// SPDX-License-Identifier: GPL-2.0 /* * Time of day based timer functions. * * S390 version * Copyright IBM Corp. 1999, 2008 * Author(s): Hartmut Penner (hp@de.ibm.com), * Martin Schwidefsky (schwidefsky@de.ibm.com), * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com) * * Derived from "arch/i386/kernel/time.c" * Copyright (C) 1991, 1992, 1995 Linus Torvalds */ #define KMSG_COMPONENT "time" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <linux/kernel_stat.h> #include <linux/errno.h> #include <linux/export.h> #include <linux/sched.h> #include <linux/sched/clock.h> #include <linux/kernel.h> #include <linux/param.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <linux/cpu.h> #include <linux/stop_machine.h> #include <linux/time.h> #include <linux/device.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/smp.h> #include <linux/types.h> #include <linux/profile.h> #include <linux/timex.h> #include <linux/notifier.h> #include <linux/timekeeper_internal.h> #include <linux/clockchips.h> #include <linux/gfp.h> #include <linux/kprobes.h> #include <linux/uaccess.h> #include <vdso/vsyscall.h> #include <vdso/clocksource.h> #include <vdso/helpers.h> #include <asm/facility.h> #include <asm/delay.h> #include <asm/div64.h> #include <asm/vdso.h> #include <asm/irq.h> #include <asm/irq_regs.h> #include <asm/vtimer.h> #include <asm/stp.h> #include <asm/cio.h> #include "entry.h" union tod_clock tod_clock_base __section(".data"); EXPORT_SYMBOL_GPL(tod_clock_base); u64 clock_comparator_max = -1ULL; EXPORT_SYMBOL_GPL(clock_comparator_max); static DEFINE_PER_CPU(struct clock_event_device, comparators); ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier); EXPORT_SYMBOL(s390_epoch_delta_notifier); unsigned char ptff_function_mask[16]; static unsigned long lpar_offset; static unsigned long initial_leap_seconds; static unsigned long tod_steering_end; static long tod_steering_delta; /* * Get time offsets with PTFF */ void __init time_early_init(void) { struct ptff_qto qto; struct ptff_qui qui; int cs; /* Initialize TOD steering parameters */ tod_steering_end = tod_clock_base.tod; for (cs = 0; cs < CS_BASES; cs++) vdso_data[cs].arch_data.tod_steering_end = tod_steering_end; if (!test_facility(28)) return; ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF); /* get LPAR offset */ if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0) lpar_offset = qto.tod_epoch_difference; /* get initial leap seconds */ if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0) initial_leap_seconds = (unsigned long) ((long) qui.old_leap * 4096000000L); } unsigned long long noinstr sched_clock_noinstr(void) { return tod_to_ns(__get_tod_clock_monotonic()); } /* * Scheduler clock - returns current time in nanosec units. */ unsigned long long notrace sched_clock(void) { return tod_to_ns(get_tod_clock_monotonic()); } NOKPROBE_SYMBOL(sched_clock); static void ext_to_timespec64(union tod_clock *clk, struct timespec64 *xt) { unsigned long rem, sec, nsec; sec = clk->us; rem = do_div(sec, 1000000); nsec = ((clk->sus + (rem << 12)) * 125) >> 9; xt->tv_sec = sec; xt->tv_nsec = nsec; } void clock_comparator_work(void) { struct clock_event_device *cd; S390_lowcore.clock_comparator = clock_comparator_max; cd = this_cpu_ptr(&comparators); cd->event_handler(cd); } static int s390_next_event(unsigned long delta, struct clock_event_device *evt) { S390_lowcore.clock_comparator = get_tod_clock() + delta; set_clock_comparator(S390_lowcore.clock_comparator); return 0; } /* * Set up lowcore and control register of the current cpu to * enable TOD clock and clock comparator interrupts. */ void init_cpu_timer(void) { struct clock_event_device *cd; int