// SPDX-License-Identifier: GPL-2.0 // // TSE-850 audio - ASoC driver for the Axentia TSE-850 with a PCM5142 codec // // Copyright (C) 2016 Axentia Technologies AB // // Author: Peter Rosin <peda@axentia.se> // // loop1 relays // IN1 +---o +------------+ o---+ OUT1 // \ / // + + // | / | // +--o +--. | // | add | | // | V | // | .---. | // DAC +----------->|Sum|---+ // | '---' | // | | // + + // // IN2 +---o--+------------+--o---+ OUT2 // loop2 relays // // The 'loop1' gpio pin controls two relays, which are either in loop // position, meaning that input and output are directly connected, or // they are in mixer position, meaning that the signal is passed through // the 'Sum' mixer. Similarly for 'loop2'. // // In the above, the 'loop1' relays are inactive, thus feeding IN1 to the // mixer (if 'add' is active) and feeding the mixer output to OUT1. The // 'loop2' relays are active, short-cutting the TSE-850 from channel 2. // IN1, IN2, OUT1 and OUT2 are TSE-850 connectors and DAC is the PCB name // of the (filtered) output from the PCM5142 codec. #include <linux/clk.h> #include <linux/gpio.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/of_gpio.h> #include <linux/regulator/consumer.h> #include <sound/soc.h> #include <sound/pcm_params.h> struct tse850_priv { struct gpio_desc *add; struct gpio_desc *loop1; struct gpio_desc *loop2; struct regulator *ana; int add_cache; int loop1_cache; int loop2_cache; }; static int tse850_get_mux1(struct snd_kcontrol *kctrl, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dapm_context *dapm = snd_soc_dapm_kcontrol_dapm(kctrl); struct snd_soc_card *card = dapm->card; struct tse850_priv *tse850 = snd_soc_card_get_drvdata(card); ucontrol->value.enumerated.item[0] = tse850->loop1_cache; return 0; } static int tse850_put_mux1(struct snd_kcontrol *kctrl, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dapm_context *dapm = snd_soc_dapm_kcontrol_dapm(kctrl); struct snd_soc_card *card = dapm->card; struct tse850_priv *tse850 = snd_soc_card_get_drvdata(card); struct soc_enum *e = (struct soc_enum *)kctrl->private_value; unsigned int val = ucontrol->value.enumerated.item[0]; if (val >= e->items) return -EINVAL; gpiod_set_value_cansleep(tse850->loop1, val); tse850->loop1_cache = val; return snd_soc_dapm_put_enum_double(kctrl, ucontrol); } static int tse850_get_mux2(struct snd_kcontrol *kctrl, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dapm_context *dapm = snd_soc_dapm_kcontrol_dapm(kctrl); struct snd_soc_card *card = dapm->card; struct tse850_priv *tse850 = snd_soc_card_get_drvdata(card); ucontrol->value.enumerated.item[0] = tse850->loop2_cache; return 0; } static int tse850_put_mux2(struct snd_kcontrol *kctrl, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dapm_context *dapm = snd_soc_dapm_kcontrol_dapm(kctrl); struct snd_soc_card *card = dapm->card; struct tse850_priv *tse850 = snd_soc_card_get_drvdata(card); struct soc_enum *e = (struct soc_enum *)kctrl->private_value; unsigned int val = ucontrol->value.enumerated.item[0]; if (val >= e->items) return -EINVAL; gpiod_set_value_cansleep(tse850->loop2, val); tse850->loop2_cache = val; return snd_soc_dapm_put_enum_double(kctrl, ucontrol); } static int tse850_get_mix(struct snd_kcontrol *kctrl, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dapm_context *dapm = snd_soc_dapm_kcontrol_dapm(kctrl); struct snd_soc_card *card = dapm->card; struct tse850_priv *tse850 = snd_soc_card_get_drvdata(card); ucontrol->value.enumerated.item[0] = tse850->add_cache; return 0; } static int tse850_put_mix(struct snd_kcontrol *kctrl, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dapm_context *dapm = snd_soc_dapm_kcontrol_dapm(kctrl); struct snd_soc_card *card = dapm->card; struct tse850_priv *tse850 = snd_soc_card_get_drvdata(card); int connect = !!ucontrol->value.integer.value[0]; if (tse850->add_cache == connect) return 0; /* * Hmmm, this gpiod_set_value_cansleep call should probably happen * inside snd_soc_dapm_mixer_update_power in the loop. */ gpiod_set_value_cansleep(tse850->add, connect); tse850->add_cache = connect; snd_soc_dapm_mixer_update_power(dapm, kctrl, connect, NULL); return 1; } static int tse850_get_ana(struct snd_kcontrol *kctrl, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dapm_context *dapm = snd_soc_dapm_kcontrol_dapm(kctrl); struct snd_soc_card *card = dapm->card; struct tse850_priv *tse850 = snd_soc_card_get_drvdata(card); int ret; ret = regulator_get_voltage(tse850->ana); if (ret < 0) return ret; /* * Map regulator output values like so: * -11.5V to "Low" (enum 0) * 11.5V-12.5V to "12V" (enum 1) * 12.5V-13.5V to "13V" (enum 2) * ... * 18.5V-19.5V to "19V" (enum 8) * 19.5V- to "20V" (enum 9) */ if (ret < 11000000) ret = 11000000; else if (ret > 20000000) ret = 20000000; ret -= 11000000; ret = (ret + 500000) / 1000000; ucontrol->value.enumerated.item[0] = ret; return 0; } static int tse850_put_ana(struct snd_kcontrol *kctrl, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dapm_context *dapm = snd_soc_dapm_kcontrol_dapm(kctrl); struct snd_soc_card *card = dapm->card; struct tse850_priv *tse850 = snd_soc_card_get_drvdata(card); struct soc_enum *e = (struct soc_enum *)kctrl->private_value; unsigned int uV = ucontrol->value.enumerated.item[0]; int ret; if (uV >= e->items) return -EINVAL; /* * Map enum zero (Low) to 2 volts on the regulator, do this since * the ana regulator is supplied by the system 12V voltage and * requesting anything below the system voltage causes the system * voltage to be passed through the regulator. Also, the ana * regulator induces noise when requesting voltages near the * system voltage. So, by mapping Low to 2V, that noise is * eliminated when all that is needed is 12V (the system voltage). */ if (uV) uV = 11000000 + (1000000 * uV); else uV = 2000000; ret = regulator_set_voltage(tse850->ana, uV, uV); if (ret < 0) return ret; return snd_soc_dapm_put_enum_double(kctrl, ucontrol); } static const char * const mux_text[] = { "Mixer", "Loop" }; static const struct soc_enum mux_enum = SOC_ENUM_SINGLE(SND_SOC_NOPM, 0, ARRAY_SIZE(mux_text), mux_text); static const struct snd_kcontrol_new mux1 = SOC_DAPM_ENUM_EXT("MUX1", mux_enum, tse850_get_mux1, tse850_put_mux1); static const struct snd_kcontrol_new mux2 = SOC_DAPM_ENUM_EXT("MUX2", mux_enum, tse850_get_mux2, tse850_put_mux2); #define TSE850_DAPM_SINGLE_EXT(xname, reg, shift, max, invert, xget, xput) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ .info = snd_soc_info_volsw, \ .get = xget, \ .put = xput, \ .private_value = SOC_SINGLE_VALUE(reg, shift, max, invert, 0) } static const struct snd_kcontrol_new mix[] = { TSE850_DAPM_SINGLE_EXT("IN Switch", SND_SOC_NOPM, 0, 1, 0, tse850_get_mix, tse850_put_mix), }; static const char * const ana_text[] = { "Low", "12V", "13V", "14V", "15V", "16V", "17V", "18V", "19V", "20V" }; static const struct soc_enum ana_enum = SOC_ENUM_SINGLE(SND_SOC_NOPM, 0, ARRAY_SIZE(ana_text), ana_text); static const struct snd_kcontrol_new out = SOC_DAPM_ENUM_EXT("ANA", ana_enum, tse850_get_ana, tse850_put_ana); static const struct snd_soc_dapm_widget tse850_dapm_widgets[] = { SND_SOC_DAPM_LINE("OUT1", NULL), SND_SOC_DAPM_LINE("OUT2", NULL), SND_SOC_DAPM_LINE("IN1", NULL), SND_SOC_DAPM_LINE("IN2", NULL), SND_SOC_DAPM_INPUT("DAC"), SND_SOC_DAPM_AIF_IN("AIFINL", "Playback", 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_AIF_IN("AIFINR", "Playback", 1, SND_SOC_NOPM, 0, 0), SOC_MIXER_ARRAY("MIX", SND_SOC_NOPM, 0, 0, mix), SND_SOC_DAPM_MUX("MUX1", SND_SOC_NOPM, 0, 0, &mux1), SND_SOC_DAPM_MUX("MUX2", SND_SOC_NOPM, 0, 0, &mux2), SND_SOC_DAPM_OUT_DRV("OUT", SND_SOC_NOPM, 0, 0, &out, 1), }; /* * These connections are not entirely correct, since both IN1 and IN2 * are always fed to MIX (if the "IN switch" is set so), i.e. without * regard to the loop1 and loop2 relays that according to this only * control MUX1 and MUX2 but in fact also control how the input signals * are routed. * But, 1) I don't know how to do it right, and 2) it doesn't seem to * matter in practice since nothing is powered in those sections anyway. */ static const struct