// SPDX-License-Identifier: GPL-2.0 #include <test_util.h> #include <kvm_util.h> #include <processor.h> #include <linux/bitfield.h> #define MDSCR_KDE (1 << 13) #define MDSCR_MDE (1 << 15) #define MDSCR_SS (1 << 0) #define DBGBCR_LEN8 (0xff << 5) #define DBGBCR_EXEC (0x0 << 3) #define DBGBCR_EL1 (0x1 << 1) #define DBGBCR_E (0x1 << 0) #define DBGBCR_LBN_SHIFT 16 #define DBGBCR_BT_SHIFT 20 #define DBGBCR_BT_ADDR_LINK_CTX (0x1 << DBGBCR_BT_SHIFT) #define DBGBCR_BT_CTX_LINK (0x3 << DBGBCR_BT_SHIFT) #define DBGWCR_LEN8 (0xff << 5) #define DBGWCR_RD (0x1 << 3) #define DBGWCR_WR (0x2 << 3) #define DBGWCR_EL1 (0x1 << 1) #define DBGWCR_E (0x1 << 0) #define DBGWCR_LBN_SHIFT 16 #define DBGWCR_WT_SHIFT 20 #define DBGWCR_WT_LINK (0x1 << DBGWCR_WT_SHIFT) #define SPSR_D (1 << 9) #define SPSR_SS (1 << 21) extern unsigned char sw_bp, sw_bp2, hw_bp, hw_bp2, bp_svc, bp_brk, hw_wp, ss_start, hw_bp_ctx; extern unsigned char iter_ss_begin, iter_ss_end; static volatile uint64_t sw_bp_addr, hw_bp_addr; static volatile uint64_t wp_addr, wp_data_addr; static volatile uint64_t svc_addr; static volatile uint64_t ss_addr[4], ss_idx; #define PC(v) ((uint64_t)&(v)) #define GEN_DEBUG_WRITE_REG(reg_name) \ static void write_##reg_name(int num, uint64_t val) \ { \ switch (num) { \ case 0: \ write_sysreg(val, reg_name##0_el1); \ break; \ case 1: \ write_sysreg(val, reg_name##1_el1); \ break; \ case 2: \ write_sysreg(val, reg_name##2_el1); \ break; \ case 3: \ write_sysreg(val, reg_name##3_el1); \ break; \ case 4: \ write_sysreg(val, reg_name##4_el1); \ break; \ case 5: \ write_sysreg(val, reg_name##5_el1); \ break; \ case 6: \ write_sysreg(val, reg_name##6_el1); \ break; \ case 7: \ write_sysreg(val, reg_name##7_el1); \ break; \ case 8: \ write_sysreg(val, reg_name##8_el1); \ break; \ case 9: \ write_sysreg(val, reg_name##9_el1); \ break; \ case 10: \ write_sysreg(val, reg_name##10_el1); \ break; \ case 11: \ write_sysreg(val, reg_name##11_el1); \ break; \ case 12: \ write_sysreg(val, reg_name##12_el1); \ break; \ case 13: \ write_sysreg(val, reg_name##13_el1); \ break; \ case 14: \ write_sysreg(val, reg_name##14_el1); \ break; \ case 15: \ write_sysreg(val, reg_name##15_el1); \ break; \ default: \ GUEST_ASSERT(0); \ } \ } /* Define write_dbgbcr()/write_dbgbvr()/write_dbgwcr()/write_dbgwvr() */ GEN_DEBUG_WRITE_REG(dbgbcr) GEN_DEBUG_WRITE_REG(dbgbvr) GEN_DEBUG_WRITE_REG(dbgwcr) GEN_DEBUG_WRITE_REG(dbgwvr) static void reset_debug_state(void) { uint8_t brps, wrps, i; uint64_t dfr0; asm volatile("msr daifset, #8"); write_sysreg(0, osdlr_el1); write_sysreg(0, oslar_el1); isb(); write_sysreg(0, mdscr_el1); write_sysreg(0, contextidr_el1); /* Reset all bcr/bvr/wcr/wvr registers */ dfr0 = read_sysreg(id_aa64dfr0_el1); brps = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_BRPS), dfr0); for (i = 0; i <= brps; i++) { write_dbgbcr(i, 0); write_dbgbvr(i, 