cpu; S390_lowcore.clock_comparator = clock_comparator_max; set_clock_comparator(S390_lowcore.clock_comparator); cpu = smp_processor_id(); cd = &per_cpu(comparators, cpu); cd->name = "comparator"; cd->features = CLOCK_EVT_FEAT_ONESHOT; cd->mult = 16777; cd->shift = 12; cd->min_delta_ns = 1; cd->min_delta_ticks = 1; cd->max_delta_ns = LONG_MAX; cd->max_delta_ticks = ULONG_MAX; cd->rating = 400; cd->cpumask = cpumask_of(cpu); cd->set_next_event = s390_next_event; clockevents_register_device(cd); /* Enable clock comparator timer interrupt. */ __ctl_set_bit(0,11); /* Always allow the timing alert external interrupt. */ __ctl_set_bit(0, 4); } static void clock_comparator_interrupt(struct ext_code ext_code, unsigned int param32, unsigned long param64) { inc_irq_stat(IRQEXT_CLK); if (S390_lowcore.clock_comparator == clock_comparator_max) set_clock_comparator(S390_lowcore.clock_comparator); } static void stp_timing_alert(struct stp_irq_parm *); static void timing_alert_interrupt(struct ext_code ext_code, unsigned int param32, unsigned long param64) { inc_irq_stat(IRQEXT_TLA); if (param32 & 0x00038000) stp_timing_alert((struct stp_irq_parm *) ¶m32); } static void stp_reset(void); void read_persistent_clock64(struct timespec64 *ts) { union tod_clock clk; u64 delta; delta = initial_leap_seconds + TOD_UNIX_EPOCH; store_tod_clock_ext(&clk); clk.eitod -= delta; ext_to_timespec64(&clk, ts); } void __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, struct timespec64 *boot_offset) { struct timespec64 boot_time; union tod_clock clk; u64 delta; delta = initial_leap_seconds + TOD_UNIX_EPOCH; clk = tod_clock_base; clk.eitod -= delta; ext_to_timespec64(&clk, &boot_time); read_persistent_clock64(wall_time); *boot_offset = timespec64_sub(*wall_time, boot_time); } static u64 read_tod_clock(struct clocksource *cs) { unsigned long now, adj; preempt_disable(); /* protect from changes to steering parameters */ now = get_tod_clock(); adj = tod_steering_end - now; if (unlikely((s64) adj > 0)) /* * manually steer by 1 cycle every 2^16 cycles. This * corresponds to shifting the tod delta by 15. 1s is * therefore steered in ~9h. The adjust will decrease * over time, until it finally reaches 0. */ now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15); preempt_enable(); return now; } static struct clocksource clocksource_tod = { .name = "tod", .rating = 400, .read = read_tod_clock, .mask = CLOCKSOURCE_MASK(64), .mult = 1000, .shift = 12, .flags = CLOCK_SOURCE_IS_CONTINUOUS, .vdso_clock_mode = VDSO_CLOCKMODE_TOD, }; struct clocksource * __init clocksource_default_clock(void) { return &clocksource_tod; } /* * Initialize the TOD clock and the CPU timer of * the boot cpu. */ void __init time_init(void) { /* Reset time synchronization interfaces. */ stp_reset(); /* request the clock comparator external interrupt */ if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt)) panic("Couldn't request external interrupt 0x1004"); /* request the timing alert external interrupt */ if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt)) panic("Couldn't request external interrupt 0x1406"); if (__clocksource_register(&clocksource_tod) != 0) panic("Could not register TOD clock source"); /* Enable TOD clock interrupts on the boot cpu. */ init_cpu_timer(); /* Enable cpu timer interrupts on the boot cpu. */ vtime_init(); } static DEFINE_PER_CPU(atomic_t, clock_sync_word); static DEFINE_MUTEX(stp_mutex); static unsigned long clock_sync_flags; #define CLOCK_SYNC_HAS_STP 0 #define CLOCK_SYNC_STP 1 #define CLOCK_SYNC_STPINFO_VALID 2 /* * The get_clock function for the physical clock. It will get the current * TOD clock, subtract the LPAR offset and write the result