// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2016-2022, NVIDIA CORPORATION. All rights reserved. */ #include <linux/delay.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of.h> #include <linux/phy/phy.h> #include <linux/regulator/consumer.h> #include <linux/platform_device.h> #include <linux/clk.h> #include <linux/slab.h> #include <soc/tegra/fuse.h> #include "xusb.h" /* FUSE USB_CALIB registers */ #define HS_CURR_LEVEL_PADX_SHIFT(x) ((x) ? (11 + (x - 1) * 6) : 0) #define HS_CURR_LEVEL_PAD_MASK 0x3f #define HS_TERM_RANGE_ADJ_SHIFT 7 #define HS_TERM_RANGE_ADJ_MASK 0xf #define HS_SQUELCH_SHIFT 29 #define HS_SQUELCH_MASK 0x7 #define RPD_CTRL_SHIFT 0 #define RPD_CTRL_MASK 0x1f /* XUSB PADCTL registers */ #define XUSB_PADCTL_USB2_PAD_MUX 0x4 #define USB2_PORT_SHIFT(x) ((x) * 2) #define USB2_PORT_MASK 0x3 #define PORT_XUSB 1 #define HSIC_PORT_SHIFT(x) ((x) + 20) #define HSIC_PORT_MASK 0x1 #define PORT_HSIC 0 #define XUSB_PADCTL_USB2_PORT_CAP 0x8 #define XUSB_PADCTL_SS_PORT_CAP 0xc #define PORTX_CAP_SHIFT(x) ((x) * 4) #define PORT_CAP_MASK 0x3 #define PORT_CAP_DISABLED 0x0 #define PORT_CAP_HOST 0x1 #define PORT_CAP_DEVICE 0x2 #define PORT_CAP_OTG 0x3 #define XUSB_PADCTL_ELPG_PROGRAM 0x20 #define USB2_PORT_WAKE_INTERRUPT_ENABLE(x) BIT(x) #define USB2_PORT_WAKEUP_EVENT(x) BIT((x) + 7) #define SS_PORT_WAKE_INTERRUPT_ENABLE(x) BIT((x) + 14) #define SS_PORT_WAKEUP_EVENT(x) BIT((x) + 21) #define USB2_HSIC_PORT_WAKE_INTERRUPT_ENABLE(x) BIT((x) + 28) #define USB2_HSIC_PORT_WAKEUP_EVENT(x) BIT((x) + 30) #define ALL_WAKE_EVENTS \ (USB2_PORT_WAKEUP_EVENT(0) | USB2_PORT_WAKEUP_EVENT(1) | \ USB2_PORT_WAKEUP_EVENT(2) | SS_PORT_WAKEUP_EVENT(0) | \ SS_PORT_WAKEUP_EVENT(1) | SS_PORT_WAKEUP_EVENT(2) | \ USB2_HSIC_PORT_WAKEUP_EVENT(0)) #define XUSB_PADCTL_ELPG_PROGRAM_1 0x24 #define SSPX_ELPG_CLAMP_EN(x) BIT(0 + (x) * 3) #define SSPX_ELPG_CLAMP_EN_EARLY(x) BIT(1 + (x) * 3) #define SSPX_ELPG_VCORE_DOWN(x) BIT(2 + (x) * 3) #define XUSB_PADCTL_SS_PORT_CFG 0x2c #define PORTX_SPEED_SUPPORT_SHIFT(x) ((x) * 4) #define PORTX_SPEED_SUPPORT_MASK (0x3) #define PORT_SPEED_SUPPORT_GEN1 (0x0) #define XUSB_PADCTL_USB2_OTG_PADX_CTL0(x) (0x88 + (x) * 0x40) #define HS_CURR_LEVEL(x) ((x) & 0x3f) #define TERM_SEL BIT(25) #define USB2_OTG_PD BIT(26) #define USB2_OTG_PD2 BIT(27) #define USB2_OTG_PD2_OVRD_EN BIT(28) #define USB2_OTG_PD_ZI BIT(29) #define XUSB_PADCTL_USB2_OTG_PADX_CTL1(x) (0x8c + (x) * 0x40) #define USB2_OTG_PD_DR BIT(2) #define TERM_RANGE_ADJ(x) (((x) & 0xf) << 3) #define RPD_CTRL(x) (((x) & 0x1f) << 26) #define XUSB_PADCTL_USB2_BIAS_PAD_CTL0 0x284 #define BIAS_PAD_PD BIT(11) #define HS_SQUELCH_LEVEL(x) (((x) & 0x7) << 0) #define XUSB_PADCTL_USB2_BIAS_PAD_CTL1 0x288 #define USB2_TRK_START_TIMER(x) (((x) & 0x7f) << 12) #define USB2_TRK_DONE_RESET_TIMER(x) (((x) & 0x7f) << 19) #define USB2_PD_TRK BIT(26) #define USB2_TRK_COMPLETED BIT(31) #define XUSB_PADCTL_USB2_BIAS_PAD_CTL2 0x28c #define USB2_TRK_HW_MODE BIT(0) #define CYA_TRK_CODE_UPDATE_ON_IDLE BIT(31) #define XUSB_PADCTL_HSIC_PADX_CTL0(x) (0x300 + (x) * 0x20) #define HSIC_PD_TX_DATA0 BIT(1) #define HSIC_PD_TX_STROBE BIT(3) #define HSIC_PD_RX_DATA0 BIT(4) #define HSIC_PD_RX_STROBE BIT(6) #define HSIC_PD_ZI_DATA0 BIT(7) #define HSIC_PD_ZI_STROBE BIT(9) #define HSIC_RPD_DATA0 BIT(13) #define HSIC_RPD_STROBE BIT(15) #define HSIC_RPU_DATA0 BIT(16) #define HSIC_RPU_STROBE BIT(18) #define XUSB_PADCTL_HSIC_PAD_TRK_CTL0 0x340 #define HSIC_TRK_START_TIMER(x) (((x) & 0x7f) << 5) #define HSIC_TRK_DONE_RESET_TIMER(x) (((x) & 0x7f) << 12) #define HSIC_PD_TRK BIT(19) #define USB2_VBUS_ID 0x360 #define VBUS_OVERRIDE BIT(14) #define ID_OVERRIDE(x) (((x) & 0xf) << 18) #define ID_OVERRIDE_FLOATING ID_OVERRIDE(8) #define ID_OVERRIDE_GROUNDED ID_OVERRIDE(0) /* XUSB AO registers */ #define XUSB_AO_USB_DEBOUNCE_DEL (0x4) #define UHSIC_LINE_DEB_CNT(x) (((x) & 0xf) << 4) #define UTMIP_LINE_DEB_CNT(x) ((x) & 0xf) #define XUSB_AO_UTMIP_TRIGGERS(x) (0x40 + (x) * 4) #define CLR_WALK_PTR BIT(0) #define CAP_CFG BIT(1) #define CLR_WAKE_ALARM BIT(3) #define XUSB_AO_UHSIC_TRIGGERS(x) (0x60 + (x) * 4) #define HSIC_CLR_WALK_PTR BIT(0) #define HSIC_CLR_WAKE_ALARM BIT(3) #define HSIC_CAP_CFG BIT(4) #define XUSB_AO_UTMIP_SAVED_STATE(x) (0x70 + (x) * 4) #define SPEED(x) ((x) & 0x3) #define UTMI_HS SPEED(0) #define UTMI_FS SPEED(1) #define UTMI_LS SPEED(2) #define UTMI_RST SPEED(3) #define XUSB_AO_UHSIC_SAVED_STATE(x) (0x90 + (x) * 4) #define MODE(x) ((x) & 0x1) #define MODE_HS MODE(0) #define MODE_RST MODE(1) #define XUSB_AO_UTMIP_SLEEPWALK_STATUS(x) (0xa0 + (x) * 4) #define XUSB_AO_UTMIP_SLEEPWALK_CFG(x) (0xd0 + (x) * 4) #define XUSB_AO_UHSIC_SLEEPWALK_CFG(x) (0xf0 + (x) * 4) #define FAKE_USBOP_VAL BIT(0) #define FAKE_USBON_VAL BIT(1) #define FAKE_USBOP_EN BIT(2) #define FAKE_USBON_EN BIT(3) #define FAKE_STROBE_VAL BIT(0) #define FAKE_DATA_VAL BIT(1) #define FAKE_STROBE_EN BIT(2) #define FAKE_DATA_EN BIT(3) #define WAKE_WALK_EN BIT(14) #define MASTER_ENABLE BIT(15) #define LINEVAL_WALK_EN BIT(16) #define WAKE_VAL(x) (((x) & 0xf) << 17) #define WAKE_VAL_NONE WAKE_VAL(12) #define WAKE_VAL_ANY WAKE_VAL(15) #define WAKE_VAL_DS10 WAKE_VAL(2) #define LINE_WAKEUP_EN BIT(21) #define MASTER_CFG_SEL BIT(22) #define XUSB_AO_UTMIP_SLEEPWALK(x) (0x100 + (x) * 4) /* phase A */ #define USBOP_RPD_A BIT(0) #define USBON_RPD_A BIT(1) #define AP_A BIT(4) #define AN_A BIT(5) #define HIGHZ_A BIT(6) #define MASTER_ENABLE_A BIT(7) /* phase B */ #define USBOP_RPD_B BIT(8) #define USBON_RPD_B BIT(9) #define AP_B BIT(12) #define AN_B BIT(13) #define HIGHZ_B BIT(14) #define MASTER_ENABLE_B BIT(15) /* phase C */ #define USBOP_RPD_C BIT(16) #define