// SPDX-License-Identifier: GPL-2.0 #include <linux/kernel.h> #include <linux/mmzone.h> #include <linux/nodemask.h> #include <linux/spinlock.h> #include <linux/smp.h> #include <linux/atomic.h> #include <asm/sn/types.h> #include <asm/sn/addrs.h> #include <asm/sn/nmi.h> #include <asm/sn/arch.h> #include <asm/sn/agent.h> #if 0 #define NODE_NUM_CPUS(n) CNODE_NUM_CPUS(n) #else #define NODE_NUM_CPUS(n) CPUS_PER_NODE #endif #define SEND_NMI(_nasid, _slice) \ REMOTE_HUB_S((_nasid), (PI_NMI_A + ((_slice) * PI_NMI_OFFSET)), 1) typedef unsigned long machreg_t; static arch_spinlock_t nmi_lock = __ARCH_SPIN_LOCK_UNLOCKED; /* * Let's see what else we need to do here. Set up sp, gp? */ void nmi_dump(void) { void cont_nmi_dump(void); cont_nmi_dump(); } void install_cpu_nmi_handler(int slice) { nmi_t *nmi_addr; nmi_addr = (nmi_t *)NMI_ADDR(get_nasid(), slice); if (nmi_addr->call_addr) return; nmi_addr->magic = NMI_MAGIC; nmi_addr->call_addr = (void *)nmi_dump; nmi_addr->call_addr_c = (void *)(~((unsigned long)(nmi_addr->call_addr))); nmi_addr->call_parm = 0; } /* * Copy the cpu registers which have been saved in the IP27prom format * into the eframe format for the node under consideration. */ void nmi_cpu_eframe_save(nasid_t nasid, int slice) { struct reg_struct *nr; int i; /* Get the pointer to the current cpu's register set. */ nr = (struct reg_struct *) (TO_UNCAC(TO_NODE(nasid, IP27_NMI_KREGS_OFFSET)) + slice * IP27_NMI_KREGS_CPU_SIZE); pr_emerg("NMI nasid %d: slice %d\n", nasid, slice); /* * Saved main processor registers */ for (i = 0; i < 32; ) { if ((i % 4) == 0) pr_emerg("$%2d :", i); pr_cont(" %016lx", nr->gpr[i]); i++; if ((i % 4) == 0) pr_cont("\n"); } pr_emerg("Hi : (value lost)\n"); pr_emerg("Lo : (value lost)\n"); /* * Saved cp0 registers */ pr_emerg("epc : %016lx %pS\n", nr->epc, (void *)nr->epc); pr_emerg("%s\n", print_tainted()); pr_emerg("ErrEPC: %016lx %pS\n", nr->error_epc, (void *)nr->error_epc); pr_emerg("ra : %016lx %pS\n", nr->gpr[31], (void *)nr->gpr[31]); pr_emerg("Status: %08lx ", nr->sr); if (nr->sr & ST0_KX) pr_cont("KX "); if (nr->sr & ST0_SX) pr_cont("SX "); if (nr->sr & ST0_UX) pr_cont("UX "); switch (nr->sr & ST0_KSU) { case KSU_USER: pr_cont("USER "); break; case KSU_SUPERVISOR: pr_cont("SUPERVISOR "); break; case KSU_KERNEL: pr_cont("KERNEL "); break; default: pr_cont("BAD_MODE "); break; } if (nr->sr & ST0_ERL) pr_cont("ERL "); if (nr->sr & ST0_EXL) pr_cont("EXL "); if (nr->sr & ST0_IE) pr_cont("IE "); pr_cont("\n"); pr_emerg("Cause : %08lx\n", nr->cause); pr_emerg("PrId : %08x\n", read_c0_prid()); pr_emerg("BadVA : %016lx\n", nr->badva); pr_emerg("CErr : %016lx\n", nr->cache_err); pr_emerg("NMI_SR: %016lx\n", nr->nmi_sr); pr_emerg("\n"); } void nmi_dump_hub_irq(nasid_t nasid, int slice) { u64 mask0, mask1, pend0, pend1; if (slice == 0) { /* Slice A */ mask0 = REMOTE_HUB_L(nasid, PI_INT_MASK0_A); mask1 = REMOTE_HUB_L(nasid, PI_INT_MASK1_A); } else { /* Slice B */ mask0 = REMOTE_HUB_L(nasid, PI_INT_MASK0_B); mask1 = REMOTE_HUB_L(nasid, PI_INT_MASK1_B); } pend0 = REMOTE_HUB_L(nasid, PI_INT_PEND0); pend1 = REMOTE_HUB_L(nasid, PI_INT_PEND1); pr_emerg("PI_INT_MASK0: %16llx PI_INT_MASK1: %16llx\n", mask0, mask1); pr_emerg("PI_INT_PEND0: %16llx PI_INT_PEND1: %16llx\n", pend0, pend1); pr_emerg("\n\n"); } /* * Copy the cpu registers which have been saved in the IP27prom format * into the eframe format for the node under consideration. */ void nmi_node_eframe_save(nasid_t nasid) { int slice; if (nasid == INVALID_NASID) return; /* Save the registers into eframe for each cpu */ for (slice = 0; slice < NODE_NUM_CPUS(slice); slice++) { nmi_cpu_eframe_save(nasid, slice); nmi_dump_hub_irq(nasid, slice); } } /* * Save the nmi cpu registers for all cpus in the system. */ void nmi_eframes_save(void) { nasid_t nasid; for_each_online_node(nasid) nmi_node_eframe_save(nasid); } void cont_nmi_dump(void) { #ifndef REAL_NMI_SIGNAL static atomic_t nmied_cpus = ATOMIC_INIT(0); atomic_inc(&nmied_cpus); #endif /* * Only allow 1 cpu to proceed */ arch_spin_lock(&nmi_lock); #ifdef REAL_NMI_SIGNAL /* * Wait up to 15 seconds for the other cpus to respond to the NMI. * If a cpu has not responded after 10 sec, send it 1 additional NMI. * This is for 2 reasons: * - sometimes a MMSC fail to NMI all cpus. * - on 512p SN0 system, the MMSC will only send NMIs to * half the cpus. Unfortunately, we don't know which cpus may be * NMIed - it depends on how the site chooses to configure. * * Note: it has been measure that it takes the MMSC up to 2.3 secs to * send NMIs to all cpus on a 256p system. */ for (i=0; i < 1500; i++) { for_each_online_node(node) if (NODEPDA(node)->dump_count == 0) break; if (node == MAX_NUMNODES) break; if (i == 1000) { for_each_online_node(node) if (NODEPDA(node)->dump_count == 0) { cpu = cpumask_first(cpumask_of_node(node)); for (n=0; n < CNODE_NUM_CPUS(node); cpu++, n++) { CPUMASK_SETB(nmied_cpus, cpu); /* * cputonasid, cputoslice * needs kernel cpuid */ SEND_NMI((cputonasid(cpu)), (cputoslice(cpu))); } } } udelay(10000); } #else while (atomic_read(&nmied_cpus) != num_online_cpus()); #endif /* * Save the nmi cpu registers for all cpu in the eframe format. */ nmi_eframes_save(); LOCAL_HUB_S(NI_PORT_RESET, NPR_PORTRESET | NPR_LOCALRESET); }