to *clock. * The function returns 0 if the clock is in sync with the external time * source. If the clock mode is local it will return -EOPNOTSUPP and * -EAGAIN if the clock is not in sync with the external reference. */ int get_phys_clock(unsigned long *clock) { atomic_t *sw_ptr; unsigned int sw0, sw1; sw_ptr = &get_cpu_var(clock_sync_word); sw0 = atomic_read(sw_ptr); *clock = get_tod_clock() - lpar_offset; sw1 = atomic_read(sw_ptr); put_cpu_var(clock_sync_word); if (sw0 == sw1 && (sw0 & 0x80000000U)) /* Success: time is in sync. */ return 0; if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) return -EOPNOTSUPP; if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags)) return -EACCES; return -EAGAIN; } EXPORT_SYMBOL(get_phys_clock); /* * Make get_phys_clock() return -EAGAIN. */ static void disable_sync_clock(void *dummy) { atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word); /* * Clear the in-sync bit 2^31. All get_phys_clock calls will * fail until the sync bit is turned back on. In addition * increase the "sequence" counter to avoid the race of an * stp event and the complete recovery against get_phys_clock. */ atomic_andnot(0x80000000, sw_ptr); atomic_inc(sw_ptr); } /* * Make get_phys_clock() return 0 again. * Needs to be called from a context disabled for preemption. */ static void enable_sync_clock(void) { atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word); atomic_or(0x80000000, sw_ptr); } /* * Function to check if the clock is in sync. */ static inline int check_sync_clock(void) { atomic_t *sw_ptr; int rc; sw_ptr = &get_cpu_var(clock_sync_word); rc = (atomic_read(sw_ptr) & 0x80000000U) != 0; put_cpu_var(clock_sync_word); return rc; } /* * Apply clock delta to the global data structures. * This is called once on the CPU that performed the clock sync. */ static void clock_sync_global(long delta) { unsigned long now, adj; struct ptff_qto qto; int cs; /* Fixup the monotonic sched clock. */ tod_clock_base.eitod += delta; /* Adjust TOD steering parameters. */ now = get_tod_clock(); adj = tod_steering_end - now; if (unlikely((s64) adj >= 0)) /* Calculate how much of the old adjustment is left. */ tod_steering_delta = (tod_steering_delta < 0) ? -(adj >> 15) : (adj >> 15); tod_steering_delta += delta; if ((abs(tod_steering_delta) >> 48) != 0) panic("TOD clock sync offset %li is too large to drift\n", tod_steering_delta); tod_steering_end = now + (abs(tod_steering_delta) << 15); for (cs = 0; cs < CS_BASES; cs++) { vdso_data[cs].arch_data.tod_steering_end = tod_steering_end; vdso_data[cs].arch_data.tod_steering_delta = tod_steering_delta; } /* Update LPAR offset. */ if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0) lpar_offset = qto.tod_epoch_difference; /* Call the TOD clock change notifier. */ atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta); } /* * Apply clock delta to the per-CPU data structures of this CPU. * This is called for each online CPU after the call to clock_sync_global. */ static void clock_sync_local(long delta) { /* Add the delta to the clock comparator. */ if (S390_lowcore.clock_comparator != clock_comparator_max) { S390_lowcore.clock_comparator += delta; set_clock_comparator(S390_lowcore.clock_comparator); } /* Adjust the last_update_clock time-stamp. */ S390_lowcore.last_update_clock += delta; } /* Single threaded workqueue used for stp sync events */ static struct workqueue_struct *time_sync_wq; static void __init time_init_wq(void) { if (time_sync_wq) return; time_sync_wq = create_singlethread_workqueue("timesync"); } struct clock_sync_data { atomic_t cpus; int in_sync; long clock_delta; }; /* * Server Time Protocol (STP) code. */ static bool