// SPDX-License-Identifier: GPL-2.0-only /* * Test for x86 KVM_CAP_SYNC_REGS * * Copyright (C) 2018, Google LLC. * * Verifies expected behavior of x86 KVM_CAP_SYNC_REGS functionality, * including requesting an invalid register set, updates to/from values * in kvm_run.s.regs when kvm_valid_regs and kvm_dirty_regs are toggled. */ #define _GNU_SOURCE /* for program_invocation_short_name */ #include <fcntl.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/ioctl.h> #include <pthread.h> #include "test_util.h" #include "kvm_util.h" #include "processor.h" #define UCALL_PIO_PORT ((uint16_t)0x1000) struct ucall uc_none = { .cmd = UCALL_NONE, }; /* * ucall is embedded here to protect against compiler reshuffling registers * before calling a function. In this test we only need to get KVM_EXIT_IO * vmexit and preserve RBX, no additional information is needed. */ void guest_code(void) { asm volatile("1: in %[port], %%al\n" "add $0x1, %%rbx\n" "jmp 1b" : : [port] "d" (UCALL_PIO_PORT), "D" (&uc_none) : "rax", "rbx"); } static void compare_regs(struct kvm_regs *left, struct kvm_regs *right) { #define REG_COMPARE(reg) \ TEST_ASSERT(left->reg == right->reg, \ "Register " #reg \ " values did not match: 0x%llx, 0x%llx\n", \ left->reg, right->reg) REG_COMPARE(rax); REG_COMPARE(rbx); REG_COMPARE(rcx); REG_COMPARE(rdx); REG_COMPARE(rsi); REG_COMPARE(rdi); REG_COMPARE(rsp); REG_COMPARE(rbp); REG_COMPARE(r8); REG_COMPARE(r9); REG_COMPARE(r10); REG_COMPARE(r11); REG_COMPARE(r12); REG_COMPARE(r13); REG_COMPARE(r14); REG_COMPARE(r15); REG_COMPARE(rip); REG_COMPARE(rflags); #undef REG_COMPARE } static void compare_sregs(struct kvm_sregs *left, struct kvm_sregs *right) { } static void compare_vcpu_events(struct kvm_vcpu_events *left, struct kvm_vcpu_events *right) { } #define TEST_SYNC_FIELDS (KVM_SYNC_X86_REGS|KVM_SYNC_X86_SREGS|KVM_SYNC_X86_EVENTS) #define INVALID_SYNC_FIELD 0x80000000 /* * Set an exception as pending *and* injected while KVM is processing events. * KVM is supposed to ignore/drop pending exceptions if userspace is also * requesting that an exception be injected. */ static void *race_events_inj_pen(void *arg) { struct kvm_run *run = (struct kvm_run *)arg; struct kvm_vcpu_events *events = &run->s.regs.events; WRITE_ONCE(events->exception.nr, UD_VECTOR); for (;;) { WRITE_ONCE(run->kvm_dirty_regs, KVM_SYNC_X86_EVENTS); WRITE_ONCE(events->flags, 0); WRITE_ONCE(events->exception.injected, 1); WRITE_ONCE(events->exception.pending, 1); pthread_testcancel(); } return NULL; } /* * Set an invalid exception vector while KVM is processing events. KVM is * supposed to reject any vector >= 32, as well as NMIs (vector 2). */ static void *race_events_exc(void *arg) { struct kvm_run *run = (struct kvm_run *)arg; struct kvm_vcpu_events *events = &run->s.regs.events; for (;;) { WRITE_ONCE(run->kvm_dirty_regs, KVM_SYNC_X86_EVENTS); WRITE_ONCE(events->flags, 0); WRITE_ONCE(events->exception.nr, UD_VECTOR); WRITE_ONCE(events->exception.pending, 1); WRITE_ONCE(events->exception.nr, 255); pthread_testcancel(); } return NULL; } /* * Toggle CR4.PAE while KVM is processing SREGS, EFER.LME=1 with CR4.PAE=0 is * illegal, and