// SPDX-License-Identifier: GPL-2.0 #include <linux/kernel.h> #include <linux/blkdev.h> #include <linux/init.h> #include <linux/mount.h> #include <linux/major.h> #include <linux/delay.h> #include <linux/init_syscalls.h> #include <linux/raid/detect.h> #include <linux/raid/md_u.h> #include <linux/raid/md_p.h> #include "md.h" /* * When md (and any require personalities) are compiled into the kernel * (not a module), arrays can be assembles are boot time using with AUTODETECT * where specially marked partitions are registered with md_autodetect_dev(), * and with MD_BOOT where devices to be collected are given on the boot line * with md=..... * The code for that is here. */ #ifdef CONFIG_MD_AUTODETECT static int __initdata raid_noautodetect; #else static int __initdata raid_noautodetect=1; #endif static int __initdata raid_autopart; static struct md_setup_args { int minor; int partitioned; int level; int chunk; char *device_names; } md_setup_args[256] __initdata; static int md_setup_ents __initdata; /* * Parse the command-line parameters given our kernel, but do not * actually try to invoke the MD device now; that is handled by * md_setup_drive after the low-level disk drivers have initialised. * * 27/11/1999: Fixed to work correctly with the 2.3 kernel (which * assigns the task of parsing integer arguments to the * invoked program now). Added ability to initialise all * the MD devices (by specifying multiple "md=" lines) * instead of just one. -- KTK * 18May2000: Added support for persistent-superblock arrays: * md=n,0,factor,fault,device-list uses RAID0 for device n * md=n,-1,factor,fault,device-list uses LINEAR for device n * md=n,device-list reads a RAID superblock from the devices * elements in device-list are read by name_to_kdev_t so can be * a hex number or something like /dev/hda1 /dev/sdb * 2001-06-03: Dave Cinege <dcinege@psychosis.com> * Shifted name_to_kdev_t() and related operations to md_set_drive() * for later execution. Rewrote section to make devfs compatible. */ static int __init md_setup(char *str) { int minor, level, factor, fault, partitioned = 0; char *pername = ""; char *str1; int ent; if (*str == 'd') { partitioned = 1; str++; } if (get_option(&str, &minor) != 2) { /* MD Number */ printk(KERN_WARNING "md: Too few arguments supplied to md=.\n"); return 0; } str1 = str; for (ent=0 ; ent< md_setup_ents ; ent++) if (md_setup_args[ent].minor == minor && md_setup_args[ent].partitioned == partitioned) { printk(KERN_WARNING "md: md=%s%d, Specified more than once. " "Replacing previous definition.\n", partitioned?"d":"", minor); break; } if (ent >= ARRAY_SIZE(md_setup_args)) { printk(KERN_WARNING "md: md=%s%d - too many md initialisations\n", partitioned?"d":"", minor); return 0; } if (ent >= md_setup_ents) md_setup_ents++; switch (get_option(&str, &level)) { /* RAID level */ case 2: /* could be 0 or -1.. */ if (level == 0 || level == LEVEL_LINEAR) { if (get_option(&str, &factor) != 2 || /* Chunk Size */ get_option(&str, &fault) != 2) { printk(KERN_WARNING "md: Too few arguments supplied to md=.\n"); return 0; } md_setup_args[ent].level = level; md_setup_args[ent].chunk = 1 << (factor+12); if (level == LEVEL_LINEAR) pername = "linear"; else pername = "raid0"; break; } fallthrough; case 1: /* the first device is numeric */ str = str1; fallthrough; case 0: md_setup_args[ent].level = LEVEL_NONE; pername="super-block"; } printk(KERN_INFO "md: Will configure md%d (%s) from %s, below.