// SPDX-License-Identifier: GPL-2.0-only /* * Crypto acceleration support for Rockchip RK3288 * * Copyright (c) 2015, Fuzhou Rockchip Electronics Co., Ltd * * Author: Zain Wang <zain.wang@rock-chips.com> * * Some ideas are from marvell/cesa.c and s5p-sss.c driver. */ #include <asm/unaligned.h> #include <crypto/internal/hash.h> #include <linux/device.h> #include <linux/err.h> #include <linux/iopoll.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/string.h> #include "rk3288_crypto.h" /* * IC can not process zero message hash, * so we put the fixed hash out when met zero message. */ static bool rk_ahash_need_fallback(struct ahash_request *req) { struct scatterlist *sg; sg = req->src; while (sg) { if (!IS_ALIGNED(sg->offset, sizeof(u32))) { return true; } if (sg->length % 4) { return true; } sg = sg_next(sg); } return false; } static int rk_ahash_digest_fb(struct ahash_request *areq) { struct rk_ahash_rctx *rctx = ahash_request_ctx(areq); struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq); struct rk_ahash_ctx *tfmctx = crypto_ahash_ctx(tfm); struct ahash_alg *alg = crypto_ahash_alg(tfm); struct rk_crypto_tmp *algt = container_of(alg, struct rk_crypto_tmp, alg.hash.base); algt->stat_fb++; ahash_request_set_tfm(&rctx->fallback_req, tfmctx->fallback_tfm); rctx->fallback_req.base.flags = areq->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; rctx->fallback_req.nbytes = areq->nbytes; rctx->fallback_req.src = areq->src; rctx->fallback_req.result = areq->result; return crypto_ahash_digest(&rctx->fallback_req); } static int zero_message_process(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); int rk_digest_size = crypto_ahash_digestsize(tfm); switch (rk_digest_size) { case SHA1_DIGEST_SIZE: memcpy(req->result, sha1_zero_message_hash, rk_digest_size); break; case SHA256_DIGEST_SIZE: memcpy(req->result, sha256_zero_message_hash, rk_digest_size); break; case MD5_DIGEST_SIZE: memcpy(req->result, md5_zero_message_hash, rk_digest_size); break; default: return -EINVAL; } return 0; } static void rk_ahash_reg_init(struct ahash_request *req, struct rk_crypto_info *dev) { struct rk_ahash_rctx *rctx = ahash_request_ctx(req); int reg_status; reg_status = CRYPTO_READ(dev, RK_CRYPTO_CTRL) | RK_CRYPTO_HASH_FLUSH | _SBF(0xffff, 16); CRYPTO_WRITE(dev, RK_CRYPTO_CTRL, reg_status); reg_status = CRYPTO_READ(dev, RK_CRYPTO_CTRL); reg_status &= (~RK_CRYPTO_HASH_FLUSH); reg_status |= _SBF(0xffff, 16); CRYPTO_WRITE(dev, RK_CRYPTO_CTRL, reg_status); memset_io(dev->reg + RK_CRYPTO_HASH_DOUT_0, 0, 32); CRYPTO_WRITE(dev, RK_CRYPTO_INTENA, RK_CRYPTO_HRDMA_ERR_ENA | RK_CRYPTO_HRDMA_DONE_ENA); CRYPTO_WRITE(dev, RK_CRYPTO_INTSTS, RK_CRYPTO_HRDMA_ERR_INT | RK_CRYPTO_HRDMA_DONE_INT); CRYPTO_WRITE(dev, RK_CRYPTO_HASH_CTRL, rctx->mode | RK_CRYPTO_HASH_SWAP_DO); CRYPTO_WRITE(dev, RK_CRYPTO_CONF, RK_CRYPTO_BYTESWAP_HRFIFO | RK_CRYPTO_BYTESWAP_BRFIFO | RK_CRYPTO_BYTESWAP_BTFIFO); CRYPTO_WRITE(dev, RK_CRYPTO_HASH_MSG_LEN, req->nbytes); } static int rk_ahash_init(struct ahash_request *req) { struct rk_ahash_rctx *rctx = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm); ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; return crypto_ahash_init(&rctx->fallback_req); } static int rk_ahash_update(struct ahash_request *req) { struct rk_ahash_rctx *rctx = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm); ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; rctx->fallback_req.nbytes = req->nbytes; rctx->fallback_req.src = req->src; return crypto_ahash_update(&rctx->fallback_req); } static int rk_ahash_final(struct ahash_request *req) { struct rk_ahash_rctx *rctx = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm); ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; rctx->fallback_req.result = req->result; return crypto_ahash_final(&rctx->fallback_req); } static int rk_ahash_finup(struct ahash_request *req) { struct rk_ahash_rctx *rctx = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm); ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; rctx->fallback_req.nbytes = req->nbytes; rctx->fallback_req.src = req->src; rctx->fallback_req.result = req->result; return crypto_ahash_finup(&rctx->fallback_req); } static int rk_ahash_import(struct ahash_request *req, const void *in) { struct rk_ahash_rctx *rctx = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm); ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; return crypto_ahash_import(&rctx->fallback_req, in); } static int rk_ahash_export(struct ahash_request *req, void *out) { struct rk_ahash_rctx *rctx = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm); ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; return crypto_ahash_export(&rctx->fallback_req, out); } static int rk_ahash_digest(struct ahash_request *req) { struct rk_ahash_rctx *rctx = ahash_request_ctx(req); struct rk_crypto_info *dev; struct crypto_engine *engine; if (rk_ahash_need_fallback(req)) return rk_ahash_digest_fb(req); if (!req->nbytes) return zero_message_process(req); dev = get_rk_crypto(); rctx->dev = dev; engine = dev->engine; return crypto_transfer_hash_request_to_engine(engine, req); } static void crypto_ahash_dma_start(struct rk_crypto_info *dev, struct scatterlist *sg) { CRYPTO_WRITE(dev, RK_CRYPTO_HRDMAS, sg_dma_address(sg)); CRYPTO_WRITE(dev, RK_CRYPTO_HRDMAL, sg_dma_len(sg) / 4); CRYPTO_WRITE(dev, RK_CRYPTO_CTRL, RK_CRYPTO_HASH_START | (RK_CRYPTO_HASH_START << 16)); } static int rk_hash_prepare(struct crypto_engine *engine, void *breq) { struct ahash_request *areq = container_of(breq, struct ahash_request, base); struct rk_ahash_rctx *rctx = ahash_request_ctx(areq); struct rk_crypto_info *rkc = rctx->dev; int ret; ret = dma_map_sg(rkc->dev, areq->src, sg_nents(areq->src), DMA_TO_DEVICE); if (ret <= 0) return -EINVAL; rctx->nrsg = ret; return 0; } static void rk_hash_unprepare(struct crypto_engine *engine, void *breq) { struct ahash_request *areq = container_of(breq, struct ahash_request, base); struct rk_ahash_rctx *rctx = ahash_request_ctx(areq); struct rk_crypto_info *rkc = rctx->dev; dma_unmap_sg(rkc->dev, areq->src, rctx->nrsg, DMA_TO_DEVICE); } static int rk_hash_run(struct crypto_engine *engine, void *breq) { struct ahash_request *areq = container_of(breq, struct ahash_request, base); struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq); struct rk_ahash_rctx *rctx = ahash_request_ctx(areq); struct ahash_alg *alg = crypto_ahash_alg(tfm); struct rk_crypto_tmp *algt = container_of(alg, struct rk_crypto_tmp, alg.hash.base); struct scatterlist *sg = areq->src; struct rk_crypto_info *rkc = rctx->dev; int err; int i; u32 v; err = pm_runtime_resume_and_get(rkc->dev); if (err) return err; err = rk_hash_prepare(engine, breq); if (err) goto theend; rctx->mode = 0; algt->stat_req++; rkc->nreq++; switch (crypto_ahash_digestsize(tfm)) { case SHA1_DIGEST_SIZE: rctx->mode = RK_CRYPTO_HASH_SHA1; break; case SHA256_DIGEST_SIZE: rctx->mode = RK_CRYPTO_HASH_SHA256; break; case MD5_DIGEST_SIZE: rctx->mode = RK_CRYPTO_HASH_MD5; break; default: err = -EINVAL; goto theend; } rk_ahash_reg_init(areq, rkc); while (sg) { reinit_completion(&rkc->complete); rkc->status = 0; crypto_ahash_dma_start(rkc, sg); wait_for_completion_interruptible_timeout(&rkc->complete, msecs_to_jiffies(2000)); if (!rkc->status) { dev_err(rkc->dev, "DMA timeout\n"); err = -EFAULT; goto theend; } sg = sg_next(sg); } /* * it will take some time to process date after last dma * transmission. * * waiting time is relative with the last date len, * so cannot set a fixed time here. * 10us makes system not call here frequently wasting * efficiency, and make it response quickly when dma * complete. */ readl_poll_timeout(rkc->reg + RK_CRYPTO_HASH_STS, v, v == 0, 10, 1000); for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++) { v = readl(rkc->reg + RK_CRYPTO_HASH_DOUT_0 + i * 4); put_unaligned_le32(v, areq->result + i * 4); } theend: pm_runtime_put_autosuspend(rkc->dev); local_bh_disable(); crypto_finalize_hash_request(engine, breq, err); local_bh_enable(); rk_hash_unprepare(engine, breq); return 0; } static int rk_hash_init_tfm(struct crypto_ahash *tfm) { struct rk_ahash_ctx *tctx = crypto_ahash_ctx(tfm); const char *alg_name = crypto_ahash_alg_name(tfm); struct ahash_alg *alg = crypto_ahash_alg(tfm); struct rk_crypto_tmp *algt = container_of(alg, struct rk_crypto_tmp, alg.hash.base); /* for fallback */ tctx->fallback_tfm = crypto_alloc_ahash(alg_name, 0, CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(tctx->fallback_tfm)) { dev_err(algt->dev->dev, "Could not load fallback driver.\n"); return PTR_ERR(tctx->fallback_tfm); } crypto_ahash_set_reqsize(tfm, sizeof(struct rk_ahash_rctx) + crypto_ahash_reqsize(tctx->fallback_tfm)); return 0; } static void rk_hash_exit_tfm(struct crypto_ahash *tfm) { struct rk_ahash_ctx *tctx = crypto_ahash_ctx(tfm); crypto_free_ahash(tctx->fallback_tfm); } struct rk_crypto_tmp rk_ahash_sha1 = { .type = CRYPTO_ALG_TYPE_AHASH, .alg.hash.base = { .init = rk_ahash_init, .update = rk_ahash_update, .final = rk_ahash_final, .finup = rk_ahash_finup, .export = rk_ahash_export, .import = rk_ahash_import, .digest = rk_ahash_digest, .init_tfm = rk_hash_init_tfm, .exit_tfm = rk_hash_exit_tfm, .halg = { .digestsize = SHA1_DIGEST_SIZE, .statesize = sizeof(struct sha1_state), .base = { .cra_name = "sha1", .cra_driver_name = "rk-sha1", .cra_priority = 300, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_ctxsize = sizeof(struct rk_ahash_ctx), .cra_alignmask = 3, .cra_module = THIS_MODULE, } } }, .alg.hash.op = { .do_one_request = rk_hash_run, }, }; struct rk_crypto_tmp rk_ahash_sha256 = { .type = CRYPTO_ALG_TYPE_AHASH, .alg.hash.base = { .init = rk_ahash_init, .update = rk_ahash_update, .final = rk_ahash_final, .finup = rk_ahash_finup, .export = rk_ahash_export, .import = rk_ahash_import, .digest = rk_ahash_digest, .init_tfm = rk_hash_init_tfm, .exit_tfm = rk_hash_exit_tfm, .halg = { .digestsize = SHA256_DIGEST_SIZE, .statesize = sizeof(struct sha256_state), .base = { .cra_name = "sha256", .cra_driver_name = "rk-sha256", .cra_priority = 300, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA256_BLOCK_SIZE, .cra_ctxsize = sizeof(struct rk_ahash_ctx), .cra_alignmask = 3, .cra_module = THIS_MODULE, } } }, .alg.hash.op = { .do_one_request = rk_hash_run, }, }; struct rk_crypto_tmp rk_ahash_md5 = { .type = CRYPTO_ALG_TYPE_AHASH, .alg.hash.base = { .init = rk_ahash_init, .update = rk_ahash_update, .final = rk_ahash_final, .finup = rk_ahash_finup, .export = rk_ahash_export, .import = rk_ahash_import, .digest = rk_ahash_digest, .init_tfm = rk_hash_init_tfm, .exit_tfm = rk_hash_exit_tfm, .halg = { .digestsize = MD5_DIGEST_SIZE, .statesize = sizeof(struct md5_state), .base = { .cra_name = "md5", .cra_driver_name = "rk-md5", .cra_priority = 300, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_ctxsize = sizeof(struct rk_ahash_ctx), .cra_alignmask = 3, .cra_module = THIS_MODULE, } } }, .alg.hash.op = { .do_one_request = rk_hash_run, }, };