USBON_RPD_C BIT(17) #define AP_C BIT(20) #define AN_C BIT(21) #define HIGHZ_C BIT(22) #define MASTER_ENABLE_C BIT(23) /* phase D */ #define USBOP_RPD_D BIT(24) #define USBON_RPD_D BIT(25) #define AP_D BIT(28) #define AN_D BIT(29) #define HIGHZ_D BIT(30) #define MASTER_ENABLE_D BIT(31) #define MASTER_ENABLE_B_C_D \ (MASTER_ENABLE_B | MASTER_ENABLE_C | MASTER_ENABLE_D) #define XUSB_AO_UHSIC_SLEEPWALK(x) (0x120 + (x) * 4) /* phase A */ #define RPD_STROBE_A BIT(0) #define RPD_DATA0_A BIT(1) #define RPU_STROBE_A BIT(2) #define RPU_DATA0_A BIT(3) /* phase B */ #define RPD_STROBE_B BIT(8) #define RPD_DATA0_B BIT(9) #define RPU_STROBE_B BIT(10) #define RPU_DATA0_B BIT(11) /* phase C */ #define RPD_STROBE_C BIT(16) #define RPD_DATA0_C BIT(17) #define RPU_STROBE_C BIT(18) #define RPU_DATA0_C BIT(19) /* phase D */ #define RPD_STROBE_D BIT(24) #define RPD_DATA0_D BIT(25) #define RPU_STROBE_D BIT(26) #define RPU_DATA0_D BIT(27) #define XUSB_AO_UTMIP_PAD_CFG(x) (0x130 + (x) * 4) #define FSLS_USE_XUSB_AO BIT(3) #define TRK_CTRL_USE_XUSB_AO BIT(4) #define RPD_CTRL_USE_XUSB_AO BIT(5) #define RPU_USE_XUSB_AO BIT(6) #define VREG_USE_XUSB_AO BIT(7) #define USBOP_VAL_PD BIT(8) #define USBON_VAL_PD BIT(9) #define E_DPD_OVRD_EN BIT(10) #define E_DPD_OVRD_VAL BIT(11) #define XUSB_AO_UHSIC_PAD_CFG(x) (0x150 + (x) * 4) #define STROBE_VAL_PD BIT(0) #define DATA0_VAL_PD BIT(1) #define USE_XUSB_AO BIT(4) #define TEGRA186_LANE(_name, _offset, _shift, _mask, _type) \ { \ .name = _name, \ .offset = _offset, \ .shift = _shift, \ .mask = _mask, \ .num_funcs = ARRAY_SIZE(tegra186_##_type##_functions), \ .funcs = tegra186_##_type##_functions, \ } struct tegra_xusb_fuse_calibration { u32 *hs_curr_level; u32 hs_squelch; u32 hs_term_range_adj; u32 rpd_ctrl; }; struct tegra186_xusb_padctl_context { u32 vbus_id; u32 usb2_pad_mux; u32 usb2_port_cap; u32 ss_port_cap; }; struct tegra186_xusb_padctl { struct tegra_xusb_padctl base; void __iomem *ao_regs; struct tegra_xusb_fuse_calibration calib; /* UTMI bias and tracking */ struct clk *usb2_trk_clk; unsigned int bias_pad_enable; /* padctl context */ struct tegra186_xusb_padctl_context context; }; static inline void ao_writel(struct tegra186_xusb_padctl *priv, u32 value, unsigned int offset) { writel(value, priv->ao_regs + offset); } static inline u32 ao_readl(struct tegra186_xusb_padctl *priv, unsigned int offset) { return readl(priv->ao_regs + offset); } static inline struct tegra186_xusb_padctl * to_tegra186_xusb_padctl(struct tegra_xusb_padctl *padctl) { return container_of(padctl, struct tegra186_xusb_padctl, base); } /* USB 2.0 UTMI PHY support */ static struct tegra_xusb_lane * tegra186_usb2_lane_probe(struct tegra_xusb_pad *pad, struct device_node *np, unsigned int index) { struct tegra_xusb_usb2_lane *usb2; int err; usb2 = kzalloc(sizeof(*usb2), GFP_KERNEL); if (!usb2) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&usb2->base.list); usb2->base.soc = &pad->soc->lanes[index]; usb2->base.index = index; usb2->base.pad = pad; usb2->base.np = np; err = tegra_xusb_lane_parse_dt(&usb2->base, np); if (err < 0) { kfree(usb2); return ERR_PTR(err); } return &usb2->base; } static void tegra186_usb2_lane_remove(struct tegra_xusb_lane *lane) { struct tegra_xusb_usb2_lane *usb2 = to_usb2_lane(lane); kfree(usb2); } static int tegra186_utmi_enable_phy_sleepwalk(struct tegra_xusb_lane *lane, enum usb_device_speed speed) { struct tegra_xusb_padctl *padctl = lane->pad->padctl; struct tegra186_xusb_padctl *priv = to_tegra186_xusb_padctl(padctl); unsigned int index = lane->index; u32 value; mutex_lock(&padctl->lock); /* ensure sleepwalk logic is disabled */ value = ao_readl(priv, XUSB_AO_UTMIP_SLEEPWALK_CFG(index)); value &= ~MASTER_ENABLE; ao_writel(priv, value, XUSB_AO_UTMIP_SLEEPWALK_CFG(index)); /* ensure sleepwalk logics are in low power mode */ value = ao_readl(priv, XUSB_AO_UTMIP_SLEEPWALK_CFG(index)); value |= MASTER_CFG_SEL; ao_writel(priv, value, XUSB_AO_UTMIP_SLEEPWALK_CFG(index)); /* set debounce time */ value = ao_readl(priv, XUSB_AO_USB_DEBOUNCE_DEL); value &= ~UTMIP_LINE_DEB_CNT(~0); value |= UTMIP_LINE_DEB_CNT(1); ao_writel(priv, value, XUSB_AO_USB_DEBOUNCE_DEL); /* ensure fake events of sleepwalk logic are desiabled */ value = ao_readl(priv, XUSB_AO_UTMIP_SLEEPWALK_CFG(index)); value &= ~(FAKE_USBOP_VAL | FAKE_USBON_VAL | FAKE_USBOP_EN | FAKE_USBON_EN); ao_writel(priv, value, XUSB_AO_UTMIP_SLEEPWALK_CFG(index)); /* ensure wake events of sleepwalk logic are not latched */ value = ao_readl(priv, XUSB_AO_UTMIP_SLEEPWALK_CFG(index)); value &= ~LINE_WAKEUP_EN; ao_writel(priv, value, XUSB_AO_UTMIP_SLEEPWALK_CFG(index)); /* disable wake event triggers of sleepwalk logic */ value = ao_readl(priv, XUSB_AO_UTMIP_SLEEPWALK_CFG(index)); value &= ~WAKE_VAL(~0); value |= WAKE_VAL_NONE; ao_writel(priv, value, XUSB_AO_UTMIP_SLEEPWALK_CFG(index)); /* power down the line state detectors of the pad */ value = ao_readl(priv, XUSB_AO_UTMIP_PAD_CFG(index)); value |= (USBOP_VAL_PD | USBON_VAL_PD); ao_writel(priv, value, XUSB_AO_UTMIP_PAD_CFG(index)); /* save state per speed */ value = ao_readl(priv, XUSB_AO_UTMIP_SAVED_STATE(index)); value &= ~SPEED(~0); switch (speed) { case USB_SPEED_HIGH: value |= UTMI_HS; break; case USB_SPEED_FULL: value |= UTMI_FS; break; case USB_SPEED_LOW: value |= UTMI_LS; break; default: value |= UTMI_RST; break; } ao_writel(priv, value, XUSB_AO_UTMIP_SAVED_STATE(index)); /* enable the trigger of the sleepwalk logic */ value = ao_readl(priv, XUSB_AO_UTMIP_SLEEPWALK_CFG(index)); value |= LINEVAL_WALK_EN; value &= ~WAKE_WALK_EN; ao_writel(priv, value, XUSB_AO_UTMIP_SLEEPWALK_CFG(index)); /* reset the walk pointer