0); } wrps = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_WRPS), dfr0); for (i = 0; i <= wrps; i++) { write_dbgwcr(i, 0); write_dbgwvr(i, 0); } isb(); } static void enable_os_lock(void) { write_sysreg(1, oslar_el1); isb(); GUEST_ASSERT(read_sysreg(oslsr_el1) & 2); } static void enable_monitor_debug_exceptions(void) { uint32_t mdscr; asm volatile("msr daifclr, #8"); mdscr = read_sysreg(mdscr_el1) | MDSCR_KDE | MDSCR_MDE; write_sysreg(mdscr, mdscr_el1); isb(); } static void install_wp(uint8_t wpn, uint64_t addr) { uint32_t wcr; wcr = DBGWCR_LEN8 | DBGWCR_RD | DBGWCR_WR | DBGWCR_EL1 | DBGWCR_E; write_dbgwcr(wpn, wcr); write_dbgwvr(wpn, addr); isb(); enable_monitor_debug_exceptions(); } static void install_hw_bp(uint8_t bpn, uint64_t addr) { uint32_t bcr; bcr = DBGBCR_LEN8 | DBGBCR_EXEC | DBGBCR_EL1 | DBGBCR_E; write_dbgbcr(bpn, bcr); write_dbgbvr(bpn, addr); isb(); enable_monitor_debug_exceptions(); } static void install_wp_ctx(uint8_t addr_wp, uint8_t ctx_bp, uint64_t addr, uint64_t ctx) { uint32_t wcr; uint64_t ctx_bcr; /* Setup a context-aware breakpoint for Linked Context ID Match */ ctx_bcr = DBGBCR_LEN8 | DBGBCR_EXEC | DBGBCR_EL1 | DBGBCR_E | DBGBCR_BT_CTX_LINK; write_dbgbcr(ctx_bp, ctx_bcr); write_dbgbvr(ctx_bp, ctx); /* Setup a linked watchpoint (linked to the context-aware breakpoint) */ wcr = DBGWCR_LEN8 | DBGWCR_RD | DBGWCR_WR | DBGWCR_EL1 | DBGWCR_E | DBGWCR_WT_LINK | ((uint32_t)ctx_bp << DBGWCR_LBN_SHIFT); write_dbgwcr(addr_wp, wcr); write_dbgwvr(addr_wp, addr); isb(); enable_monitor_debug_exceptions(); } void install_hw_bp_ctx(uint8_t addr_bp, uint8_t ctx_bp, uint64_t addr, uint64_t ctx) { uint32_t addr_bcr, ctx_bcr; /* Setup a context-aware breakpoint for Linked Context ID Match */ ctx_bcr = DBGBCR_LEN8 | DBGBCR_EXEC | DBGBCR_EL1 | DBGBCR_E | DBGBCR_BT_CTX_LINK; write_dbgbcr(ctx_bp, ctx_bcr); write_dbgbvr(ctx_bp, ctx); /* * Setup a normal breakpoint for Linked Address Match, and link it * to the context-aware breakpoint. */ addr_bcr = DBGBCR_LEN8 | DBGBCR_EXEC | DBGBCR_EL1 | DBGBCR_E | DBGBCR_BT_ADDR_LINK_CTX | ((uint32_t)ctx_bp << DBGBCR_LBN_SHIFT); write_dbgbcr(addr_bp, addr_bcr); write_dbgbvr(addr_bp, addr); isb(); enable_monitor_debug_exceptions(); } static void install_ss(void) { uint32_t mdscr; asm volatile("msr daifclr, #8"); mdscr = read_sysreg(mdscr_el1) | MDSCR_KDE | MDSCR_SS; write_sysreg(mdscr, mdscr_el1); isb(); } static volatile char write_data; static void guest_code(uint8_t bpn, uint8_t wpn, uint8_t ctx_bpn) { uint64_t ctx = 0xabcdef; /* a random context number */ /* Software-breakpoint */ reset_debug_state(); asm volatile("sw_bp: brk #0"); GUEST_ASSERT_EQ(sw_bp_addr, PC(sw_bp)); /* Hardware-breakpoint */ reset_debug_state(); install_hw_bp(bpn, PC(hw_bp)); asm volatile("hw_bp: nop"); GUEST_ASSERT_EQ(hw_bp_addr, PC(hw_bp)); /* Hardware-breakpoint + svc */ reset_debug_state(); install_hw_bp(bpn, PC(bp_svc)); asm volatile("bp_svc: svc #0"); GUEST_ASSERT_EQ(hw_bp_addr, PC(bp_svc)); GUEST_ASSERT_EQ(svc_addr, PC(bp_svc) + 4); /* Hardware-breakpoint + software-breakpoint */ reset_debug_state(); install_hw_bp(bpn, PC(bp_brk)); asm volatile("bp_brk: brk #0"); GUEST_ASSERT_EQ(sw_bp_addr, PC(bp_brk)); GUEST_ASSERT_EQ(hw_bp_addr, PC(bp_brk)); /* Watchpoint */ reset_debug_state(); install_wp(wpn, PC(write_data)); write_data = 'x'; GUEST_ASSERT_EQ(write_data, 'x'); GUEST_ASSERT_EQ(wp_data_addr, PC(write_data)); /* Single-step */ reset_debug_state(); install_ss(); ss_idx = 0; asm volatile("ss_start:\n" "mrs x0, esr_el1\n" "add x0, x0, #1\n" "msr daifset, #8\n" : : : "x0"); GUEST_ASSERT_EQ(ss_addr[0], PC(ss_start)); GUEST_ASSERT_EQ(ss_addr[1], PC(ss_start) + 4); GUEST_ASSERT_EQ(ss_addr[2], PC(ss_start) + 8); /* OS Lock does not block software-breakpoint */ reset_debug_state(); enable_os_lock(); sw_bp_addr = 0; asm volatile("sw_bp2: brk #0"); GUEST_ASSERT_EQ(sw_bp_addr, PC(sw_bp2)); /* OS Lock blocking hardware-breakpoint */ reset_debug_state(); enable_os_lock(); install_hw_bp(bpn, PC(hw_bp2)); hw_bp_addr = 0; asm volatile("hw_bp2: nop"); GUEST_ASSERT_EQ(hw_bp_addr, 0); /* OS Lock blocking watchpoint */ reset_debug_state(); enable_os_lock(); write_data = '\0'; wp_data_addr = 0; install_wp(wpn, PC(write_data)); write_data = 'x'; GUEST_ASSERT_EQ(write_data, 'x'); GUEST_ASSERT_EQ(wp_data_addr, 0); /* OS Lock blocking single-step */ reset_debug_state(); enable_os_lock(); ss_addr[0] = 0; install_ss(); ss_idx = 0; asm volatile("mrs x0, esr_el1\n\t" "add x0, x0, #1\n\t" "msr daifset, #8\n\t" : : : "x0"); GUEST_ASSERT_EQ(ss_addr[0], 0); /* Linked hardware-breakpoint */ hw_bp_addr = 0; reset_debug_state(); install_hw_bp_ctx(bpn, ctx_bpn, PC(hw_bp_ctx), ctx); /* Set context id */ write_sysreg(ctx, contextidr_el1); isb(); asm volatile("hw_bp_ctx: nop"); write_sysreg(0, contextidr_el1); GUEST_ASSERT_EQ(hw_bp_addr, PC(hw_bp_ctx)); /* Linked watchpoint */ reset_debug_state(); install_wp_ctx(wpn, ctx_bpn, PC(write_data), ctx); /* Set context id */ write_sysreg(ctx, contextidr_el1); isb(); write_data = 'x'; GUEST_ASSERT_EQ(write_data, 'x'); GUEST_ASSERT_EQ(wp_data_addr, PC(write_data)); GUEST_DONE(); } static void guest_sw_bp_handler(struct ex_regs *regs) { sw_bp_addr = regs->pc; regs->pc += 4; } static void guest_hw_bp_handler(struct ex_regs *regs) { hw_bp_addr = regs->pc; regs->pstate |= SPSR_D; } static void guest_wp_handler(struct ex_regs *regs) { wp_data_addr = read_sysreg(far_el1); wp_addr = regs->pc; regs->pstate |= SPSR_D; } static void guest_ss_handler(struct ex_regs *regs) { __GUEST_ASSERT(ss_idx < 4, "Expected index < 4, got '%u'", ss_idx); ss_addr[ss_idx++] = regs->pc; regs->pstate |= SPSR_SS; } static void guest_svc_handler(struct ex_regs *regs) { svc_addr = regs->pc; } static void guest_code_ss(int