stp_online; static struct stp_sstpi stp_info; static void *stp_page; static void stp_work_fn(struct work_struct *work); static DECLARE_WORK(stp_work, stp_work_fn); static struct timer_list stp_timer; static int __init early_parse_stp(char *p) { return kstrtobool(p, &stp_online); } early_param("stp", early_parse_stp); /* * Reset STP attachment. */ static void __init stp_reset(void) { int rc; stp_page = (void *) get_zeroed_page(GFP_ATOMIC); rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL); if (rc == 0) set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags); else if (stp_online) { pr_warn("The real or virtual hardware system does not provide an STP interface\n"); free_page((unsigned long) stp_page); stp_page = NULL; stp_online = false; } } static void stp_timeout(struct timer_list *unused) { queue_work(time_sync_wq, &stp_work); } static int __init stp_init(void) { if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) return 0; timer_setup(&stp_timer, stp_timeout, 0); time_init_wq(); if (!stp_online) return 0; queue_work(time_sync_wq, &stp_work); return 0; } arch_initcall(stp_init); /* * STP timing alert. There are three causes: * 1) timing status change * 2) link availability change * 3) time control parameter change * In all three cases we are only interested in the clock source state. * If a STP clock source is now available use it. */ static void stp_timing_alert(struct stp_irq_parm *intparm) { if (intparm->tsc || intparm->lac || intparm->tcpc) queue_work(time_sync_wq, &stp_work); } /* * STP sync check machine check. This is called when the timing state * changes from the synchronized state to the unsynchronized state. * After a STP sync check the clock is not in sync. The machine check * is broadcasted to all cpus at the same time. */ int stp_sync_check(void) { disable_sync_clock(NULL); return 1; } /* * STP island condition machine check. This is called when an attached * server attempts to communicate over an STP link and the servers * have matching CTN ids and have a valid stratum-1 configuration * but the configurations do not match. */ int stp_island_check(void) { disable_sync_clock(NULL); return 1; } void stp_queue_work(void) { queue_work(time_sync_wq, &stp_work); } static int __store_stpinfo(void) { int rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi)); if (rc) clear_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags); else set_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags); return rc; } static int stpinfo_valid(void) { return stp_online && test_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags); } static int stp_sync_clock(void *data) { struct clock_sync_data *sync = data; long clock_delta, flags; static int first; int rc; enable_sync_clock(); if (xchg(&first, 1) == 0) { /* Wait until all other cpus entered the sync function. */ while (atomic_read(&sync->cpus) != 0) cpu_relax(); rc = 0; if (stp_info.todoff || stp_info.tmd != 2) { flags = vdso_update_begin(); rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0, &clock_delta); if (rc == 0) { sync->clock_delta = clock_delta; clock_sync_global(clock_delta); rc = __store_stpinfo(); if (rc == 0 && stp_info.tmd != 2) rc = -EAGAIN; } vdso_update_end(flags); } sync->in_sync = rc ? -EAGAIN : 1; xchg(&first, 0); } else { /* Slave */ atomic_dec(&sync->cpus); /* Wait for in_sync to be set. */ while (READ_ONCE(sync->in_sync) == 0) __udelay(1); } if (sync->in_sync != 1) /* Didn't work. Clear per-cpu in sync bit again. */ disable_sync_clock(NULL); /* Apply clock delta to per-CPU fields of this CPU. */ clock_sync_local(sync->clock_delta); return 0; } static int stp_clear_leap(void) { struct __kernel_timex txc; int ret; memset(&txc, 