and clear the alarm of the sleepwalk logic, * as well as capture the configuration of the USB2.0 pad */ value = ao_readl(priv, XUSB_AO_UTMIP_TRIGGERS(index)); value |= (CLR_WALK_PTR | CLR_WAKE_ALARM | CAP_CFG); ao_writel(priv, value, XUSB_AO_UTMIP_TRIGGERS(index)); /* setup the pull-ups and pull-downs of the signals during the four * stages of sleepwalk. * if device is connected, program sleepwalk logic to maintain a J and * keep driving K upon seeing remote wake. */ value = USBOP_RPD_A | USBOP_RPD_B | USBOP_RPD_C | USBOP_RPD_D; value |= USBON_RPD_A | USBON_RPD_B | USBON_RPD_C | USBON_RPD_D; switch (speed) { case USB_SPEED_HIGH: case USB_SPEED_FULL: /* J state: D+/D- = high/low, K state: D+/D- = low/high */ value |= HIGHZ_A; value |= AP_A; value |= AN_B | AN_C | AN_D; if (padctl->soc->supports_lp_cfg_en) value |= MASTER_ENABLE_B_C_D; break; case USB_SPEED_LOW: /* J state: D+/D- = low/high, K state: D+/D- = high/low */ value |= HIGHZ_A; value |= AN_A; value |= AP_B | AP_C | AP_D; if (padctl->soc->supports_lp_cfg_en) value |= MASTER_ENABLE_B_C_D; break; default: value |= HIGHZ_A | HIGHZ_B | HIGHZ_C | HIGHZ_D; break; } ao_writel(priv, value, XUSB_AO_UTMIP_SLEEPWALK(index)); /* power up the line state detectors of the pad */ value = ao_readl(priv, XUSB_AO_UTMIP_PAD_CFG(index)); value &= ~(USBOP_VAL_PD | USBON_VAL_PD); ao_writel(priv, value, XUSB_AO_UTMIP_PAD_CFG(index)); usleep_range(150, 200); /* switch the electric control of the USB2.0 pad to XUSB_AO */ value = ao_readl(priv, XUSB_AO_UTMIP_PAD_CFG(index)); value |= FSLS_USE_XUSB_AO | TRK_CTRL_USE_XUSB_AO | RPD_CTRL_USE_XUSB_AO | RPU_USE_XUSB_AO | VREG_USE_XUSB_AO; ao_writel(priv, value, XUSB_AO_UTMIP_PAD_CFG(index)); /* set the wake signaling trigger events */ value = ao_readl(priv, XUSB_AO_UTMIP_SLEEPWALK_CFG(index)); value &= ~WAKE_VAL(~0); value |= WAKE_VAL_ANY; ao_writel(priv, value, XUSB_AO_UTMIP_SLEEPWALK_CFG(index)); /* enable the wake detection */ value = ao_readl(priv, XUSB_AO_UTMIP_SLEEPWALK_CFG(index)); value |= MASTER_ENABLE | LINE_WAKEUP_EN; ao_writel(priv, value, XUSB_AO_UTMIP_SLEEPWALK_CFG(index)); mutex_unlock(&padctl->lock); return 0; } static int tegra186_utmi_disable_phy_sleepwalk(struct tegra_xusb_lane *lane) { struct tegra_xusb_padctl *padctl = lane->pad->padctl; struct tegra186_xusb_padctl *priv = to_tegra186_xusb_padctl(padctl); unsigned int index = lane->index; u32 value; mutex_lock(&padctl->lock); /* disable the wake detection */ value = ao_readl(priv, XUSB_AO_UTMIP_SLEEPWALK_CFG(index)); value &= ~(MASTER_ENABLE | LINE_WAKEUP_EN); ao_writel(priv, value, XUSB_AO_UTMIP_SLEEPWALK_CFG(index)); /* switch the electric control of the USB2.0 pad to XUSB vcore logic */ value = ao_readl(priv, XUSB_AO_UTMIP_PAD_CFG(index)); value &= ~(FSLS_USE_XUSB_AO | TRK_CTRL_USE_XUSB_AO | RPD_CTRL_USE_XUSB_AO | RPU_USE_XUSB_AO | VREG_USE_XUSB_AO); ao_writel(priv, value, XUSB_AO_UTMIP_PAD_CFG(index)); /* disable wake event triggers of sleepwalk logic */ value = ao_readl(priv, XUSB_AO_UTMIP_SLEEPWALK_CFG(index)); value &= ~WAKE_VAL(~0); value |= WAKE_VAL_NONE; ao_writel(priv, value, XUSB_AO_UTMIP_SLEEPWALK_CFG(index)); if (padctl->soc->supports_lp_cfg_en) { /* disable the four stages of sleepwalk */ value = ao_readl(priv, XUSB_AO_UTMIP_SLEEPWALK(index)); value &= ~(MASTER_ENABLE_A | MASTER_ENABLE_B_C_D); ao_writel(priv, value, XUSB_AO_UTMIP_SLEEPWALK(index)); } /* power down the line state detectors of the port */ value = ao_readl(priv, XUSB_AO_UTMIP_PAD_CFG(index)); value |= USBOP_VAL_PD | USBON_VAL_PD; ao_writel(priv, value, XUSB_AO_UTMIP_PAD_CFG(index)); /* clear alarm of the sleepwalk logic */ value = ao_readl(priv, XUSB_AO_UTMIP_TRIGGERS(index)); value |= CLR_WAKE_ALARM; ao_writel(priv, value, XUSB_AO_UTMIP_TRIGGERS(index)); mutex_unlock(&padctl->lock); return 0; } static int tegra186_utmi_enable_phy_wake(struct tegra_xusb_lane *lane) { struct tegra_xusb_padctl *padctl = lane->pad->padctl; unsigned int index = lane->index; u32 value; mutex_lock(&padctl->lock); value = padctl_readl(padctl, XUSB_PADCTL_ELPG_PROGRAM); value &= ~ALL_WAKE_EVENTS; value |= USB2_PORT_WAKEUP_EVENT(index); padctl_writel(padctl, value, XUSB_PADCTL_ELPG_PROGRAM); usleep_range(10, 20); value = padctl_readl(padctl, XUSB_PADCTL_ELPG_PROGRAM); value &= ~ALL_WAKE_EVENTS; value |= USB2_PORT_WAKE_INTERRUPT_ENABLE(index); padctl_writel(padctl, value, XUSB_PADCTL_ELPG_PROGRAM); mutex_unlock(&padctl->lock); return 0; } static int tegra186_utmi_disable_phy_wake(struct tegra_xusb_lane *lane) { struct tegra_xusb_padctl *padctl = lane->pad->padctl; unsigned int index = lane->index; u32 value; mutex_lock(&padctl->lock); value = padctl_readl(padctl, XUSB_PADCTL_ELPG_PROGRAM); value &= ~ALL_WAKE_EVENTS; value &= ~USB2_PORT_WAKE_INTERRUPT_ENABLE(index); padctl_writel(padctl, value, XUSB_PADCTL_ELPG_PROGRAM); usleep_range(10, 20); value = padctl_readl(padctl, XUSB_PADCTL_ELPG_PROGRAM); value &= ~ALL_WAKE_EVENTS; value |= USB2_PORT_WAKEUP_EVENT(index); padctl_writel(padctl, value, XUSB_PADCTL_ELPG_PROGRAM); mutex_unlock(&padctl->lock); return 0; } static bool tegra186_utmi_phy_remote_wake_detected(struct tegra_xusb_lane *lane) { struct tegra_xusb_padctl *padctl = lane->pad->padctl; unsigned int index = lane->index; u32 value; value = padctl_readl(padctl, XUSB_PADCTL_ELPG_PROGRAM); if ((value & USB2_PORT_WAKE_INTERRUPT_ENABLE(index)) && (value & USB2_PORT_WAKEUP_EVENT(index))) return true; return false; } static const struct tegra_xusb_lane_ops tegra186_usb2_lane_ops = { .probe = tegra186_usb2_lane_probe, .remove = tegra186_usb2_lane_remove, .enable_phy_sleepwalk = tegra186_utmi_enable_phy_sleepwalk, .disable_phy_sleepwalk = tegra186_utmi_disable_phy_sleepwalk, .enable_phy_wake = tegra186_utmi_enable_phy_wake, .disable_phy_wake = tegra186_utmi_disable_phy_wake, .remote_wake_detected = tegra186_utmi_phy_remote_wake_detected, }; static void tegra186_utmi_bias_pad_power_on(struct tegra_xusb_padctl *padctl) { struct tegra186_xusb_padctl *priv = to_tegra186_xusb_padctl(padctl); struct device *dev = padctl->dev; u32 value; int err; mutex_lock(&padctl->lock); if (priv->bias_pad_enable++ > 0) { mutex_unlock(&padctl->lock); return; } err = clk_prepare_enable(priv->usb2_trk_clk); if (err < 0) dev_warn(dev, "failed to enable USB2 trk clock: %d\n", err); value = padctl_readl(padctl, XUSB_PADCTL_USB2_BIAS_PAD_CTL1); value &= ~USB2_TRK_START_TIMER(~0); value |= USB2_TRK_START_TIMER(0x1e); value &= ~USB2_TRK_DONE_RESET_TIMER(~0); value |= USB2_TRK_DONE_RESET_TIMER(0xa); padctl_writel(padctl, value, XUSB_PADCTL_USB2_BIAS_PAD_CTL1); value = padctl_readl(padctl, XUSB_PADCTL_USB2_BIAS_PAD_CTL0); value &= ~BIAS_PAD_PD; value &= ~HS_SQUELCH_LEVEL(~0); value |= HS_SQUELCH_LEVEL(priv->calib.hs_squelch); padctl_writel(padctl, value, XUSB_PADCTL_USB2_BIAS_PAD_CTL0); udelay(1); value = padctl_readl(padctl, XUSB_PADCTL_USB2_BIAS_PAD_CTL1); value &= ~USB2_PD_TRK; padctl_writel(padctl, value, XUSB_PADCTL_USB2_BIAS_PAD_CTL1); if (padctl->soc->poll_trk_completed) { err = padctl_readl_poll(padctl, XUSB_PADCTL_USB2_BIAS_PAD_CTL1, USB2_TRK_COMPLETED, USB2_TRK_COMPLETED, 100); if (err) { /* The failure with polling on trk complete will not * cause the failure of powering on the bias pad. */ dev_warn(dev, "failed to poll USB2 trk completed: %d\n", err); } value = padctl_readl(padctl, XUSB_PADCTL_USB2_BIAS_PAD_CTL1); value |= USB2_TRK_COMPLETED; padctl_writel(padctl, value, XUSB_PADCTL_USB2_BIAS_PAD_CTL1); } else { udelay(100); } if (padctl->soc->trk_hw_mode) { value = padctl_readl(padctl, XUSB_PADCTL_USB2_BIAS_PAD_CTL2); value |= USB2_TRK_HW_MODE; value &= ~CYA_TRK_CODE_UPDATE_ON_IDLE; padctl_writel(padctl, value, XUSB_PADCTL_USB2_BIAS_PAD_CTL2); } else { clk_disable_unprepare(priv->usb2_trk_clk); } mutex_unlock(&padctl->lock); } static void tegra186_utmi_bias_pad_power_off(struct tegra_xusb_padctl *padctl) { struct tegra186_xusb_padctl *priv = to_tegra186_xusb_padctl(padctl); u32 value; mutex_lock(&padctl->lock); if (WARN_ON(priv->bias_pad_enable == 0)) { mutex_unlock(&padctl->lock); return; } if (--priv->bias_pad_enable > 0) { mutex_unlock(&padctl->lock); return; } value = padctl_readl(padctl, XUSB_PADCTL_USB2_BIAS_PAD_CTL1); value |= USB2_PD_TRK; padctl_writel(padctl, value, XUSB_PADCTL_USB2_BIAS_PAD_CTL1); if (padctl->soc->trk_hw_mode) { value = padctl_readl(padctl, XUSB_PADCTL_USB2_BIAS_PAD_CTL2); value &= ~USB2_TRK_HW_MODE; padctl_writel(padctl, value, XUSB_PADCTL_USB2_BIAS_PAD_CTL2); clk_disable_unprepare(priv->usb2_trk_clk); } mutex_unlock(&padctl->lock); } static void tegra186_utmi_pad_power_on(struct phy *phy) { struct tegra_xusb_lane *lane = phy_get_drvdata(phy); struct tegra_xusb_padctl *padctl = lane->pad->padctl; struct tegra_xusb_usb2_port *port; struct device *dev = padctl->dev; unsigned int index = lane->index; u32 value; if (!phy) return; port = tegra_xusb_find_usb2_port(padctl, index); if (!port) { dev_err(dev, "no port found for USB2 lane %u\n", index); return; } dev_dbg(dev, "power on UTMI pad %u\n", index); tegra186_utmi_bias_pad_power_on(padctl); udelay(2); value = padctl_readl(padctl, XUSB_PADCTL_USB2_OTG_PADX_CTL0(index)); value &= ~USB2_OTG_PD; padctl_writel(padctl, value, XUSB_PADCTL_USB2_OTG_PADX_CTL0(index)); value = padctl_readl(padctl, XUSB_PADCTL_USB2_OTG_PADX_CTL1(index)); value &= ~USB2_OTG_PD_DR; padctl_writel(padctl, value, XUSB_PADCTL_USB2_OTG_PADX_CTL1(index)); } static void tegra186_utmi_pad_power_down(struct phy *phy) { struct tegra_xusb_lane *lane = phy_get_drvdata(phy); struct tegra_xusb_padctl *padctl = lane->pad->padctl; unsigned int index = lane->index; u32 value; if (!phy) return; dev_dbg(padctl->dev, "power down UTMI pad %u\n", index); value = padctl_readl(padctl, XUSB_PADCTL_USB2_OTG_PADX_CTL0(index)); value |= USB2_OTG_PD; padctl_writel(padctl, value, XUSB_PADCTL_USB2_OTG_PADX_CTL0(index)); value = padctl_readl(padctl, XUSB_PADCTL_USB2_OTG_PADX_CTL1(index)); value |= USB2_OTG_PD_DR; padctl_writel(padctl, value, XUSB_PADCTL_USB2_OTG_PADX_CTL1(index)); udelay(2); tegra186_utmi_bias_pad_power_off(padctl); } static int tegra186_xusb_padctl_vbus_override(struct tegra_xusb_padctl *padctl, bool status) { u32 value; dev_dbg(padctl->dev, "%s vbus override\n", status ? "set" : "clear"); value = padctl_readl(padctl, USB2_VBUS_ID); if (status) { value |= VBUS_OVERRIDE; value &= ~ID_OVERRIDE(~0); value |= ID_OVERRIDE_FLOATING; } else { value &= ~VBUS_OVERRIDE; } padctl_writel(padctl, value, USB2_VBUS_ID); return 0; } static int tegra186_xusb_padctl_id_override(struct tegra_xusb_padctl *padctl, bool status) { u32 value; dev_dbg(padctl->dev, "%s id override\n", status ? "set" : "clear"); value = padctl_readl(padctl, USB2_VBUS_ID); if (status) { if (value & VBUS_OVERRIDE) { value &= ~VBUS_OVERRIDE; padctl_writel(padctl, value, USB2_VBUS_ID); usleep_range(1000, 2000); value = padctl_readl(padctl, USB2_VBUS_ID); } value &= ~ID_OVERRIDE(~0); value |= ID_OVERRIDE_GROUNDED; } else { value &= ~ID_OVERRIDE(~0); value |= ID_OVERRIDE_FLOATING; } padctl_writel(padctl, value, USB2_VBUS_ID); return 0; } static int tegra186_utmi_phy_set_mode(struct phy *phy, enum phy_mode mode, int submode) { struct tegra_xusb_lane *lane = phy_get_drvdata(phy); struct tegra_xusb_padctl *padctl = lane->pad->padctl; struct tegra_xusb_usb2_port *port = tegra_xusb_find_usb2_port(padctl, lane->index); int err = 0; mutex_lock(&padctl->lock); dev_dbg(&port->base.dev, "%s: mode %d", __func__, mode); if (mode == PHY_MODE_USB_OTG) { if (submode == USB_ROLE_HOST) { tegra186_xusb_padctl_id_override(padctl, true); err = regulator_enable(port->supply); } else if (submode == USB_ROLE_DEVICE) { tegra186_xusb_padctl_vbus_override(padctl, true); } else if (submode == USB_ROLE_NONE) { /* * When port is peripheral only or role transitions to * USB_ROLE_NONE from USB_ROLE_DEVICE, regulator is not * enabled. */ if (regulator_is_enabled(port->supply)) regulator_disable(port->supply); tegra186_xusb_padctl_id_override(padctl, false); tegra186_xusb_padctl_vbus_override(padctl, false); } } mutex_unlock(&padctl->lock); return err; } static int tegra186_utmi_phy_power_on(struct phy *phy) { struct tegra_xusb_lane *lane = phy_get_drvdata(phy); struct tegra_xusb_usb2_lane *usb2 = to_usb2_lane(lane); struct tegra_xusb_padctl *padctl = lane->pad->padctl; struct tegra186_xusb_padctl *priv = to_tegra186_xusb_padctl(padctl); struct tegra_xusb_usb2_port *port; unsigned int index = lane->index; struct device *dev = padctl->dev; u32 value; port = tegra_xusb_find_usb2_port(padctl, index); if (!port) { dev_err(dev, "no port found for USB2 lane %u\n", index); return -ENODEV; } value = padctl_readl(padctl, XUSB_PADCTL_USB2_PAD_MUX); value &= ~(USB2_PORT_MASK << USB2_PORT_SHIFT(index)); value |= (PORT_XUSB << USB2_PORT_SHIFT(index)); padctl_writel(padctl, value, XUSB_PADCTL_USB2_PAD_MUX); value = padctl_readl(padctl, XUSB_PADCTL_USB2_PORT_CAP); value &= ~(PORT_CAP_MASK << PORTX_CAP_SHIFT(index)); if (port->mode == USB_DR_MODE_UNKNOWN) value |= (PORT_CAP_DISABLED << PORTX_CAP_SHIFT(index)); else if (port->mode == USB_DR_MODE_PERIPHERAL) value |= (PORT_CAP_DEVICE << PORTX_CAP_SHIFT(index)); else if (port->mode == USB_DR_MODE_HOST) value |= (PORT_CAP_HOST << PORTX_CAP_SHIFT(index)); else if (port->mode == USB_DR_MODE_OTG) value |= (PORT_CAP_OTG << PORTX_CAP_SHIFT(index)); padctl_writel(padctl, value, XUSB_PADCTL_USB2_PORT_CAP); value = padctl_readl(padctl, XUSB_PADCTL_USB2_OTG_PADX_CTL0(index)); value &= ~USB2_OTG_PD_ZI; value |= TERM_SEL; value &= ~HS_CURR_LEVEL(~0); if (usb2->hs_curr_level_offset) { int hs_current_level; hs_current_level = (int)priv->calib.hs_curr_level[index] + usb2->hs_curr_level_offset; if (hs_current_level < 0) hs_current_level = 0; if (hs_current_level > 0x3f) hs_current_level = 0x3f; value |= HS_CURR_LEVEL(hs_current_level); } else { value |= HS_CURR_LEVEL(priv->calib.hs_curr_level[index]); } padctl_writel(padctl, value, XUSB_PADCTL_USB2_OTG_PADX_CTL0(index)); value = padctl_readl(padctl, XUSB_PADCTL_USB2_OTG_PADX_CTL1(index)); value &= ~TERM_RANGE_ADJ(~0); value |= TERM_RANGE_ADJ(priv->calib.hs_term_range_adj); value &= ~RPD_CTRL(~0); value |= RPD_CTRL(priv->calib.rpd_ctrl); padctl_writel(padctl, value, XUSB_PADCTL_USB2_OTG_PADX_CTL1(index)); tegra186_utmi_pad_power_on(phy); return 0; } static int tegra186_utmi_phy_power_off(struct phy *phy) { tegra186_utmi_pad_power_down(phy); return 0; } static int tegra186_utmi_phy_init(struct phy *phy) { struct tegra_xusb_lane *lane = phy_get_drvdata(phy); struct tegra_xusb_padctl *padctl = lane->pad->padctl; struct tegra_xusb_usb2_port *port; unsigned int index = lane->index; struct device *dev = padctl->dev; int err; port = tegra_xusb_find_usb2_port(padctl, index); if (!port) { dev_err(dev, "no port found for USB2 lane %u\n", index); return -ENODEV; } if (port->supply && port->mode == USB_DR_MODE_HOST) { err = regulator_enable(port->supply); if (err) { dev_err(dev, "failed to enable port %u VBUS: %d\n", index, err); return err; } } return 0; } static int tegra186_utmi_phy_exit(struct phy *phy) { struct tegra_xusb_lane *lane = phy_get_drvdata(phy); struct tegra_xusb_padctl *padctl = lane->pad->padctl; struct tegra_xusb_usb2_port *port; unsigned int index = lane->index; struct device *dev = padctl->dev; int err; port = tegra_xusb_find_usb2_port(padctl, index); if (!port) { dev_err(dev, "no port found for USB2 lane %u\n", index); return -ENODEV; } if (port->supply && port->mode == USB_DR_MODE_HOST) { err = regulator_disable(port->supply); if (err) { dev_err(dev, "failed to disable port %u VBUS: %d\n", index, err); return err; } } return 0; } static const struct phy_ops utmi_phy_ops = { .init = tegra186_utmi_phy_init, .exit = tegra186_utmi_phy_exit, .power_on = tegra186_utmi_phy_power_on, .power_off = tegra186_utmi_phy_power_off, .set_mode = tegra186_utmi_phy_set_mode, .owner = THIS_MODULE, }; static struct tegra_xusb_pad * tegra186_usb2_pad_probe(struct tegra_xusb_padctl *padctl, const struct tegra_xusb_pad_soc *soc, struct device_node *np) { struct tegra186_xusb_padctl *priv = to_tegra186_xusb_padctl(padctl); struct tegra_xusb_usb2_pad *usb2; struct tegra_xusb_pad *pad; int err; usb2 = kzalloc(sizeof(*usb2), GFP_KERNEL); if (!usb2) return ERR_PTR(-ENOMEM); pad = &usb2->base; pad->ops = &tegra186_usb2_lane_ops; pad->soc = soc; err = tegra_xusb_pad_init(pad, padctl, np); if (err < 0) { kfree(usb2); goto out; } priv->usb2_trk_clk = devm_clk_get(&pad->dev, "trk"); if (IS_ERR(priv->usb2_trk_clk)) { err = PTR_ERR(priv->usb2_trk_clk); dev_dbg(&pad->dev, "failed to get usb2 trk clock: %d\n", err); goto unregister; } err = tegra_xusb_pad_register(pad, &utmi_phy_ops); if (err < 0) goto unregister; dev_set_drvdata(&pad->dev, pad); return pad; unregister: device_unregister(&pad->dev); out: return ERR_PTR(err); } static void tegra186_usb2_pad_remove(struct tegra_xusb_pad *pad) { struct tegra_xusb_usb2_pad *usb2 = to_usb2_pad(pad); kfree(usb2); } static const struct tegra_xusb_pad_ops