// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2015 - ARM Ltd * Author: Marc Zyngier <marc.zyngier@arm.com> */ #ifndef __ARM64_KVM_HYP_SWITCH_H__ #define __ARM64_KVM_HYP_SWITCH_H__ #include <hyp/adjust_pc.h> #include <hyp/fault.h> #include <linux/arm-smccc.h> #include <linux/kvm_host.h> #include <linux/types.h> #include <linux/jump_label.h> #include <uapi/linux/psci.h> #include <kvm/arm_psci.h> #include <asm/barrier.h> #include <asm/cpufeature.h> #include <asm/extable.h> #include <asm/kprobes.h> #include <asm/kvm_asm.h> #include <asm/kvm_emulate.h> #include <asm/kvm_hyp.h> #include <asm/kvm_mmu.h> #include <asm/kvm_nested.h> #include <asm/fpsimd.h> #include <asm/debug-monitors.h> #include <asm/processor.h> struct kvm_exception_table_entry { int insn, fixup; }; extern struct kvm_exception_table_entry __start___kvm_ex_table; extern struct kvm_exception_table_entry __stop___kvm_ex_table; /* Check whether the FP regs are owned by the guest */ static inline bool guest_owns_fp_regs(struct kvm_vcpu *vcpu) { return vcpu->arch.fp_state == FP_STATE_GUEST_OWNED; } /* Save the 32-bit only FPSIMD system register state */ static inline void __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu) { if (!vcpu_el1_is_32bit(vcpu)) return; __vcpu_sys_reg(vcpu, FPEXC32_EL2) = read_sysreg(fpexc32_el2); } static inline void __activate_traps_fpsimd32(struct kvm_vcpu *vcpu) { /* * We are about to set CPTR_EL2.TFP to trap all floating point * register accesses to EL2, however, the ARM ARM clearly states that * traps are only taken to EL2 if the operation would not otherwise * trap to EL1. Therefore, always make sure that for 32-bit guests, * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit. * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to * it will cause an exception. */ if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) { write_sysreg(1 << 30, fpexc32_el2); isb(); } } #define compute_clr_set(vcpu, reg, clr, set) \ do { \ u64 hfg; \ hfg = __vcpu_sys_reg(vcpu, reg) & ~__ ## reg ## _RES0; \ set |= hfg & __ ## reg ## _MASK; \ clr |= ~hfg & __ ## reg ## _nMASK; \ } while(0) static inline void __activate_traps_hfgxtr(struct kvm_vcpu *vcpu) { struct kvm_cpu_context *hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt; u64 r_clr = 0, w_clr = 0, r_set = 0, w_set = 0, tmp; u64 r_val, w_val; if (!cpus_have_final_cap(ARM64_HAS_FGT)) return; ctxt_sys_reg(hctxt, HFGRTR_EL2) = read_sysreg_s(SYS_HFGRTR_EL2); ctxt_sys_reg(hctxt, HFGWTR_EL2) = read_sysreg_s(SYS_HFGWTR_EL2); if (cpus_have_final_cap(ARM64_SME)) { tmp = HFGxTR_EL2_nSMPRI_EL1_MASK | HFGxTR_EL2_nTPIDR2_EL0_MASK; r_clr |= tmp; w_clr |= tmp; } /* * Trap guest writes to TCR_EL1 to prevent it from enabling HA or HD. */ if (cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38)) w_set |= HFGxTR_EL2_TCR_EL1_MASK; if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) { compute_clr_set(vcpu, HFGRTR_EL2, r_clr, r_set); compute_clr_set(vcpu, HFGWTR_EL2, w_clr, w_set); } /* The default is not to trap anything