev.kobj.name); ret = thunderx_create_debugfs_nodes(ocx->debugfs, ocx_dfs_ents, ocx, ARRAY_SIZE(ocx_dfs_ents)); if (ret != ARRAY_SIZE(ocx_dfs_ents)) { dev_warn(&pdev->dev, "Error creating debugfs entries: %d%s\n", ret, ret >= 0 ? " created" : ""); } } pci_set_drvdata(pdev, edac_dev); thunderx_ocx_clearstats(ocx); for (i = 0; i < OCX_RX_LANES; i++) { writeq(OCX_LNE_INT_ENA_ALL, ocx->regs + OCX_LNE_INT_EN(i)); reg = readq(ocx->regs + OCX_LNE_INT(i)); writeq(reg, ocx->regs + OCX_LNE_INT(i)); } for (i = 0; i < OCX_LINK_INTS; i++) { reg = readq(ocx->regs + OCX_COM_LINKX_INT(i)); writeq(reg, ocx->regs + OCX_COM_LINKX_INT(i)); writeq(OCX_COM_LINKX_INT_ENA_ALL, ocx->regs + OCX_COM_LINKX_INT_ENA_W1S(i)); } reg = readq(ocx->regs + OCX_COM_INT); writeq(reg, ocx->regs + OCX_COM_INT); writeq(OCX_COM_INT_ENA_ALL, ocx->regs + OCX_COM_INT_ENA_W1S); return 0; err_free: edac_device_free_ctl_info(edac_dev); return ret; } static void thunderx_ocx_remove(struct pci_dev *pdev) { struct edac_device_ctl_info *edac_dev = pci_get_drvdata(pdev); struct thunderx_ocx *ocx = edac_dev->pvt_info; int i; writeq(OCX_COM_INT_ENA_ALL, ocx->regs + OCX_COM_INT_ENA_W1C); for (i = 0; i < OCX_INTS; i++) { writeq(OCX_COM_LINKX_INT_ENA_ALL, ocx->regs + OCX_COM_LINKX_INT_ENA_W1C(i)); } edac_debugfs_remove_recursive(ocx->debugfs); edac_device_del_device(&pdev->dev); edac_device_free_ctl_info(edac_dev); } MODULE_DEVICE_TABLE(pci, thunderx_ocx_pci_tbl); static struct pci_driver thunderx_ocx_driver = { .name = "thunderx_ocx_edac", .probe = thunderx_ocx_probe, .remove = thunderx_ocx_remove, .id_table = thunderx_ocx_pci_tbl, }; /*---------------------- L2C driver ---------------------------------*/ #define PCI_DEVICE_ID_THUNDER_L2C_TAD 0xa02e #define PCI_DEVICE_ID_THUNDER_L2C_CBC 0xa02f #define PCI_DEVICE_ID_THUNDER_L2C_MCI 0xa030 #define L2C_TAD_INT_W1C 0x40000 #define L2C_TAD_INT_W1S 0x40008 #define L2C_TAD_INT_ENA_W1C 0x40020 #define L2C_TAD_INT_ENA_W1S 0x40028 #define L2C_TAD_INT_L2DDBE BIT(1) #define L2C_TAD_INT_SBFSBE BIT(2) #define L2C_TAD_INT_SBFDBE BIT(3) #define L2C_TAD_INT_FBFSBE BIT(4) #define L2C_TAD_INT_FBFDBE BIT(5) #define L2C_TAD_INT_TAGDBE BIT(9) #define L2C_TAD_INT_RDDISLMC BIT(15) #define L2C_TAD_INT_WRDISLMC BIT(16) #define L2C_TAD_INT_LFBTO BIT(17) #define L2C_TAD_INT_GSYNCTO BIT(18) #define L2C_TAD_INT_RTGSBE BIT(32) #define L2C_TAD_INT_RTGDBE BIT(33) #define L2C_TAD_INT_RDDISOCI BIT(34) #define L2C_TAD_INT_WRDISOCI BIT(35) #define L2C_TAD_INT_ECC (L2C_TAD_INT_L2DDBE | \ L2C_TAD_INT_SBFSBE | L2C_TAD_INT_SBFDBE | \ L2C_TAD_INT_FBFSBE | L2C_TAD_INT_FBFDBE) #define L2C_TAD_INT_CE (L2C_TAD_INT_SBFSBE | \ L2C_TAD_INT_FBFSBE) #define L2C_TAD_INT_UE (L2C_TAD_INT_L2DDBE | \ L2C_TAD_INT_SBFDBE | \ L2C_TAD_INT_FBFDBE | \ L2C_TAD_INT_TAGDBE | \ L2C_TAD_INT_RTGDBE | \ L2C_TAD_INT_WRDISOCI | \ L2C_TAD_INT_RDDISOCI | \ L2C_TAD_INT_WRDISLMC | \ L2C_TAD_INT_RDDISLMC | \ L2C_TAD_INT_LFBTO | \ L2C_TAD_INT_GSYNCTO) static const struct error_descr l2_tad_errors[] = { { .type = ERR_CORRECTED, .mask = L2C_TAD_INT_SBFSBE, .descr = "SBF single-bit error", }, { .type = ERR_CORRECTED, .mask = L2C_TAD_INT_FBFSBE, .descr = "FBF single-bit error", }, { .type = ERR_UNCORRECTED, .mask = L2C_TAD_INT_L2DDBE, .descr = "L2D double-bit error", }, { .type = ERR_UNCORRECTED, .mask = L2C_TAD_INT_SBFDBE, .descr = "SBF double-bit error", }, { .type = ERR_UNCORRECTED, .mask = L2C_TAD_INT_FBFDBE, .descr = "FBF double-bit error", }, { .type = ERR_UNCORRECTED, .mask = L2C_TAD_INT_TAGDBE, .descr = "TAG double-bit error", }, { .type = ERR_UNCORRECTED, .mask = L2C_TAD_INT_RTGDBE, .descr = "RTG double-bit error", }, { .type = ERR_UNCORRECTED, .mask = L2C_TAD_INT_WRDISOCI, .descr = "Write to a disabled CCPI", }, { .type = ERR_UNCORRECTED, .mask = L2C_TAD_INT_RDDISOCI, .descr = "Read from a disabled CCPI", }, { .type = ERR_UNCORRECTED, .mask = L2C_TAD_INT_WRDISLMC, .descr = "Write to a disabled LMC", }, { .type = ERR_UNCORRECTED, .mask = L2C_TAD_INT_RDDISLMC, .descr = "Read from a disabled LMC", }, { .type = ERR_UNCORRECTED, .mask = L2C_TAD_INT_LFBTO, .descr = "LFB entry timeout", }, { .type = ERR_UNCORRECTED, .mask = L2C_TAD_INT_GSYNCTO, .descr = "Global sync CCPI timeout", }, {0, 0, NULL}, }; #define L2C_TAD_INT_TAG (L2C_TAD_INT_TAGDBE) #define L2C_TAD_INT_RTG (L2C_TAD_INT_RTGDBE) #define L2C_TAD_INT_DISLMC (L2C_TAD_INT_WRDISLMC | L2C_TAD_INT_RDDISLMC) #define L2C_TAD_INT_DISOCI (L2C_TAD_INT_WRDISOCI | L2C_TAD_INT_RDDISOCI) #define L2C_TAD_INT_ENA_ALL (L2C_TAD_INT_ECC | L2C_TAD_INT_TAG | \ L2C_TAD_INT_RTG | \ L2C_TAD_INT_DISLMC | L2C_TAD_INT_DISOCI | \ L2C_TAD_INT_LFBTO) #define L2C_TAD_TIMETWO 0x50000 #define L2C_TAD_TIMEOUT 0x50100 #define L2C_TAD_ERR 0x60000 #define L2C_TAD_TQD_ERR 0x60100 #define L2C_TAD_TTG_ERR 0x60200 #define L2C_CBC_INT_W1C 0x60000 #define L2C_CBC_INT_RSDSBE BIT(0) #define L2C_CBC_INT_RSDDBE BIT(1) #define L2C_CBC_INT_RSD (L2C_CBC_INT_RSDSBE | L2C_CBC_INT_RSDDBE) #define L2C_CBC_INT_MIBSBE BIT(4) #define L2C_CBC_INT_MIBDBE BIT(5) #define L2C_CBC_INT_MIB (L2C_CBC_INT_MIBSBE | L2C_CBC_INT_MIBDBE) #define L2C_CBC_INT_IORDDISOCI BIT(6) #define L2C_CBC_INT_IOWRDISOCI BIT(7) #define L2C_CBC_INT_IODISOCI (L2C_CBC_INT_IORDDISOCI | \ L2C_CBC_INT_IOWRDISOCI) #define L2C_CBC_INT_CE (L2C_CBC_INT_RSDSBE | L2C_CBC_INT_MIBSBE) #define L2C_CBC_INT_UE (L2C_CBC_INT_RSDDBE | L2C_CBC_INT_MIBDBE) static const struct error_descr l2_cbc_errors[] = { { .type = ERR_CORRECTED, .mask = L2C_CBC_INT_RSDSBE, .descr = "RSD single-bit error", }, { .type = ERR_CORRECTED, .mask = L2C_CBC_INT_MIBSBE, .descr = "MIB single-bit error", }, { .type = ERR_UNCORRECTED, .mask = L2C_CBC_INT_RSDDBE, .descr = "RSD double-bit error", }, { .type = ERR_UNCORRECTED, .mask = L2C_CBC_INT_MIBDBE, .descr = "MIB double-bit error", }, { .type = ERR_UNCORRECTED, .mask = L2C_CBC_INT_IORDDISOCI, .descr = "Read from a disabled CCPI", }, { .type = ERR_UNCORRECTED, .mask = L2C_CBC_INT_IOWRDISOCI, .descr = "Write to a disabled CCPI", }, {0, 0, NULL}, }; #define L2C_CBC_INT_W1S 0x60008 #define L2C_CBC_INT_ENA_W1C 0x60020 #define L2C_CBC_INT_ENA_ALL (L2C_CBC_INT_RSD | L2C_CBC_INT_MIB | \ L2C_CBC_INT_IODISOCI) #define L2C_CBC_INT_ENA_W1S 0x60028 #define L2C_CBC_IODISOCIERR 0x80008 #define L2C_CBC_IOCERR 0x80010 #define L2C_CBC_RSDERR 0x80018 #define L2C_CBC_MIBERR 0x80020 #define L2C_MCI_INT_W1C 0x0 #define L2C_MCI_INT_VBFSBE BIT(0) #define L2C_MCI_INT_VBFDBE BIT(1) static const struct error_descr l2_mci_errors[] = { { .type = ERR_CORRECTED, .mask = L2C_MCI_INT_VBFSBE, .descr = "VBF single-bit error", }, { .type = ERR_UNCORRECTED, .mask = L2C_MCI_INT_VBFDBE, .descr = "VBF double-bit error", }, {0, 0, NULL}, }; #define L2C_MCI_INT_W1S 0x8 #define L2C_MCI_INT_ENA_W1C 0x20 #define L2C_MCI_INT_ENA_ALL (L2C_MCI_INT_VBFSBE | L2C_MCI_INT_VBFDBE) #define L2C_MCI_INT_ENA_W1S 0x28 #define L2C_MCI_ERR 0x10000 #define L2C_MESSAGE_SIZE SZ_1K #define L2C_OTHER_SIZE (50 * ARRAY_SIZE(l2_tad_errors)) struct l2c_err_ctx { char *reg_ext_name; u64 reg_int; u64 reg_ext; }; struct thunderx_l2c { void __iomem *regs; struct pci_dev *pdev; struct edac_device_ctl_info *edac_dev; struct dentry *debugfs; int index; struct msix_entry msix_ent; struct l2c_err_ctx err_ctx[RING_ENTRIES]; unsigned long ring_head; unsigned long ring_tail; }; static irqreturn_t thunderx_l2c_tad_isr(int irq, void *irq_id) { struct msix_entry *msix = irq_id; struct thunderx_l2c *tad = container_of(msix, struct thunderx_l2c, msix_ent); unsigned long head = ring_pos(tad->ring_head, ARRAY_SIZE(tad->err_ctx)); struct l2c_err_ctx *ctx = &tad->err_ctx[head]; ctx->reg_int = readq(tad->regs + L2C_TAD_INT_W1C); if (ctx->reg_int & L2C_TAD_INT_ECC) { ctx->reg_ext_name = "TQD_ERR"; ctx->reg_ext = readq(tad->regs + L2C_TAD_TQD_ERR); } else if (ctx->reg_int & L2C_TAD_INT_TAG) { ctx->reg_ext_name = "TTG_ERR"; ctx->reg_ext = readq(tad->regs + L2C_TAD_TTG_ERR); } else if (ctx->reg_int & L2C_TAD_INT_LFBTO) { ctx->reg_ext_name = "TIMEOUT"; ctx->reg_ext = readq(tad->regs + L2C_TAD_TIMEOUT); } else if (ctx->reg_int & L2C_TAD_INT_DISOCI) { ctx->reg_ext_name = "ERR"; ctx->reg_ext = readq(tad->regs + L2C_TAD_ERR); } writeq(ctx->reg_int, tad->regs + L2C_TAD_INT_W1C); tad->ring_head++; return IRQ_WAKE_THREAD; } static irqreturn_t thunderx_l2c_cbc_isr(int irq, void *irq_id) { struct msix_entry *msix = irq_id; struct thunderx_l2c *cbc = container_of(msix, struct thunderx_l2c, msix_ent); unsigned long head = ring_pos(cbc->ring_head, ARRAY_SIZE(cbc->err_ctx)); struct l2c_err_ctx *ctx = &cbc->err_ctx[head]; ctx->reg_int = readq(cbc->regs + L2C_CBC_INT_W1C); if (ctx->reg_int & L2C_CBC_INT_RSD) { ctx->reg_ext_name = "RSDERR"; ctx->reg_ext = readq(cbc->regs + L2C_CBC_RSDERR); } else if (ctx->reg_int & L2C_CBC_INT_MIB) { ctx->reg_ext_name = "MIBERR"; ctx->reg_ext = readq(cbc->regs + L2C_CBC_MIBERR); } else if (ctx->reg_int & L2C_CBC_INT_IODISOCI) { ctx->reg_ext_name = "IODISOCIERR"; ctx->reg_ext = readq(cbc->regs + L2C_CBC_IODISOCIERR); } writeq(ctx->reg_int, cbc->regs + L2C_CBC_INT_W1C); cbc->ring_head++; return IRQ_WAKE_THREAD; } static irqreturn_t thunderx_l2c_mci_isr(int irq, void *irq_id) { struct msix_entry *msix = irq_id; struct thunderx_l2c *mci = container_of(msix, struct thunderx_l2c, msix_ent); unsigned long head = ring_pos(mci->ring_head, ARRAY_SIZE(mci->err_ctx)); struct l2c_err_ctx *ctx = &mci->err_ctx[head]; ctx->reg_int = readq(mci->regs + L2C_MCI_INT_W1C); ctx->reg_ext = readq(mci->regs + L2C_MCI_ERR); writeq(ctx->reg_int, mci->regs + L2C_MCI_INT_W1C); ctx->reg_ext_name = "ERR"; mci->ring_head++; return IRQ_WAKE_THREAD; } static irqreturn_t thunderx_l2c_threaded_isr(int irq, void *irq_id) { struct msix_entry *msix = irq_id; struct thunderx_l2c *l2c = container_of(msix, struct thunderx_l2c, msix_ent); unsigned long tail = ring_pos(l2c->ring_tail, ARRAY_SIZE(l2c->err_ctx)); struct l2c_err_ctx *ctx = &l2c->err_ctx[tail]; irqreturn_t ret = IRQ_NONE; u64 mask_ue, mask_ce; const struct error_descr *l2_errors; char *reg_int_name; char *msg; char *other; msg = kmalloc(OCX_MESSAGE_SIZE, GFP_KERNEL); other = kmalloc(OCX_OTHER_SIZE, GFP_KERNEL); if (!msg || !other) goto err_free; switch (l2c->pdev->device) { case PCI_DEVICE_ID_THUNDER_L2C_TAD: reg_int_name = "L2C_TAD_INT"; mask_ue = L2C_TAD_INT_UE; mask_ce = L2C_TAD_INT_CE; l2_errors = l2_tad_errors; break; case PCI_DEVICE_ID_THUNDER_L2C_CBC: reg_int_name = "L2C_CBC_INT"; mask_ue = L2C_CBC_INT_UE; mask_ce = L2C_CBC_INT_CE; l2_errors = l2_cbc_errors; break; case PCI_DEVICE_ID_THUNDER_L2C_MCI: reg_int_name = "L2C_MCI_INT"; mask_ue = L2C_MCI_INT_VBFDBE; mask_ce = L2C_MCI_INT_VBFSBE; l2_errors = l2_mci_errors; break; default: dev_err(&l2c->pdev->dev, "Unsupported device: %04x\n", l2c->pdev->device); goto err_free; } while (CIRC_CNT(l2c->ring_head, l2c->ring_tail, ARRAY_SIZE(l2c->err_ctx))) { snprintf(msg, L2C_MESSAGE_SIZE, "%s: %s: %016llx, %s: %016llx", l2c->edac_dev->ctl_name, reg_int_name, ctx->reg_int, ctx->reg_ext_name, ctx->reg_ext); decode_register(other, L2C_OTHER_SIZE, l2_errors, ctx->reg_int); strncat(msg, other, L2C_MESSAGE_SIZE); if (ctx->reg_int & mask_ue) edac_device_handle_ue(l2c->edac_dev, 0, 0, msg); else if (ctx->reg_int & mask_ce) edac_device_handle_ce(l2c->edac_dev, 0, 