tegra186_usb2_pad_ops = { .probe = tegra186_usb2_pad_probe, .remove = tegra186_usb2_pad_remove, }; static const char * const tegra186_usb2_functions[] = { "xusb", }; static int tegra186_usb2_port_enable(struct tegra_xusb_port *port) { return 0; } static void tegra186_usb2_port_disable(struct tegra_xusb_port *port) { } static struct tegra_xusb_lane * tegra186_usb2_port_map(struct tegra_xusb_port *port) { return tegra_xusb_find_lane(port->padctl, "usb2", port->index); } static const struct tegra_xusb_port_ops tegra186_usb2_port_ops = { .release = tegra_xusb_usb2_port_release, .remove = tegra_xusb_usb2_port_remove, .enable = tegra186_usb2_port_enable, .disable = tegra186_usb2_port_disable, .map = tegra186_usb2_port_map, }; /* SuperSpeed PHY support */ static struct tegra_xusb_lane * tegra186_usb3_lane_probe(struct tegra_xusb_pad *pad, struct device_node *np, unsigned int index) { struct tegra_xusb_usb3_lane *usb3; int err; usb3 = kzalloc(sizeof(*usb3), GFP_KERNEL); if (!usb3) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&usb3->base.list); usb3->base.soc = &pad->soc->lanes[index]; usb3->base.index = index; usb3->base.pad = pad; usb3->base.np = np; err = tegra_xusb_lane_parse_dt(&usb3->base, np); if (err < 0) { kfree(usb3); return ERR_PTR(err); } return &usb3->base; } static void tegra186_usb3_lane_remove(struct tegra_xusb_lane *lane) { struct tegra_xusb_usb3_lane *usb3 = to_usb3_lane(lane); kfree(usb3); } static int tegra186_usb3_enable_phy_sleepwalk(struct tegra_xusb_lane *lane, enum usb_device_speed speed) { struct tegra_xusb_padctl *padctl = lane->pad->padctl; unsigned int index = lane->index; u32 value; mutex_lock(&padctl->lock); value = padctl_readl(padctl, XUSB_PADCTL_ELPG_PROGRAM_1); value |= SSPX_ELPG_CLAMP_EN_EARLY(index); padctl_writel(padctl, value, XUSB_PADCTL_ELPG_PROGRAM_1); usleep_range(100, 200); value = padctl_readl(padctl, XUSB_PADCTL_ELPG_PROGRAM_1); value |= SSPX_ELPG_CLAMP_EN(index); padctl_writel(padctl, value, XUSB_PADCTL_ELPG_PROGRAM_1); usleep_range(250, 350); mutex_unlock(&padctl->lock); return 0; } static int tegra186_usb3_disable_phy_sleepwalk(struct tegra_xusb_lane *lane) { struct tegra_xusb_padctl *padctl = lane->pad->padctl; unsigned int index = lane->index; u32 value; mutex_lock(&padctl->lock); value = padctl_readl(padctl, XUSB_PADCTL_ELPG_PROGRAM_1); value &= ~SSPX_ELPG_CLAMP_EN_EARLY(index); padctl_writel(padctl, value, XUSB_PADCTL_ELPG_PROGRAM_1); usleep_range(100, 200); value = padctl_readl(padctl, XUSB_PADCTL_ELPG_PROGRAM_1); value &= ~SSPX_ELPG_CLAMP_EN(index); padctl_writel(padctl, value, XUSB_PADCTL_ELPG_PROGRAM_1); mutex_unlock(&padctl->lock); return 0; } static int tegra186_usb3_enable_phy_wake(struct tegra_xusb_lane *lane) { struct tegra_xusb_padctl *padctl = lane->pad->padctl; unsigned int index = lane->index; u32 value; mutex_lock(&padctl->lock); value = padctl_readl(padctl, XUSB_PADCTL_ELPG_PROGRAM); value &= ~ALL_WAKE_EVENTS; value |= SS_PORT_WAKEUP_EVENT(index); padctl_writel(padctl, value, XUSB_PADCTL_ELPG_PROGRAM); usleep_range(10, 20); value = padctl_readl(padctl, XUSB_PADCTL_ELPG_PROGRAM); value &= ~ALL_WAKE_EVENTS; value |= SS_PORT_WAKE_INTERRUPT_ENABLE(index); padctl_writel(padctl, value, XUSB_PADCTL_ELPG_PROGRAM); mutex_unlock(&padctl->lock); return 0; } static int tegra186_usb3_disable_phy_wake(struct tegra_xusb_lane *lane) { struct tegra_xusb_padctl *padctl = lane->pad->padctl; unsigned int index = lane->index; u32 value; mutex_lock(&padctl->lock); value = padctl_readl(padctl, XUSB_PADCTL_ELPG_PROGRAM); value &= ~ALL_WAKE_EVENTS; value &= ~SS_PORT_WAKE_INTERRUPT_ENABLE(index); padctl_writel(padctl, value, XUSB_PADCTL_ELPG_PROGRAM); usleep_range(10, 20); value = padctl_readl(padctl, XUSB_PADCTL_ELPG_PROGRAM); value &= ~ALL_WAKE_EVENTS; value |= SS_PORT_WAKEUP_EVENT(index); padctl_writel(padctl, value, XUSB_PADCTL_ELPG_PROGRAM); mutex_unlock(&padctl->lock); return 0; } static bool tegra186_usb3_phy_remote_wake_detected(struct tegra_xusb_lane *lane) { struct tegra_xusb_padctl *padctl = lane->pad->padctl; unsigned int index = lane->index; u32 value; value = padctl_readl(padctl, XUSB_PADCTL_ELPG_PROGRAM); if ((value & SS_PORT_WAKE_INTERRUPT_ENABLE(index)) && (value & SS_PORT_WAKEUP_EVENT(index))) return true; return false; } static const struct tegra_xusb_lane_ops tegra186_usb3_lane_ops = { .probe = tegra186_usb3_lane_probe, .remove = tegra186_usb3_lane_remove, .enable_phy_sleepwalk = tegra186_usb3_enable_phy_sleepwalk, .disable_phy_sleepwalk = tegra186_usb3_disable_phy_sleepwalk, .enable_phy_wake = tegra186_usb3_enable_phy_wake, .disable_phy_wake = tegra186_usb3_disable_phy_wake, .remote_wake_detected = tegra186_usb3_phy_remote_wake_detected, }; static int tegra186_usb3_port_enable(struct tegra_xusb_port *port) { return 0; } static void tegra186_usb3_port_disable(struct tegra_xusb_port *port) { } static struct tegra_xusb_lane * tegra186_usb3_port_map(struct tegra_xusb_port *port) { return tegra_xusb_find_lane(port->padctl, "usb3", port->index); } static const struct tegra_xusb_port_ops tegra186_usb3_port_ops = { .release = tegra_xusb_usb3_port_release, .enable = tegra186_usb3_port_enable, .disable = tegra186_usb3_port_disable, .map = tegra186_usb3_port_map, }; static int tegra186_usb3_phy_power_on(struct phy *phy) { struct tegra_xusb_lane *lane = phy_get_drvdata(phy); struct tegra_xusb_padctl *padctl = lane->pad->padctl; struct tegra_xusb_usb3_port *port; struct tegra_xusb_usb2_port *usb2; unsigned int index = lane->index; struct device *dev = padctl->dev; u32 value; port = tegra_xusb_find_usb3_port(padctl, index); if (!port) { dev_err(dev, "no port found for