test_cnt) { uint64_t i; uint64_t bvr, wvr, w_bvr, w_wvr; for (i = 0; i < test_cnt; i++) { /* Bits [1:0] of dbg{b,w}vr are RES0 */ w_bvr = i << 2; w_wvr = i << 2; /* * Enable Single Step execution. Note! This _must_ be a bare * ucall as the ucall() path uses atomic operations to manage * the ucall structures, and the built-in "atomics" are usually * implemented via exclusive access instructions. The exlusive * monitor is cleared on ERET, and so taking debug exceptions * during a LDREX=>STREX sequence will prevent forward progress * and hang the guest/test. */ GUEST_UCALL_NONE(); /* * The userspace will verify that the pc is as expected during * single step execution between iter_ss_begin and iter_ss_end. */ asm volatile("iter_ss_begin:nop\n"); write_sysreg(w_bvr, dbgbvr0_el1); write_sysreg(w_wvr, dbgwvr0_el1); bvr = read_sysreg(dbgbvr0_el1); wvr = read_sysreg(dbgwvr0_el1); /* Userspace disables Single Step when the end is nigh. */ asm volatile("iter_ss_end:\n"); GUEST_ASSERT_EQ(bvr, w_bvr); GUEST_ASSERT_EQ(wvr, w_wvr); } GUEST_DONE(); } static int debug_version(uint64_t id_aa64dfr0) { return FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_DEBUGVER), id_aa64dfr0); } static void test_guest_debug_exceptions(uint8_t bpn, uint8_t wpn, uint8_t ctx_bpn) { struct kvm_vcpu *vcpu; struct kvm_vm *vm; struct ucall uc; vm = vm_create_with_one_vcpu(&vcpu, guest_code); vm_init_descriptor_tables(vm); vcpu_init_descriptor_tables(vcpu); vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT, ESR_EC_BRK_INS, guest_sw_bp_handler); vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT, ESR_EC_HW_BP_CURRENT, guest_hw_bp_handler); vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT, ESR_EC_WP_CURRENT, guest_wp_handler); vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT, ESR_EC_SSTEP_CURRENT, guest_ss_handler); vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT, ESR_EC_SVC64, guest_svc_handler); /* Specify bpn/wpn/ctx_bpn to be tested */ vcpu_args_set(vcpu, 3, bpn, wpn, ctx_bpn); pr_debug("Use bpn#%d, wpn#%d and ctx_bpn#%d\n", bpn, wpn, ctx_bpn); vcpu_run(vcpu); switch (get_ucall(vcpu, &uc)) { case UCALL_ABORT: REPORT_GUEST_ASSERT(uc); break; case UCALL_DONE: goto done; default: TEST_FAIL("Unknown ucall %lu", uc.cmd); } done: kvm_vm_free(vm); } void test_single_step_from_userspace(int test_cnt) { struct kvm_vcpu *vcpu; struct kvm_vm *vm; struct ucall uc; struct kvm_run *run; uint64_t pc, cmd; uint64_t test_pc = 0; bool ss_enable = false; struct kvm_guest_debug debug = {}; vm = vm_create_with_one_vcpu(&vcpu, guest_code_ss); run = vcpu->run; vcpu_args_set(vcpu, 1, test_cnt); while (1) { vcpu_run(vcpu); if (run->exit_reason != KVM_EXIT_DEBUG) { cmd = get_ucall(vcpu, &uc); if (cmd == UCALL_ABORT) { REPORT_GUEST_ASSERT(uc); /* NOT REACHED */ } else if (cmd == UCALL_DONE) { break; } TEST_ASSERT(cmd == UCALL_NONE, "Unexpected ucall cmd 0x%lx", cmd); debug.