0, msg); l2c->ring_tail++; } ret = IRQ_HANDLED; err_free: kfree(other); kfree(msg); return ret; } #define L2C_DEBUGFS_ATTR(_name, _reg) DEBUGFS_REG_ATTR(l2c, _name, _reg) L2C_DEBUGFS_ATTR(tad_int, L2C_TAD_INT_W1S); static struct debugfs_entry *l2c_tad_dfs_ents[] = { &debugfs_tad_int, }; L2C_DEBUGFS_ATTR(cbc_int, L2C_CBC_INT_W1S); static struct debugfs_entry *l2c_cbc_dfs_ents[] = { &debugfs_cbc_int, }; L2C_DEBUGFS_ATTR(mci_int, L2C_MCI_INT_W1S); static struct debugfs_entry *l2c_mci_dfs_ents[] = { &debugfs_mci_int, }; static const struct pci_device_id thunderx_l2c_pci_tbl[] = { { PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVICE_ID_THUNDER_L2C_TAD), }, { PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVICE_ID_THUNDER_L2C_CBC), }, { PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVICE_ID_THUNDER_L2C_MCI), }, { 0, }, }; static int thunderx_l2c_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct thunderx_l2c *l2c; struct edac_device_ctl_info *edac_dev; struct debugfs_entry **l2c_devattr; size_t dfs_entries; irqreturn_t (*thunderx_l2c_isr)(int, void *) = NULL; char name[32]; const char *fmt; u64 reg_en_offs, reg_en_mask; int idx; int ret; ret = pcim_enable_device(pdev); if (ret) { dev_err(&pdev->dev, "Cannot enable PCI device: %d\n", ret); return ret; } ret = pcim_iomap_regions(pdev, BIT(0), "thunderx_l2c"); if (ret) { dev_err(&pdev->dev, "Cannot map PCI resources: %d\n", ret); return ret; } switch (pdev->device) { case PCI_DEVICE_ID_THUNDER_L2C_TAD: thunderx_l2c_isr = thunderx_l2c_tad_isr; l2c_devattr = l2c_tad_dfs_ents; dfs_entries = ARRAY_SIZE(l2c_tad_dfs_ents); fmt = "L2C-TAD%d"; reg_en_offs = L2C_TAD_INT_ENA_W1S; reg_en_mask = L2C_TAD_INT_ENA_ALL; break; case PCI_DEVICE_ID_THUNDER_L2C_CBC: thunderx_l2c_isr = thunderx_l2c_cbc_isr; l2c_devattr = l2c_cbc_dfs_ents; dfs_entries = ARRAY_SIZE(l2c_cbc_dfs_ents); fmt = "L2C-CBC%d"; reg_en_offs = L2C_CBC_INT_ENA_W1S; reg_en_mask = L2C_CBC_INT_ENA_ALL; break; case PCI_DEVICE_ID_THUNDER_L2C_MCI: thunderx_l2c_isr = thunderx_l2c_mci_isr; l2c_devattr = l2c_mci_dfs_ents; dfs_entries = ARRAY_SIZE(l2c_mci_dfs_ents); fmt = "L2C-MCI%d"; reg_en_offs = L2C_MCI_INT_ENA_W1S; reg_en_mask = L2C_MCI_INT_ENA_ALL; break; default: //Should never ever get here dev_err(&pdev->dev, "Unsupported PCI device: %04x\n", pdev->device); return -EINVAL; } idx = edac_device_alloc_index(); snprintf(name, sizeof(name), fmt, idx); edac_dev = edac_device_alloc_ctl_info(sizeof(struct thunderx_l2c), name, 1, "L2C", 1, 0, NULL, 0, idx); if (!edac_dev) { dev_err(&pdev->dev, "Cannot allocate EDAC device\n"); return -ENOMEM; } l2c = edac_dev->pvt_info; l2c->edac_dev = edac_dev; l2c->regs = pcim_iomap_table(pdev)[0]; if (!l2c->regs) { dev_err(&pdev->dev, "Cannot map PCI resources\n"); ret = -ENODEV; goto err_free; } l2c->pdev = pdev; l2c->ring_head = 0; l2c->ring_tail = 0; l2c->msix_ent.entry = 0; l2c->msix_ent.vector = 0; ret = pci_enable_msix_exact(pdev, &l2c->msix_ent, 1); if (ret) { dev_err(&pdev->dev, "Cannot enable interrupt: %d\n", ret); goto err_free; } ret = devm_request_threaded_irq(&pdev->dev, l2c->msix_ent.vector, thunderx_l2c_isr, thunderx_l2c_threaded_isr, 0, "[EDAC] ThunderX L2C", &l2c->msix_ent); if (ret) goto err_free; edac_dev->dev = &pdev->dev; edac_dev->dev_name = dev_name(&pdev->dev); edac_dev->mod_name = "thunderx-l2c"; edac_dev->ctl_name = "thunderx-l2c"; ret = edac_device_add_device(edac_dev); if (ret) { dev_err(&pdev->dev, "Cannot add EDAC device: %d\n", ret); goto err_free; } if (IS_ENABLED(CONFIG_EDAC_DEBUG)) { l2c->debugfs = edac_debugfs_create_dir(pdev->dev.kobj.name); ret = thunderx_create_debugfs_nodes(l2c->debugfs, l2c_devattr, l2c, dfs_entries); if (ret != dfs_entries) { dev_warn(&pdev->dev, "Error creating debugfs entries: %d%s\n", ret, ret >= 0 ? " created" : ""); } } pci_set_drvdata(pdev, edac_dev); writeq(reg_en_mask, l2c->regs + reg_en_offs); return 0; err_free: edac_device_free_ctl_info(edac_dev); return ret; } static void thunderx_l2c_remove(struct pci_dev *pdev) { struct edac_device_ctl_info *edac_dev = pci_get_drvdata(pdev); struct thunderx_l2c *l2c = edac_dev->pvt_info; switch (pdev->device) { case PCI_DEVICE_ID_THUNDER_L2C_TAD: writeq(L2C_TAD_INT_ENA_ALL, l2c->regs + L2C_TAD_INT_ENA_W1C); break; case PCI_DEVICE_ID_THUNDER_L2C_CBC: writeq(L2C_CBC_INT_ENA_ALL, l2c->regs + L2C_CBC_INT_ENA_W1C); break; case PCI_DEVICE_ID_THUNDER_L2C_MCI: writeq(L2C_MCI_INT_ENA_ALL, l2c->regs + L2C_MCI_INT_ENA_W1C); break; } edac_debugfs_remove_recursive(l2c->debugfs); edac_device_del_device(&pdev->dev); edac_device_free_ctl_info(edac_dev); } MODULE_DEVICE_TABLE(pci, thunderx_l2c_pci_tbl); static struct pci_driver thunderx_l2c_driver = { .name = "thunderx_l2c_edac", .probe = thunderx_l2c_probe, .remove = thunderx_l2c_remove, .id_table = thunderx_l2c_pci_tbl, }; static int __init thunderx_edac_init(void) { int rc = 0; if (ghes_get_devices()) return -EBUSY; rc = pci_register_driver(&thunderx_lmc_driver); if (rc) return rc; rc = pci_register_driver(&thunderx_ocx_driver); if (rc) goto err_lmc; rc = pci_register_driver(&thunderx_l2c_driver); if (rc) goto err_ocx; return rc; err_ocx: pci_unregister_driver(&thunderx_ocx_driver); err_lmc: pci_unregister_driver(&thunderx_lmc_driver); return rc; } static void __exit thunderx_edac_exit(void) { pci_unregister_driver(&thunderx_l2c_driver); pci_unregister_driver(&thunderx_ocx_driver); pci_unregister_driver(&thunderx_lmc_driver); } module_init(thunderx_edac_init); module_exit(thunderx_edac_exit); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Cavium, Inc."); MODULE_DESCRIPTION("EDAC Driver for Cavium ThunderX");