KVM's MMU heavily relies on vCPU state being valid. */ static noinline void *race_sregs_cr4(void *arg) { struct kvm_run *run = (struct kvm_run *)arg; __u64 *cr4 = &run->s.regs.sregs.cr4; __u64 pae_enabled = *cr4; __u64 pae_disabled = *cr4 & ~X86_CR4_PAE; for (;;) { WRITE_ONCE(run->kvm_dirty_regs, KVM_SYNC_X86_SREGS); WRITE_ONCE(*cr4, pae_enabled); asm volatile(".rept 512\n\t" "nop\n\t" ".endr"); WRITE_ONCE(*cr4, pae_disabled); pthread_testcancel(); } return NULL; } static void race_sync_regs(void *racer) { const time_t TIMEOUT = 2; /* seconds, roughly */ struct kvm_x86_state *state; struct kvm_translation tr; struct kvm_vcpu *vcpu; struct kvm_run *run; struct kvm_vm *vm; pthread_t thread; time_t t; vm = vm_create_with_one_vcpu(&vcpu, guest_code); run = vcpu->run; run->kvm_valid_regs = KVM_SYNC_X86_SREGS; vcpu_run(vcpu); run->kvm_valid_regs = 0; /* Save state *before* spawning the thread that mucks with vCPU state. */ state = vcpu_save_state(vcpu); /* * Selftests run 64-bit guests by default, both EFER.LME and CR4.PAE * should already be set in guest state. */ TEST_ASSERT((run->s.regs.sregs.cr4 & X86_CR4_PAE) && (run->s.regs.sregs.efer & EFER_LME), "vCPU should be in long mode, CR4.PAE=%d, EFER.LME=%d", !!(run->s.regs.sregs.cr4 & X86_CR4_PAE), !!(run->s.regs.sregs.efer & EFER_LME)); TEST_ASSERT_EQ(pthread_create(&thread, NULL, racer, (void *)run), 0); for (t = time(NULL) + TIMEOUT; time(NULL) < t;) { /* * Reload known good state if the vCPU triple faults, e.g. due * to the unhandled #GPs being injected. VMX preserves state * on shutdown, but SVM synthesizes an INIT as the VMCB state * is architecturally undefined on triple fault. */ if (!__vcpu_run(vcpu) && run->exit_reason == KVM_EXIT_SHUTDOWN) vcpu_load_state(vcpu, state); if (racer == race_sregs_cr4) { tr = (struct kvm_translation) { .linear_address = 0 }; __vcpu_ioctl(vcpu, KVM_TRANSLATE, &tr); } } TEST_ASSERT_EQ(pthread_cancel(thread), 0); TEST_ASSERT_EQ(pthread_join(thread, NULL), 0); kvm_x86_state_cleanup(state); kvm_vm_free(vm); } int main(int argc, char *argv[]) { struct kvm_vcpu *vcpu; struct kvm_vm *vm; struct kvm_run *run; struct kvm_regs regs; struct kvm_sregs sregs; struct kvm_vcpu_events events; int rv, cap; cap = kvm_check_cap(KVM_CAP_SYNC_REGS); TEST_REQUIRE((cap & TEST_SYNC_FIELDS) == TEST_SYNC_FIELDS); TEST_REQUIRE(!(cap & INVALID_SYNC_FIELD)); vm = vm_create_with_one_vcpu(&vcpu, guest_code); run = vcpu->run; /* Request reading invalid register set from VCPU. */ run->kvm_valid_regs = INVALID_SYNC_FIELD; rv = _vcpu_run(vcpu); TEST_ASSERT(rv < 0 && errno == EINVAL, "Invalid kvm_valid_regs did not cause expected KVM_RUN error: %d\n", rv); run->kvm_valid_regs = 0; run->kvm_valid_regs = INVALID_SYNC_FIELD | TEST_SYNC_FIELDS; rv = _vcpu_run(vcpu); TEST_ASSERT(rv < 0 && errno == EINVAL, "Invalid kvm_valid_regs did not cause expected KVM_RUN error: %d\n", rv); run->kvm_valid_regs = 0; /* Request setting invalid register set into VCPU. */ run->kvm_dirty_regs = INVALID_SYNC_FIELD; rv = _vcpu_run(vcpu); TEST_ASSERT(rv < 0 && errno == EINVAL, "Invalid kvm_dirty_regs did not cause expected KVM_RUN error: %d\n", rv); run->kvm_dirty_regs = 0; run->kvm_dirty_regs = INVALID_SYNC_FIELD | TEST_SYNC_FIELDS; rv = _vcpu_run(vcpu); TEST_ASSERT(rv < 0 && errno == EINVAL, "Invalid kvm_dirty_regs did not cause expected KVM_RUN error: %d\n", rv); run->kvm_dirty_regs = 0; /* Request and verify all valid register sets. */ /* TODO: BUILD TIME CHECK: TEST_ASSERT(KVM_SYNC_X86_NUM_FIELDS != 3); */ run->kvm_valid_regs = TEST_SYNC_FIELDS; rv = _vcpu_run(vcpu); TEST_ASSERT_KVM_EXIT_REASON(vcpu, KVM_EXIT_IO); vcpu_regs_get(vcpu, ®s); compare_regs(®s, &run->s.regs.regs); vcpu_sregs_get(vcpu, &sregs); compare_sregs(&sregs, &run->s.regs.sregs); vcpu_events_get(vcpu, &events); compare_vcpu_events(&events, &run->s.regs.events); /* Set and verify various register values. */ run->s.regs.regs.rbx = 0xBAD1DEA; run->s.regs.sregs.apic_base = 1 << 11; /* TODO run->s.regs.events.XYZ = ABC; */ run->kvm_valid_regs = TEST_SYNC_FIELDS; run->kvm_dirty_regs = KVM_SYNC_X86_REGS | KVM_SYNC_X86_SREGS; rv = _vcpu_run(vcpu); TEST_ASSERT_KVM_EXIT_REASON(vcpu, KVM_EXIT_IO); TEST_ASSERT(run->s.regs.regs.rbx == 0xBAD1DEA + 1, "rbx sync regs value incorrect 0x%llx.", run->s.regs.regs.rbx); TEST_ASSERT(run->s.regs.sregs.apic_base == 1 << 11, "apic_base sync regs value incorrect 0x%llx.", run->s.regs.sregs.apic_base); vcpu_regs_get(vcpu, ®s); compare_regs(®s, &run->s.regs.regs); vcpu_sregs_get(vcpu, &sregs); compare_sregs(&sregs, &run->s.regs.sregs); vcpu_events_get(vcpu, &events); compare_vcpu_events(&events, &run->s.regs.events); /* Clear kvm_dirty_regs bits, verify new s.regs values are * overwritten with existing guest values. */ run->kvm_valid_regs = TEST_SYNC_FIELDS; run->kvm_dirty_regs = 0; run->s.regs.regs.rbx = 0xDEADBEEF; rv = _vcpu_run(vcpu); TEST_ASSERT_KVM_EXIT_REASON(vcpu, KVM_EXIT_IO); TEST_ASSERT(run->s.regs.regs.rbx != 0xDEADBEEF, "rbx sync regs value incorrect 0x%llx.", run->s.regs.regs.rbx); /* Clear kvm_valid_regs bits and kvm_dirty_bits. * Verify s.regs values are not overwritten with existing guest values * and that guest values are not overwritten with kvm_sync_regs values. */ run->kvm_valid_regs = 0; run->kvm_dirty_regs = 0; run->s.regs.regs.rbx = 0xAAAA; regs.rbx = 0xBAC0; vcpu_regs_set(vcpu, ®s); rv = _vcpu_run(vcpu); TEST_ASSERT_KVM_EXIT_REASON(vcpu, KVM_EXIT_IO); TEST_ASSERT(run->s.regs.regs.rbx == 0xAAAA, "rbx sync regs value incorrect 0x%llx.", run->s.regs.regs.rbx); vcpu_regs_get(vcpu, ®s); TEST_ASSERT(regs.rbx == 0xBAC0 + 1, "rbx guest value incorrect 0x%llx.", regs.rbx); /* Clear kvm_valid_regs bits. Verify s.regs values are not overwritten * with existing guest values but that guest values are overwritten * with kvm_sync_regs values. */ run->kvm_valid_regs = 0; run->kvm_dirty_regs = TEST_SYNC_FIELDS; run->s.regs.regs.rbx = 0xBBBB; rv = _vcpu_run(vcpu); TEST_ASSERT_KVM_EXIT_REASON(vcpu, KVM_EXIT_IO); TEST_ASSERT(run->s.regs.regs.rbx == 0xBBBB, "rbx sync regs value incorrect 0x%llx.", run->s.regs.regs.rbx); vcpu_regs_get(vcpu, ®s); TEST_ASSERT(regs.rbx == 0xBBBB + 1, "rbx guest value incorrect 0x%llx.", regs.rbx); kvm_vm_free(vm); race_sync_regs(race_sregs_cr4); race_sync_regs(race_events_exc); race_sync_regs(race_events_inj_pen); return 0; }