but ACCDATA_EL1 */ r_val = __HFGRTR_EL2_nMASK & ~HFGxTR_EL2_nACCDATA_EL1; r_val |= r_set; r_val &= ~r_clr; w_val = __HFGWTR_EL2_nMASK & ~HFGxTR_EL2_nACCDATA_EL1; w_val |= w_set; w_val &= ~w_clr; write_sysreg_s(r_val, SYS_HFGRTR_EL2); write_sysreg_s(w_val, SYS_HFGWTR_EL2); if (!vcpu_has_nv(vcpu) || is_hyp_ctxt(vcpu)) return; ctxt_sys_reg(hctxt, HFGITR_EL2) = read_sysreg_s(SYS_HFGITR_EL2); r_set = r_clr = 0; compute_clr_set(vcpu, HFGITR_EL2, r_clr, r_set); r_val = __HFGITR_EL2_nMASK; r_val |= r_set; r_val &= ~r_clr; write_sysreg_s(r_val, SYS_HFGITR_EL2); ctxt_sys_reg(hctxt, HDFGRTR_EL2) = read_sysreg_s(SYS_HDFGRTR_EL2); ctxt_sys_reg(hctxt, HDFGWTR_EL2) = read_sysreg_s(SYS_HDFGWTR_EL2); r_clr = r_set = w_clr = w_set = 0; compute_clr_set(vcpu, HDFGRTR_EL2, r_clr, r_set); compute_clr_set(vcpu, HDFGWTR_EL2, w_clr, w_set); r_val = __HDFGRTR_EL2_nMASK; r_val |= r_set; r_val &= ~r_clr; w_val = __HDFGWTR_EL2_nMASK; w_val |= w_set; w_val &= ~w_clr; write_sysreg_s(r_val, SYS_HDFGRTR_EL2); write_sysreg_s(w_val, SYS_HDFGWTR_EL2); } static inline void __deactivate_traps_hfgxtr(struct kvm_vcpu *vcpu) { struct kvm_cpu_context *hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt; if (!cpus_have_final_cap(ARM64_HAS_FGT)) return; write_sysreg_s(ctxt_sys_reg(hctxt, HFGRTR_EL2), SYS_HFGRTR_EL2); write_sysreg_s(ctxt_sys_reg(hctxt, HFGWTR_EL2), SYS_HFGWTR_EL2); if (!vcpu_has_nv(vcpu) || is_hyp_ctxt(vcpu)) return; write_sysreg_s(ctxt_sys_reg(hctxt, HFGITR_EL2), SYS_HFGITR_EL2); write_sysreg_s(ctxt_sys_reg(hctxt, HDFGRTR_EL2), SYS_HDFGRTR_EL2); write_sysreg_s(ctxt_sys_reg(hctxt, HDFGWTR_EL2), SYS_HDFGWTR_EL2); } static inline void __activate_traps_common(struct kvm_vcpu *vcpu) { /* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */ write_sysreg(1 << 15, hstr_el2); /* * Make sure we trap PMU access from EL0 to EL2. Also sanitize * PMSELR_EL0 to make sure it never contains the cycle * counter, which could make a PMXEVCNTR_EL0 access UNDEF at * EL1 instead of being trapped to EL2. */ if (kvm_arm_support_pmu_v3()) { struct kvm_cpu_context *hctxt; write_sysreg(0, pmselr_el0); hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt; ctxt_sys_reg(hctxt, PMUSERENR_EL0) = read_sysreg(pmuserenr_el0); write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0); vcpu_set_flag(vcpu, PMUSERENR_ON_CPU); } vcpu->arch.mdcr_el2_host = read_sysreg(mdcr_el2); write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2); if (cpus_have_final_cap(ARM64_HAS_HCX)) { u64 hcrx = HCRX_GUEST_FLAGS; if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) { u64 clr = 0, set = 0; compute_clr_set(vcpu, HCRX_EL2, clr, set); hcrx |= set; hcrx &= ~clr; } write_sysreg_s(hcrx, SYS_HCRX_EL2); } __activate_traps_hfgxtr(vcpu); } static inline void __deactivate_traps_common(struct kvm_vcpu *vcpu) { write_sysreg(vcpu->arch.mdcr_el2_host, mdcr_el2); write_sysreg(0, hstr_el2); if (kvm_arm_support_pmu_v3()) { struct kvm_cpu_context *hctxt; hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt; write_sysreg(ctxt_sys_reg(hctxt, PMUSERENR_EL0), pmuserenr_el0); vcpu_clear_flag(vcpu, PMUSERENR_ON_CPU); } if (cpus_have_final_cap(ARM64_HAS_HCX)) write_sysreg_s(HCRX_HOST_FLAGS, SYS_HCRX_EL2); __deactivate_traps_hfgxtr(vcpu); } static inline void ___activate_traps(struct kvm_vcpu *vcpu) { u64 hcr = vcpu->arch.hcr_el2; if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM)) hcr |= HCR_TVM; write_sysreg(hcr, hcr_el2); if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE)) write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2); } static inline void ___deactivate_traps(struct kvm_vcpu *vcpu) { /* * If we pended a virtual abort, preserve it until it gets * cleared. See D1.14.3 (Virtual Interrupts) for details, but * the crucial bit is "On taking a vSError interrupt, * HCR_EL2.VSE is cleared to 0." */ if (vcpu->arch.hcr_el2 & HCR_VSE) { vcpu->arch.hcr_el2 &= ~HCR_VSE; vcpu->arch.hcr_el2 |= read_sysreg(hcr_el2) & HCR_VSE; } } static inline bool __populate_fault_info(struct kvm_vcpu *vcpu) { return __get_fault_info(vcpu->arch.fault.esr_el2, &vcpu->arch.fault); } static inline void __hyp_sve_restore_guest(struct kvm_vcpu *vcpu) { sve_cond_update_zcr_vq(vcpu_sve_max_vq(vcpu) - 1, SYS_ZCR_EL2); __sve_restore_state(vcpu_sve_pffr(vcpu), &vcpu->arch.ctxt.fp_regs.fpsr); write_sysreg_el1(__vcpu_sys_reg(vcpu, ZCR_EL1), SYS_ZCR); } /* * We trap the first access to the FP/SIMD to save the host context and * restore the guest context lazily. * If FP/SIMD is not implemented, handle the trap and inject an undefined * instruction exception to the guest. Similarly for trapped SVE accesses. */ static bool kvm_hyp_handle_fpsimd(struct kvm_vcpu *vcpu, u64 *exit_code) { bool sve_guest; u8 esr_ec; u64 reg; if (!system_supports_fpsimd()) return false; sve_guest = vcpu_has_sve(vcpu); esr_ec = kvm_vcpu_trap_get_class(vcpu); /* Only handle traps the vCPU can support here: */ switch (esr_ec) { case ESR_ELx_EC_FP_ASIMD: break; case ESR_ELx_EC_SVE: if (!sve_guest) return false; break; default: return false; } /* Valid trap. Switch the context: */ /* First disable enough traps to allow us to update the registers */ if (has_vhe() || has_hvhe()) { reg = CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN; if (sve_guest) reg |= CPACR_EL1_ZEN_EL0EN | CPACR_EL1_ZEN_EL1EN; sysreg_clear_set(cpacr_el1, 0, reg); } else { reg = CPTR_EL2_TFP; if (sve_guest) reg |= CPTR_EL2_TZ; sysreg_clear_set(cptr_el2, reg, 0); } isb(); /* Write out the host state if it's in the registers */ if (vcpu->arch.fp_state == FP_STATE_HOST_OWNED) __fpsimd_save_state(vcpu->arch.host_fpsimd_state); /* Restore the guest state */ if (sve_guest) __hyp_sve_restore_guest(vcpu); else __fpsimd_restore_state(&vcpu->arch.ctxt.fp_regs); /* Skip restoring fpexc32 for AArch64 guests */ if (!