// SPDX-License-Identifier: GPL-2.0 /* * This file contains generic KASAN specific error reporting code. * * Copyright (c) 2014 Samsung Electronics Co., Ltd. * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com> * * Some code borrowed from https://github.com/xairy/kasan-prototype by * Andrey Konovalov <andreyknvl@gmail.com> */ #include <linux/bitops.h> #include <linux/ftrace.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/printk.h> #include <linux/sched.h> #include <linux/sched/task_stack.h> #include <linux/slab.h> #include <linux/stackdepot.h> #include <linux/stacktrace.h> #include <linux/string.h> #include <linux/types.h> #include <linux/kasan.h> #include <linux/module.h> #include <asm/sections.h> #include "kasan.h" #include "../slab.h" const void *kasan_find_first_bad_addr(const void *addr, size_t size) { const void *p = addr; if (!addr_has_metadata(p)) return p; while (p < addr + size && !(*(u8 *)kasan_mem_to_shadow(p))) p += KASAN_GRANULE_SIZE; return p; } size_t kasan_get_alloc_size(void *object, struct kmem_cache *cache) { size_t size = 0; u8 *shadow; /* * Skip the addr_has_metadata check, as this function only operates on * slab memory, which must have metadata. */ /* * The loop below returns 0 for freed objects, for which KASAN cannot * calculate the allocation size based on the metadata. */ shadow = (u8 *)kasan_mem_to_shadow(object); while (size < cache->object_size) { if (*shadow == 0) size += KASAN_GRANULE_SIZE; else if (*shadow >= 1 && *shadow <= KASAN_GRANULE_SIZE - 1) return size + *shadow; else return size; shadow++; } return cache->object_size; } static const char *get_shadow_bug_type(struct kasan_report_info *info) { const char *bug_type = "unknown-crash"; u8 *shadow_addr; shadow_addr = (u8 *)kasan_mem_to_shadow(info->first_bad_addr); /* * If shadow byte value is in [0, KASAN_GRANULE_SIZE) we can look * at the next shadow byte to determine the type of the bad access. */ if (*shadow_addr > 0 && *shadow_addr <= KASAN_GRANULE_SIZE - 1) shadow_addr++; switch (*shadow_addr) { case 0 ... KASAN_GRANULE_SIZE - 1: /* * In theory it's still possible to see these shadow values * due to a data race in the kernel code. */ bug_type = "out-of-bounds"; break; case KASAN_PAGE_REDZONE: case KASAN_SLAB_REDZONE: bug_type = "slab-out-of-bounds"; break; case KASAN_GLOBAL_REDZONE: bug_type = "global-out-of-bounds"; break; case KASAN_STACK_LEFT: case KASAN_STACK_MID: case KASAN_STACK_RIGHT: case KASAN_STACK_PARTIAL: bug_type = "stack-out-of-bounds"; break; case KASAN_PAGE_FREE: bug_type = "use-after-free"; break; case KASAN_SLAB_FREE: case KASAN_SLAB_FREETRACK: bug_type = "slab-use-after-free"; break; case KASAN_ALLOCA_LEFT: case KASAN_ALLOCA_RIGHT: bug_type = "alloca-out-of-bounds"; break; case KASAN_VMALLOC_INVALID: bug_type = "vmalloc-out-of-bounds"; break; } return bug_type; } static const char *get_wild_bug_type(struct kasan_report_info *info) { const char *bug_type = "unknown-crash"; if ((unsigned long)info->access_addr < PAGE_SIZE) bug_type = "null-ptr-deref"; else if ((unsigned long)info->access_addr < TASK_SIZE) bug_type = "user-memory-access"; else bug_type = "wild-memory-access"; return bug_type; } static const char *get_bug_type(struct kasan_report_info *info) { /* * If access_size is a negative number, then it has reason to be * defined as out-of-bounds bug type. * * Casting negative numbers to size_t would indeed turn up as * a large size_t and its value will be larger than ULONG_MAX/2, * so that this can qualify as out-of-bounds. */ if (info->access_addr + info->access_size < info->access_addr) return "out-of-bounds"; if (addr_has_metadata(info->access_addr)) return get_shadow_bug_type(info); return get_wild_bug_type(info); } void kasan_complete_mode_report_info(struct kasan_report_info *info) { struct kasan_alloc_meta *alloc_meta; struct kasan_free_meta *free_meta; if (!info->bug_type) info->bug_type = get_bug_type(info); if (!info->cache || !info->object) return; alloc_meta = kasan_get_alloc_meta(info->cache, info->object); if (alloc_meta) memcpy(&info->alloc_track, &alloc_meta->alloc_track, sizeof(info->alloc_track)); if (*(u8 *)kasan_mem_to_shadow(info->object) == KASAN_SLAB_FREETRACK) { /* Free meta must be present with KASAN_SLAB_FREETRACK. */ free_meta = kasan_get_free_meta(info->cache, info->object); memcpy(&info->free_track, &free_meta->free_track, sizeof(info->free_track)); } } void kasan_metadata_fetch_row(char *buffer, void *row) { memcpy(buffer, kasan_mem_to_shadow(row), META_BYTES_PER_ROW); } void kasan_print_aux_stacks(struct kmem_cache *cache, const void *object) { struct kasan_alloc_meta *alloc_meta; alloc_meta = kasan_get_alloc_meta(cache, object); if (!alloc_meta) return; if (alloc_meta->aux_stack[0]) { pr_err("Last potentially related work creation:\n"); stack_depot_print(alloc_meta->aux_stack[0]); pr_err("\n"); } if (alloc_meta->aux_stack[1]) { pr_err("Second to last potentially related work creation:\n"); stack_depot_print(alloc_meta->aux_stack[1]); pr_err("\n"); } } #ifdef CONFIG_KASAN_STACK static bool __must_check tokenize_frame_descr(const char **frame_descr, char *token, size_t max_tok_len, unsigned long *value) { const char *sep = strchr(*frame_descr, ' '); if (sep == NULL) sep = *frame_descr + strlen(*frame_descr); if (token != NULL) { const size_t tok_len = sep - *frame_descr; if (tok_len + 1 > max_tok_len) { pr_err("KASAN internal error: frame description too long: %s\n", *frame_descr); return false; } /* Copy token (+ 1 byte for '\0'). */ strscpy(token, *frame_descr, tok_len + 1); } /* Advance frame_descr past separator. */ *frame_descr = sep + 1; if (value != NULL && kstrtoul(token, 10, value)) { pr_err("KASAN internal error: not a valid number: %s\n", token); return false; } return true; } static void print_decoded_frame_descr(const char *frame_descr) { /* * We need to parse the following string: * "n alloc_1 alloc_2 ... alloc_n" * where alloc_i looks like * "offset size len name" * or "offset size len name:line". */ char token[64]; unsigned long num_objects; if (!tokenize_frame_descr(&frame_descr, token, sizeof(token), &num_objects)) return; pr_err("\n"); pr_err("This frame has %lu %s:\n", num_objects, num_objects == 1 ? "object" : "objects"); while (num_objects--) { unsigned long offset; unsigned long size; /* access offset */ if (!tokenize_frame_descr(&frame_descr, token, sizeof(token), &offset)) return; /* access size */ if (!tokenize_frame_descr(&frame_descr, token, sizeof(token), &size)) return; /* name length (unused) */ if (!tokenize_frame_descr(&frame_descr, NULL, 0, NULL)) return; /* object name */ if (!tokenize_frame_descr(&frame_descr, token, sizeof(token), NULL)) return; /* Strip line number; without filename it's not very helpful. */ strreplace(token, ':', '\0'); /* Finally, print object information. */ pr_err(" [%lu, %lu) '%s'", offset, offset + size, token); } } /* Returns true only if the address is on the current task's stack. */ static bool __must_check get_address_stack_frame_info(const void *addr, unsigned long *offset, const char **frame_descr, const void **frame_pc) { unsigned long aligned_addr; unsigned long mem_ptr; const u8 *shadow_bottom; const u8 *shadow_ptr; const unsigned long *frame; BUILD_BUG_ON(IS_ENABLED(CONFIG_STACK_GROWSUP)); aligned_addr = round_down((unsigned long)addr, sizeof(long)); mem_ptr = round_down(aligned_addr, KASAN_GRANULE_SIZE); shadow_ptr = kasan_mem_to_shadow((void *)aligned_addr); shadow_bottom = kasan_mem_to_shadow(end_of_stack(current)); while (shadow_ptr >= shadow_bottom && *shadow_ptr != KASAN_STACK_LEFT) { shadow_ptr--; mem_ptr -= KASAN_GRANULE_SIZE; } while (shadow_ptr >= shadow_bottom && *shadow_ptr == KASAN_STACK_LEFT) { shadow_ptr--; mem_ptr -= KASAN_GRANULE_SIZE; } if (shadow_ptr < shadow_bottom) return false; frame = (const unsigned long *)(mem_ptr + KASAN_GRANULE_SIZE); if (frame[0] != KASAN_CURRENT_STACK_FRAME_MAGIC) { pr_err("KASAN internal error: frame info validation failed; invalid marker: %lu\n", frame[0]); return false; } *offset = (unsigned long)addr - (unsigned long)frame; *frame_descr = (const char *)frame[1]; *frame_pc = (void *)frame[2]; return true; } void kasan_print_address_stack_frame(const void *addr) { unsigned long offset; const char *frame_descr; const void *frame_pc; if (WARN_ON(!object_is_on_stack(addr))) return; pr_err("The buggy address belongs to stack of task %s/%d\n", current->comm, task_pid_nr(current)); if (!get_address_stack_frame_info(addr, &offset, &frame_descr, &frame_pc)) return; pr_err(" and is located at offset %lu in frame:\n", offset); pr_err(" %pS\n", frame_pc); if (!frame_descr) return; print_decoded_frame_descr(frame_descr); } #endif /* CONFIG_KASAN_STACK */ #define DEFINE_ASAN_REPORT_LOAD(size) \ void __asan_report_load##size##_noabort(void *addr) \ { \ kasan_report(addr, size, false, _RET_IP_); \ } \ EXPORT_SYMBOL(__asan_report_load##size##_noabort) #define DEFINE_ASAN_REPORT_STORE(size) \ void __asan_report_store##size##_noabort(void *addr) \ { \ kasan_report(addr, size, true, _RET_IP_); \ } \ EXPORT_SYMBOL(__asan_report_store##size##_noabort) DEFINE_ASAN_REPORT_LOAD(1); DEFINE_ASAN_REPORT_LOAD(2); DEFINE_ASAN_REPORT_LOAD(4); DEFINE_ASAN_REPORT_LOAD(8); DEFINE_ASAN_REPORT_LOAD(16); DEFINE_ASAN_REPORT_STORE(1); DEFINE_ASAN_REPORT_STORE(2); DEFINE_ASAN_REPORT_STORE(4); DEFINE_ASAN_REPORT_STORE(8); DEFINE_ASAN_REPORT_STORE(16); void __asan_report_load_n_noabort(void *addr, ssize_t size) { kasan_report(addr, size, false, _RET_IP_); } EXPORT_SYMBOL(__asan_report_load_n_noabort); void __asan_report_store_n_noabort(void *addr, ssize_t size) { kasan_report(addr, size, true, _RET_IP_); } EXPORT_SYMBOL(__asan_report_store_n_noabort);