\n", minor, pername, str); md_setup_args[ent].device_names = str; md_setup_args[ent].partitioned = partitioned; md_setup_args[ent].minor = minor; return 1; } static void __init md_setup_drive(struct md_setup_args *args) { char *devname = args->device_names; dev_t devices[MD_SB_DISKS + 1], mdev; struct mdu_array_info_s ainfo = { }; struct mddev *mddev; int err = 0, i; char name[16]; if (args->partitioned) { mdev = MKDEV(mdp_major, args->minor << MdpMinorShift); sprintf(name, "md_d%d", args->minor); } else { mdev = MKDEV(MD_MAJOR, args->minor); sprintf(name, "md%d", args->minor); } for (i = 0; i < MD_SB_DISKS && devname != NULL; i++) { struct kstat stat; char *p; char comp_name[64]; dev_t dev; p = strchr(devname, ','); if (p) *p++ = 0; if (early_lookup_bdev(devname, &dev)) dev = 0; if (strncmp(devname, "/dev/", 5) == 0) devname += 5; snprintf(comp_name, 63, "/dev/%s", devname); if (init_stat(comp_name, &stat, 0) == 0 && S_ISBLK(stat.mode)) dev = new_decode_dev(stat.rdev); if (!dev) { pr_warn("md: Unknown device name: %s\n", devname); break; } devices[i] = dev; devname = p; } devices[i] = 0; if (!i) return; pr_info("md: Loading %s: %s\n", name, args->device_names); mddev = md_alloc(mdev, name); if (IS_ERR(mddev)) { pr_err("md: md_alloc failed - cannot start array %s\n", name); return; } err = mddev_lock(mddev); if (err) { pr_err("md: failed to lock array %s\n", name); goto out_mddev_put; } if (!list_empty(&mddev->disks) || mddev->raid_disks) { pr_warn("md: Ignoring %s, already autodetected. (Use raid=noautodetect)\n", name); goto out_unlock; } if (args->level != LEVEL_NONE) { /* non-persistent */ ainfo.level = args->level; ainfo.md_minor = args->minor; ainfo.not_persistent = 1; ainfo.state = (1 << MD_SB_CLEAN); ainfo.chunk_size = args->chunk; while (devices[ainfo.raid_disks]) ainfo.raid_disks++; } err = md_set_array_info(mddev, &ainfo); for (i = 0; i <= MD_SB_DISKS && devices[i]; i++) { struct mdu_disk_info_s dinfo = { .major = MAJOR(devices[i]), .minor = MINOR(devices[i]), }; if (args->level != LEVEL_NONE) { dinfo.number = i; dinfo.raid_disk = i; dinfo.state = (1 << MD_DISK_ACTIVE) | (1 << MD_DISK_SYNC); } md_add_new_disk(mddev, &dinfo); } if (!err) err = do_md_run(mddev); if (err) pr_warn("md: starting %s failed\n", name); out_unlock: mddev_unlock(mddev); out_mddev_put: mddev_put(mddev); } static int __init raid_setup(char *str) { int len, pos; len = strlen(str) + 1; pos = 0; while (pos < len) { char *comma = strchr(str+pos, ','); int wlen; if (comma) wlen = (comma-str)-pos; else wlen = (len-1)-pos; if (!strncmp(str, "noautodetect", wlen)) raid_noautodetect = 1; if (!strncmp(str, "autodetect", wlen)) raid_noautodetect = 0; if (strncmp(str, "partitionable", wlen)==0) raid_autopart = 1; if (strncmp(str, "part", wlen)==0) raid_autopart = 1; pos += wlen+1; } return 1; } __setup("raid=", raid_setup); __setup("md=", md_setup); static void __init autodetect_raid(void) { /* * Since we don't want to detect and use half a raid array, we need to * wait for the known devices to complete their probing */ printk(KERN_INFO "md: Waiting for all devices to be available before autodetect\n"); printk(KERN_INFO "md: If you don't use raid, use raid=noautodetect\n"); wait_for_device_probe(); md_autostart_arrays(raid_autopart); } void __init md_run_setup(void) { int ent; if (raid_noautodetect) printk(KERN_INFO "md: Skipping autodetection of RAID arrays. (raid=autodetect will force)\n"); else autodetect_raid(); for (ent = 0; ent < md_setup_ents; ent++) md_setup_drive(&md_setup_args[ent]); }