snd_soc_dapm_route tse850_intercon[] = { { "OUT1", NULL, "MUX1" }, { "OUT2", NULL, "MUX2" }, { "MUX1", "Loop", "IN1" }, { "MUX1", "Mixer", "OUT" }, { "MUX2", "Loop", "IN2" }, { "MUX2", "Mixer", "OUT" }, { "OUT", NULL, "MIX" }, { "MIX", NULL, "DAC" }, { "MIX", "IN Switch", "IN1" }, { "MIX", "IN Switch", "IN2" }, /* connect board input to the codec left channel output pin */ { "DAC", NULL, "OUTL" }, }; SND_SOC_DAILINK_DEFS(pcm, DAILINK_COMP_ARRAY(COMP_EMPTY()), DAILINK_COMP_ARRAY(COMP_CODEC(NULL, "pcm512x-hifi")), DAILINK_COMP_ARRAY(COMP_EMPTY())); static struct snd_soc_dai_link tse850_dailink = { .name = "TSE-850", .stream_name = "TSE-850-PCM", .dai_fmt = SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_CBP_CFC, SND_SOC_DAILINK_REG(pcm), }; static struct snd_soc_card tse850_card = { .name = "TSE-850-ASoC", .owner = THIS_MODULE, .dai_link = &tse850_dailink, .num_links = 1, .dapm_widgets = tse850_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(tse850_dapm_widgets), .dapm_routes = tse850_intercon, .num_dapm_routes = ARRAY_SIZE(tse850_intercon), .fully_routed = true, }; static int tse850_dt_init(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct device_node *codec_np, *cpu_np; struct snd_soc_dai_link *dailink = &tse850_dailink; if (!np) { dev_err(&pdev->dev, "only device tree supported\n"); return -EINVAL; } cpu_np = of_parse_phandle(np, "axentia,cpu-dai", 0); if (!cpu_np) { dev_err(&pdev->dev, "failed to get cpu dai\n"); return -EINVAL; } dailink->cpus->of_node = cpu_np; dailink->platforms->of_node = cpu_np; of_node_put(cpu_np); codec_np = of_parse_phandle(np, "axentia,audio-codec", 0); if (!codec_np) { dev_err(&pdev->dev, "failed to get codec info\n"); return -EINVAL; } dailink->codecs->of_node = codec_np; of_node_put(codec_np); return 0; } static int tse850_probe(struct platform_device *pdev) { struct snd_soc_card *card = &tse850_card; struct device *dev = card->dev = &pdev->dev; struct tse850_priv *tse850; int ret; tse850 = devm_kzalloc(dev, sizeof(*tse850), GFP_KERNEL); if (!tse850) return -ENOMEM; snd_soc_card_set_drvdata(card, tse850); ret = tse850_dt_init(pdev); if (ret) { dev_err(dev, "failed to init dt info\n"); return ret; } tse850->add = devm_gpiod_get(dev, "axentia,add", GPIOD_OUT_HIGH); if (IS_ERR(tse850->add)) return dev_err_probe(dev, PTR_ERR(tse850->add), "failed to get 'add' gpio\n"); tse850->add_cache = 1; tse850->loop1 = devm_gpiod_get(dev, "axentia,loop1", GPIOD_OUT_HIGH); if (IS_ERR(tse850->loop1)) return dev_err_probe(dev, PTR_ERR(tse850->loop1), "failed to get 'loop1' gpio\n"); tse850->loop1_cache = 1; tse850->loop2 = devm_gpiod_get(dev, "axentia,loop2", GPIOD_OUT_HIGH); if (IS_ERR(tse850->loop2)) return dev_err_probe(dev, PTR_ERR(tse850->loop2), "failed to get 'loop2' gpio\n"); tse850->loop2_cache = 1; tse850->ana = devm_regulator_get(dev, "axentia,ana"); if (IS_ERR(tse850->ana)) return dev_err_probe(dev, PTR_ERR(tse850->ana), "failed to get 'ana' regulator\n"); ret = regulator_enable(tse850->ana); if (ret < 0) { dev_err(dev, "failed to enable the 'ana' regulator\n"); return ret; } ret = snd_soc_register_card(card); if (ret) { dev_err(dev, "snd_soc_register_card failed\n"); goto err_disable_ana; } return 0; err_disable_ana: regulator_disable(tse850->ana); return ret; } static void tse850_remove(struct platform_device *pdev) { struct snd_soc_card *card = platform_get_drvdata(pdev); struct tse850_priv *tse850 = snd_soc_card_get_drvdata(card); snd_soc_unregister_card(card); regulator_disable(tse850->ana); } static const struct of_device_id tse850_dt_ids[] = { { .compatible = "axentia,tse850-pcm5142", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, tse850_dt_ids); static struct platform_driver tse850_driver = { .driver = { .name = "axentia-tse850-pcm5142", .of_match_table = tse850_dt_ids, }, .probe = tse850_probe, .remove_new = tse850_remove, }; module_platform_driver(tse850_driver); /* Module information */ MODULE_AUTHOR("Peter Rosin <peda@axentia.se>"); MODULE_DESCRIPTION("ALSA SoC driver for TSE-850 with PCM5142 codec"); MODULE_LICENSE("GPL v2");