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; ss_enable = true; vcpu_guest_debug_set(vcpu, &debug); continue; } TEST_ASSERT(ss_enable, "Unexpected KVM_EXIT_DEBUG"); /* Check if the current pc is expected. */ vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.pc), &pc); TEST_ASSERT(!test_pc || pc == test_pc, "Unexpected pc 0x%lx (expected 0x%lx)", pc, test_pc); if ((pc + 4) == (uint64_t)&iter_ss_end) { test_pc = 0; debug.control = KVM_GUESTDBG_ENABLE; ss_enable = false; vcpu_guest_debug_set(vcpu, &debug); continue; } /* * If the current pc is between iter_ss_bgin and * iter_ss_end, the pc for the next KVM_EXIT_DEBUG should * be the current pc + 4. */ if ((pc >= (uint64_t)&iter_ss_begin) && (pc < (uint64_t)&iter_ss_end)) test_pc = pc + 4; else test_pc = 0; } kvm_vm_free(vm); } /* * Run debug testing using the various breakpoint#, watchpoint# and * context-aware breakpoint# with the given ID_AA64DFR0_EL1 configuration. */ void test_guest_debug_exceptions_all(uint64_t aa64dfr0) { uint8_t brp_num, wrp_num, ctx_brp_num, normal_brp_num, ctx_brp_base; int b, w, c; /* Number of breakpoints */ brp_num = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_BRPS), aa64dfr0) + 1; __TEST_REQUIRE(brp_num >= 2, "At least two breakpoints are required"); /* Number of watchpoints */ wrp_num = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_WRPS), aa64dfr0) + 1; /* Number of context aware breakpoints */ ctx_brp_num = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_CTX_CMPS), aa64dfr0) + 1; pr_debug("%s brp_num:%d, wrp_num:%d, ctx_brp_num:%d\n", __func__, brp_num, wrp_num, ctx_brp_num); /* Number of normal (non-context aware) breakpoints */ normal_brp_num = brp_num - ctx_brp_num; /* Lowest context aware breakpoint number */ ctx_brp_base = normal_brp_num; /* Run tests with all supported breakpoints/watchpoints */ for (c = ctx_brp_base; c < ctx_brp_base + ctx_brp_num; c++) { for (b = 0; b < normal_brp_num; b++) { for (w = 0; w < wrp_num; w++) test_guest_debug_exceptions(b, w, c); } } } static void help(char *name) { puts(""); printf("Usage: %s [-h] [-i iterations of the single step test]\n", name); puts(""); exit(0); } int main(int argc, char *argv[]) { struct kvm_vcpu *vcpu; struct kvm_vm *vm; int opt; int ss_iteration = 10000; uint64_t aa64dfr0; vm = vm_create_with_one_vcpu(&vcpu, guest_code); vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64DFR0_EL1), &aa64dfr0); __TEST_REQUIRE(debug_version(aa64dfr0) >= 6, "Armv8 debug architecture not supported."); kvm_vm_free(vm); while ((opt = getopt(argc, argv, "i:")) != -1) { switch (opt) { case 'i': ss_iteration = atoi_positive("Number of iterations", optarg); break; case 'h': default: help(argv[0]); break; } } test_guest_debug_exceptions_all(aa64dfr0); test_single_step_from_userspace(ss_iteration); return 0; }