USB3 lane %u\n", index); return -ENODEV; } usb2 = tegra_xusb_find_usb2_port(padctl, port->port); if (!usb2) { dev_err(dev, "no companion port found for USB3 lane %u\n", index); return -ENODEV; } mutex_lock(&padctl->lock); value = padctl_readl(padctl, XUSB_PADCTL_SS_PORT_CAP); value &= ~(PORT_CAP_MASK << PORTX_CAP_SHIFT(index)); if (usb2->mode == USB_DR_MODE_UNKNOWN) value |= (PORT_CAP_DISABLED << PORTX_CAP_SHIFT(index)); else if (usb2->mode == USB_DR_MODE_PERIPHERAL) value |= (PORT_CAP_DEVICE << PORTX_CAP_SHIFT(index)); else if (usb2->mode == USB_DR_MODE_HOST) value |= (PORT_CAP_HOST << PORTX_CAP_SHIFT(index)); else if (usb2->mode == USB_DR_MODE_OTG) value |= (PORT_CAP_OTG << PORTX_CAP_SHIFT(index)); padctl_writel(padctl, value, XUSB_PADCTL_SS_PORT_CAP); if (padctl->soc->supports_gen2 && port->disable_gen2) { value = padctl_readl(padctl, XUSB_PADCTL_SS_PORT_CFG); value &= ~(PORTX_SPEED_SUPPORT_MASK << PORTX_SPEED_SUPPORT_SHIFT(index)); value |= (PORT_SPEED_SUPPORT_GEN1 << PORTX_SPEED_SUPPORT_SHIFT(index)); padctl_writel(padctl, value, XUSB_PADCTL_SS_PORT_CFG); } value = padctl_readl(padctl, XUSB_PADCTL_ELPG_PROGRAM_1); value &= ~SSPX_ELPG_VCORE_DOWN(index); padctl_writel(padctl, value, XUSB_PADCTL_ELPG_PROGRAM_1); usleep_range(100, 200); value = padctl_readl(padctl, XUSB_PADCTL_ELPG_PROGRAM_1); value &= ~SSPX_ELPG_CLAMP_EN_EARLY(index); padctl_writel(padctl, value, XUSB_PADCTL_ELPG_PROGRAM_1); usleep_range(100, 200); value = padctl_readl(padctl, XUSB_PADCTL_ELPG_PROGRAM_1); value &= ~SSPX_ELPG_CLAMP_EN(index); padctl_writel(padctl, value, XUSB_PADCTL_ELPG_PROGRAM_1); mutex_unlock(&padctl->lock); return 0; } static int tegra186_usb3_phy_power_off(struct phy *phy) { struct tegra_xusb_lane *lane = phy_get_drvdata(phy); struct tegra_xusb_padctl *padctl = lane->pad->padctl; struct tegra_xusb_usb3_port *port; unsigned int index = lane->index; struct device *dev = padctl->dev; u32 value; port = tegra_xusb_find_usb3_port(padctl, index); if (!port) { dev_err(dev, "no port found for USB3 lane %u\n", index); return -ENODEV; } mutex_lock(&padctl->lock); value = padctl_readl(padctl, XUSB_PADCTL_ELPG_PROGRAM_1); value |= SSPX_ELPG_CLAMP_EN_EARLY(index); padctl_writel(padctl, value, XUSB_PADCTL_ELPG_PROGRAM_1); usleep_range(100, 200); value = padctl_readl(padctl, XUSB_PADCTL_ELPG_PROGRAM_1); value |= SSPX_ELPG_CLAMP_EN(index); padctl_writel(padctl, value, XUSB_PADCTL_ELPG_PROGRAM_1); usleep_range(250, 350); value = padctl_readl(padctl, XUSB_PADCTL_ELPG_PROGRAM_1); value |= SSPX_ELPG_VCORE_DOWN(index); padctl_writel(padctl, value, XUSB_PADCTL_ELPG_PROGRAM_1); mutex_unlock(&padctl->lock); return 0; } static int tegra186_usb3_phy_init(struct phy *phy) { return 0; } static int tegra186_usb3_phy_exit(struct phy *phy) { return 0; } static const struct phy_ops usb3_phy_ops = { .init = tegra186_usb3_phy_init, .exit = tegra186_usb3_phy_exit, .power_on = tegra186_usb3_phy_power_on, .power_off = tegra186_usb3_phy_power_off, .owner = THIS_MODULE, }; static struct tegra_xusb_pad * tegra186_usb3_pad_probe(struct tegra_xusb_padctl *padctl, const struct tegra_xusb_pad_soc *soc, struct device_node *np) { struct tegra_xusb_usb3_pad *usb3; struct tegra_xusb_pad *pad; int err; usb3 = kzalloc(sizeof(*usb3), GFP_KERNEL); if (!usb3) return ERR_PTR(-ENOMEM); pad = &usb3->base; pad->ops = &tegra186_usb3_lane_ops; pad->soc = soc; err = tegra_xusb_pad_init(pad, padctl, np); if (err < 0) { kfree(usb3); goto out; } err = tegra_xusb_pad_register(pad, &usb3_phy_ops); if (err < 0) goto unregister; dev_set_drvdata(&pad->dev, pad); return pad; unregister: device_unregister(&pad->dev); out: return ERR_PTR(err); } static void tegra186_usb3_pad_remove(struct tegra_xusb_pad *pad) { struct tegra_xusb_usb2_pad *usb2 = to_usb2_pad(pad); kfree(usb2); } static const struct tegra_xusb_pad_ops tegra186_usb3_pad_ops = { .probe = tegra186_usb3_pad_probe, .remove = tegra186_usb3_pad_remove, }; static const char * const tegra186_usb3_functions[] = { "xusb", }; static int tegra186_xusb_read_fuse_calibration(struct tegra186_xusb_padctl *padctl) { struct device *dev = padctl->base.dev; unsigned int i, count; u32 value, *level; int err; count = padctl->base.soc->ports.usb2.count; level = devm_kcalloc(dev, count, sizeof(u32), GFP_KERNEL); if (!level) return -ENOMEM; err = tegra_fuse_readl(TEGRA_FUSE_SKU_CALIB_0, &value); if (err) return dev_err_probe(dev, err, "failed to read calibration fuse\n"); dev_dbg(dev, "FUSE_USB_CALIB_0 %#x\n", value); for (i = 0; i < count; i++) level[i] = (value >> HS_CURR_LEVEL_PADX_SHIFT(i)) & HS_CURR_LEVEL_PAD_MASK; padctl->calib.hs_curr_level = level; padctl->calib.hs_squelch = (value >> HS_SQUELCH_SHIFT) & HS_SQUELCH_MASK; padctl->calib.hs_term_range_adj = (value >> HS_TERM_RANGE_ADJ_SHIFT) & HS_TERM_RANGE_ADJ_MASK; err = tegra_fuse_readl(TEGRA_FUSE_USB_CALIB_EXT_0, &value); if (err) { dev_err(dev, "failed to read calibration fuse: %d\n", err); return err; } dev_dbg(dev, "FUSE_USB_CALIB_EXT_0 %#x\n", value); padctl->calib.rpd_ctrl = (value >> RPD_CTRL_SHIFT) & RPD_CTRL_MASK; return 0; } static struct tegra_xusb_padctl * tegra186_xusb_padctl_probe(struct device *dev, const struct tegra_xusb_padctl_soc *soc) { struct platform_device *pdev = to_platform_device(dev); struct tegra186_xusb_padctl *priv; struct resource *res; int err; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return ERR_PTR(-ENOMEM); priv->base.dev = dev; priv->base.soc = soc; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "ao"); priv->ao_regs = devm_ioremap_resource(dev, res); if (IS_ERR(priv->ao_regs)) return ERR_CAST(priv->ao_regs); err = tegra186_xusb_read_fuse_calibration(priv); if (err < 0) return ERR_PTR(err); return &priv->base; } static void tegra186_xusb_padctl_save(struct tegra_xusb_padctl *padctl) { struct tegra186_xusb_padctl *priv = to_tegra186_xusb_padctl(padctl); priv->context.vbus_id = padctl_readl(padctl, USB2_VBUS_ID); priv->context.usb2_pad_mux = padctl_readl(padctl, XUSB_PADCTL_USB2_PAD_MUX); priv->context.usb2_port_cap = padctl_readl(padctl, XUSB_PADCTL_USB2_PORT_CAP); priv->context.ss_port_cap = padctl_readl(padctl, XUSB_PADCTL_SS_PORT_CAP); } static void tegra186_xusb_padctl_restore(struct tegra_xusb_padctl *padctl) { struct tegra186_xusb_padctl *priv = to_tegra186_xusb_padctl(padctl); padctl_writel(padctl, priv->context.usb2_pad_mux, XUSB_PADCTL_USB2_PAD_MUX); padctl_writel(padctl, priv->context.usb2_port_cap, XUSB_PADCTL_USB2_PORT_CAP); padctl_writel(padctl, priv->context.ss_port_cap, XUSB_PADCTL_SS_PORT_CAP); padctl_writel(padctl, priv->context.vbus_id, USB2_VBUS_ID); } static int tegra186_xusb_padctl_suspend_noirq(struct tegra_xusb_padctl *padctl) { tegra186_xusb_padctl_save(padctl); return 0; } static int tegra186_xusb_padctl_resume_noirq(struct tegra_xusb_padctl *padctl) { tegra186_xusb_padctl_restore(padctl); return 0; } static void tegra186_xusb_padctl_remove(struct tegra_xusb_padctl *padctl) { } static const struct tegra_xusb_padctl_ops tegra186_xusb_padctl_ops = { .probe = tegra186_xusb_padctl_probe, .remove = tegra186_xusb_padctl_remove, .suspend_noirq = tegra186_xusb_padctl_suspend_noirq, .resume_noirq = tegra186_xusb_padctl_resume_noirq, .vbus_override = tegra186_xusb_padctl_vbus_override, .utmi_pad_power_on = tegra186_utmi_pad_power_on, .utmi_pad_power_down = tegra186_utmi_pad_power_down, }; #if IS_ENABLED(CONFIG_ARCH_TEGRA_186_SOC) static const char * const tegra186_xusb_padctl_supply_names[] = { "avdd-pll-erefeut", "avdd-usb", "vclamp-usb", "vddio-hsic", }; static const struct tegra_xusb_lane_soc tegra186_usb2_lanes[] = { TEGRA186_LANE("usb2-0", 0, 0, 0, usb2), TEGRA186_LANE("usb2-1", 0, 0, 0, usb2), TEGRA186_LANE("usb2-2", 0, 0, 0, usb2), }; static const struct tegra_xusb_pad_soc tegra186_usb2_pad = { .name = "usb2", .num_lanes = ARRAY_SIZE(tegra186_usb2_lanes), .lanes = tegra186_usb2_lanes, .ops = &tegra186_usb2_pad_ops, }; static const struct tegra_xusb_lane_soc tegra186_usb3_lanes[] = { TEGRA186_LANE("usb3-0", 0, 0, 0, usb3), TEGRA186_LANE("usb3-1", 0, 0, 0, usb3), TEGRA186_LANE("usb3-2", 0, 0, 0, usb3), }; static const struct tegra_xusb_pad_soc tegra186_usb3_pad = { .name = "usb3", .num_lanes = ARRAY_SIZE(tegra186_usb3_lanes), .lanes = tegra186_usb3_lanes, .ops = &tegra186_usb3_pad_ops, }; static const struct tegra_xusb_pad_soc * const tegra186_pads[] = { &tegra186_usb2_pad, &tegra186_usb3_pad, #if 0 /* TODO implement */ &tegra186_hsic_pad, #endif }; const struct tegra_xusb_padctl_soc tegra186_xusb_padctl_soc = { .num_pads = ARRAY_SIZE(tegra186_pads), .pads = tegra186_pads, .ports = { .usb2 = { .ops = &tegra186_usb2_port_ops, .count = 3, }, #if 0 /* TODO implement */ .hsic = { .ops = &tegra186_hsic_port_ops, .count = 1, }, #endif .usb3 = { .ops = &tegra186_usb3_port_ops, .count = 3, }, }, .ops = &tegra186_xusb_padctl_ops, .supply_names = tegra186_xusb_padctl_supply_names, .num_supplies = ARRAY_SIZE(tegra186_xusb_padctl_supply_names), }; EXPORT_SYMBOL_GPL(tegra186_xusb_padctl_soc); #endif #if IS_ENABLED(CONFIG_ARCH_TEGRA_194_SOC) || \ IS_ENABLED(CONFIG_ARCH_TEGRA_234_SOC) static const char * const tegra194_xusb_padctl_supply_names[] = { "avdd-usb", "vclamp-usb", }; static const struct tegra_xusb_lane_soc tegra194_usb2_lanes[] = { TEGRA186_LANE("usb2-0", 0, 0, 0, usb2), TEGRA186_LANE("usb2-1", 0, 0, 0, usb2), TEGRA186_LANE("usb2-2", 0, 0, 0, usb2), TEGRA186_LANE("usb2-3", 0, 0, 0, usb2), }; static const struct tegra_xusb_pad_soc tegra194_usb2_pad = { .name = "usb2", .num_lanes = ARRAY_SIZE(tegra194_usb2_lanes), .lanes = tegra194_usb2_lanes, .ops = &tegra186_usb2_pad_ops, }; static const struct tegra_xusb_lane_soc tegra194_usb3_lanes[] = { TEGRA186_LANE("usb3-0", 0, 0, 0, usb3), TEGRA186_LANE("usb3-1", 0, 0, 0, usb3), TEGRA186_LANE("usb3-2", 0, 0, 0, usb3), TEGRA186_LANE("usb3-3", 0, 0, 0, usb3), }; static const struct tegra_xusb_pad_soc tegra194_usb3_pad = { .name = "usb3", .num_lanes = ARRAY_SIZE(tegra194_usb3_lanes), .lanes = tegra194_usb3_lanes, .ops = &tegra186_usb3_pad_ops, }; static const struct tegra_xusb_pad_soc * const tegra194_pads[] = { &tegra194_usb2_pad, &tegra194_usb3_pad, }; const struct tegra_xusb_padctl_soc tegra194_xusb_padctl_soc = { .num_pads = ARRAY_SIZE(tegra194_pads), .pads = tegra194_pads, .ports = { .usb2 = { .ops = &tegra186_usb2_port_ops, .count = 4, }, .usb3 = { .ops = &tegra186_usb3_port_ops, .count = 4, }, }, .ops = &tegra186_xusb_padctl_ops, .supply_names = tegra194_xusb_padctl_supply_names, .num_supplies = ARRAY_SIZE(tegra194_xusb_padctl_supply_names), .supports_gen2 = true, .poll_trk_completed = true, }; EXPORT_SYMBOL_GPL(tegra194_xusb_padctl_soc); const struct tegra_xusb_padctl_soc tegra234_xusb_padctl_soc = { .num_pads = ARRAY_SIZE(tegra194_pads), .pads = tegra194_pads, .ports = { .usb2 = { .ops = &tegra186_usb2_port_ops, .count = 4, }, .usb3 = { .ops = &tegra186_usb3_port_ops, .count = 4, }, }, .ops = &tegra186_xusb_padctl_ops, .supply_names = tegra194_xusb_padctl_supply_names, .num_supplies = ARRAY_SIZE(tegra194_xusb_padctl_supply_names), .supports_gen2 = true, .poll_trk_completed = true, .trk_hw_mode = true, .supports_lp_cfg_en = true, }; EXPORT_SYMBOL_GPL(tegra234_xusb_padctl_soc); #endif MODULE_AUTHOR("JC Kuo <jckuo@nvidia.com>"); MODULE_DESCRIPTION("NVIDIA Tegra186 XUSB Pad Controller driver"); MODULE_LICENSE("GPL v2");