0, sizeof(txc)); ret = do_adjtimex(&txc); if (ret < 0) return ret; txc.modes = ADJ_STATUS; txc.status &= ~(STA_INS|STA_DEL); return do_adjtimex(&txc); } static void stp_check_leap(void) { struct stp_stzi stzi; struct stp_lsoib *lsoib = &stzi.lsoib; struct __kernel_timex txc; int64_t timediff; int leapdiff, ret; if (!stp_info.lu || !check_sync_clock()) { /* * Either a scheduled leap second was removed by the operator, * or STP is out of sync. In both cases, clear the leap second * kernel flags. */ if (stp_clear_leap() < 0) pr_err("failed to clear leap second flags\n"); return; } if (chsc_stzi(stp_page, &stzi, sizeof(stzi))) { pr_err("stzi failed\n"); return; } timediff = tod_to_ns(lsoib->nlsout - get_tod_clock()) / NSEC_PER_SEC; leapdiff = lsoib->nlso - lsoib->also; if (leapdiff != 1 && leapdiff != -1) { pr_err("Cannot schedule %d leap seconds\n", leapdiff); return; } if (timediff < 0) { if (stp_clear_leap() < 0) pr_err("failed to clear leap second flags\n"); } else if (timediff < 7200) { memset(&txc, 0, sizeof(txc)); ret = do_adjtimex(&txc); if (ret < 0) return; txc.modes = ADJ_STATUS; if (leapdiff > 0) txc.status |= STA_INS; else txc.status |= STA_DEL; ret = do_adjtimex(&txc); if (ret < 0) pr_err("failed to set leap second flags\n"); /* arm Timer to clear leap second flags */ mod_timer(&stp_timer, jiffies + msecs_to_jiffies(14400 * MSEC_PER_SEC)); } else { /* The day the leap second is scheduled for hasn't been reached. Retry * in one hour. */ mod_timer(&stp_timer, jiffies + msecs_to_jiffies(3600 * MSEC_PER_SEC)); } } /* * STP work. Check for the STP state and take over the clock * synchronization if the STP clock source is usable. */ static void stp_work_fn(struct work_struct *work) { struct clock_sync_data stp_sync; int rc; /* prevent multiple execution. */ mutex_lock(&stp_mutex); if (!stp_online) { chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL); del_timer_sync(&stp_timer); goto out_unlock; } rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xf0e0, NULL); if (rc) goto out_unlock; rc = __store_stpinfo(); if (rc || stp_info.c == 0) goto out_unlock; /* Skip synchronization if the clock is already in sync. */ if (!check_sync_clock()) { memset(&stp_sync, 0, sizeof(stp_sync)); cpus_read_lock(); atomic_set(&stp_sync.cpus, num_online_cpus() - 1); stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask); cpus_read_unlock(); } if (!check_sync_clock()) /* * There is a usable clock but the synchronization failed. * Retry after a second. */ mod_timer(&stp_timer, jiffies + msecs_to_jiffies(MSEC_PER_SEC)); else if (stp_info.lu) stp_check_leap(); out_unlock: mutex_unlock(&stp_mutex); } /* * STP subsys sysfs interface functions */ static struct bus_type stp_subsys = { .name = "stp", .dev_name = "stp", }; static ssize_t ctn_id_show(struct device *dev, struct device_attribute *attr, char *buf) { ssize_t ret = -ENODATA; mutex_lock(&stp_mutex); if (stpinfo_valid()) ret = sprintf(buf, "%016lx\n", *(unsigned long *) stp_info.ctnid); mutex_unlock(&stp_mutex); return ret; } static DEVICE_ATTR_RO(ctn_id); static ssize_t ctn_type_show(struct device *dev, struct device_attribute *attr, char *buf) { ssize_t ret = -ENODATA; mutex_lock(&stp_mutex); if (stpinfo_valid()) ret = sprintf(buf, "%i\n", stp_info.ctn); mutex_unlock(&stp_mutex); return ret; } static DEVICE_ATTR_RO(ctn_type); static ssize_t dst_offset_show(struct device *dev, struct device_attribute *attr, char *buf) { ssize_t ret = -ENODATA; mutex_lock(&stp_mutex); if (stpinfo_valid() && (stp_info.vbits & 0x2000)) ret = sprintf(buf, "%i\n", (int)(s16) stp_info.dsto); mutex_unlock(&stp_mutex); return ret; } static DEVICE_ATTR_RO(dst_offset); static ssize_t leap_seconds_show(struct device *dev, struct device_attribute *attr, char *buf) { ssize_t ret = -ENODATA; mutex_lock(&stp_mutex); if (stpinfo_valid() && (stp_info.vbits & 0x8000)) ret = sprintf(buf, "%i\n", (int)(s16) stp_info.leaps); mutex_unlock(&stp_mutex); return ret; } static DEVICE_ATTR_RO(leap_seconds); static ssize_t leap_seconds_scheduled_show(struct device *dev, struct device_attribute *attr, char *buf) { struct stp_stzi stzi; ssize_t ret; mutex_lock(&stp_mutex); if (!stpinfo_valid() || !(stp_info.vbits & 0x8000) || !stp_info.lu) { mutex_unlock(&stp_mutex); return -ENODATA; } ret = chsc_stzi(stp_page, &stzi, sizeof(stzi)); mutex_unlock(&stp_mutex); if (ret < 0) return ret; if (!stzi.lsoib.p) return sprintf(buf, "0,0\n"); return sprintf(buf, "%lu,%d\n", tod_to_ns(stzi.lsoib.nlsout - TOD_UNIX_EPOCH) / NSEC_PER_SEC, stzi.lsoib.nlso - stzi.lsoib.also); } static DEVICE_ATTR_RO(leap_seconds_scheduled); static ssize_t stratum_show(struct device *dev, struct device_attribute *attr, char *buf) { ssize_t ret = -ENODATA; mutex_lock(&stp_mutex); if (stpinfo_valid()) ret = sprintf(buf, "%i\n", (int)(s16) stp_info.stratum); mutex_unlock(&stp_mutex); return ret; } static DEVICE_ATTR_RO(stratum); static ssize_t time_offset_show(struct device *dev, struct device_attribute *attr, char *buf) { ssize_t ret = -ENODATA; mutex_lock(&stp_mutex); if (stpinfo_valid() && (stp_info.vbits & 0x0800)) ret = sprintf(buf, "%i\n", (int) stp_info.tto); mutex_unlock(&stp_mutex); return ret; } static DEVICE_ATTR_RO(time_offset); static ssize_t time_zone_offset_show(struct device *dev, struct device_attribute *attr, char *buf) { ssize_t ret = -ENODATA; mutex_lock(&stp_mutex); if (stpinfo_valid() && (stp_info.vbits & 0x4000)) ret = sprintf(buf, "%i\n", (int)(s16) stp_info.tzo); mutex_unlock(&stp_mutex); return ret; } static DEVICE_ATTR_RO(time_zone_offset); static ssize_t timing_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { ssize_t ret = -ENODATA; mutex_lock(&stp_mutex); if (stpinfo_valid()) ret = sprintf(buf, "%i\n", stp_info.tmd); mutex_unlock(&stp_mutex); return ret; } static DEVICE_ATTR_RO(timing_mode); static ssize_t timing_state_show(struct device *dev, struct device_attribute *attr, char *buf) { ssize_t ret = -ENODATA; mutex_lock(&stp_mutex); if (stpinfo_valid()) ret = sprintf(buf, "%i\n", stp_info.tst); mutex_unlock(&stp_mutex); return ret; } static DEVICE_ATTR_RO(timing_state); static ssize_t online_show(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%i\n", stp_online); } static ssize_t online_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned int value; value = simple_strtoul(buf, NULL, 0); if (value != 0 && value != 1) return -EINVAL; if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) return -EOPNOTSUPP; mutex_lock(&stp_mutex); stp_online = value; if (stp_online) set_bit(CLOCK_SYNC_STP, &clock_sync_flags); else clear_bit(CLOCK_SYNC_STP, &clock_sync_flags); queue_work(time_sync_wq, &stp_work); mutex_unlock(&stp_mutex); return count; } /* * Can't use DEVICE_ATTR because the attribute should be named * stp/online but dev_attr_online already exists in this file .. */ static DEVICE_ATTR_RW(online); static struct attribute *stp_dev_attrs[] = { &dev_attr_ctn_id.attr, &dev_attr_ctn_type.attr, &dev_attr_dst_offset.attr, &dev_attr_leap_seconds.attr, &dev_attr_online.attr, &dev_attr_leap_seconds_scheduled.attr, &dev_attr_stratum.attr, &dev_attr_time_offset.attr, &dev_attr_time_zone_offset.attr, &dev_attr_timing_mode.attr, &dev_attr_timing_state.attr, NULL }; ATTRIBUTE_GROUPS(stp_dev); static int __init stp_init_sysfs(void) { return subsys_system_register(&stp_subsys, stp_dev_groups); } device_initcall(stp_init_sysfs);