(read_sysreg(hcr_el2) & HCR_RW)) write_sysreg(__vcpu_sys_reg(vcpu, FPEXC32_EL2), fpexc32_el2); vcpu->arch.fp_state = FP_STATE_GUEST_OWNED; return true; } static inline bool handle_tx2_tvm(struct kvm_vcpu *vcpu) { u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu)); int rt = kvm_vcpu_sys_get_rt(vcpu); u64 val = vcpu_get_reg(vcpu, rt); /* * The normal sysreg handling code expects to see the traps, * let's not do anything here. */ if (vcpu->arch.hcr_el2 & HCR_TVM) return false; switch (sysreg) { case SYS_SCTLR_EL1: write_sysreg_el1(val, SYS_SCTLR); break; case SYS_TTBR0_EL1: write_sysreg_el1(val, SYS_TTBR0); break; case SYS_TTBR1_EL1: write_sysreg_el1(val, SYS_TTBR1); break; case SYS_TCR_EL1: write_sysreg_el1(val, SYS_TCR); break; case SYS_ESR_EL1: write_sysreg_el1(val, SYS_ESR); break; case SYS_FAR_EL1: write_sysreg_el1(val, SYS_FAR); break; case SYS_AFSR0_EL1: write_sysreg_el1(val, SYS_AFSR0); break; case SYS_AFSR1_EL1: write_sysreg_el1(val, SYS_AFSR1); break; case SYS_MAIR_EL1: write_sysreg_el1(val, SYS_MAIR); break; case SYS_AMAIR_EL1: write_sysreg_el1(val, SYS_AMAIR); break; case SYS_CONTEXTIDR_EL1: write_sysreg_el1(val, SYS_CONTEXTIDR); break; default: return false; } __kvm_skip_instr(vcpu); return true; } static inline bool esr_is_ptrauth_trap(u64 esr) { switch (esr_sys64_to_sysreg(esr)) { case SYS_APIAKEYLO_EL1: case SYS_APIAKEYHI_EL1: case SYS_APIBKEYLO_EL1: case SYS_APIBKEYHI_EL1: case SYS_APDAKEYLO_EL1: case SYS_APDAKEYHI_EL1: case SYS_APDBKEYLO_EL1: case SYS_APDBKEYHI_EL1: case SYS_APGAKEYLO_EL1: case SYS_APGAKEYHI_EL1: return true; } return false; } #define __ptrauth_save_key(ctxt, key) \ do { \ u64 __val; \ __val = read_sysreg_s(SYS_ ## key ## KEYLO_EL1); \ ctxt_sys_reg(ctxt, key ## KEYLO_EL1) = __val; \ __val = read_sysreg_s(SYS_ ## key ## KEYHI_EL1); \ ctxt_sys_reg(ctxt, key ## KEYHI_EL1) = __val; \ } while(0) DECLARE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt); static bool kvm_hyp_handle_ptrauth(struct kvm_vcpu *vcpu, u64 *exit_code) { struct kvm_cpu_context *ctxt; u64 val; if (!vcpu_has_ptrauth(vcpu)) return false; ctxt = this_cpu_ptr(&kvm_hyp_ctxt); __ptrauth_save_key(ctxt, APIA); __ptrauth_save_key(ctxt, APIB); __ptrauth_save_key(ctxt, APDA); __ptrauth_save_key(ctxt, APDB); __ptrauth_save_key(ctxt, APGA); vcpu_ptrauth_enable(vcpu); val = read_sysreg(hcr_el2); val |= (HCR_API | HCR_APK); write_sysreg(val, hcr_el2); return true; } static bool kvm_hyp_handle_cntpct(struct kvm_vcpu *vcpu) { struct arch_timer_context *ctxt; u32 sysreg; u64 val; /* * We only get here for 64bit guests, 32bit guests will hit * the long and winding road all the way to the standard * handling. Yes, it sucks to be irrelevant. */ sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu)); switch (sysreg) { case SYS_CNTPCT_EL0: case SYS_CNTPCTSS_EL0: if (vcpu_has_nv(vcpu)) { if (is_hyp_ctxt(vcpu)) { ctxt = vcpu_hptimer(vcpu); break; } /* Check for guest hypervisor trapping */ val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2); if (!vcpu_el2_e2h_is_set(vcpu)) val = (val & CNTHCTL_EL1PCTEN) << 10; if (!(val & (CNTHCTL_EL1PCTEN << 10))) return false; } ctxt = vcpu_ptimer(vcpu); break; default: return false; } val = arch_timer_read_cntpct_el0(); if (ctxt->offset.vm_offset) val -= *kern_hyp_va(ctxt->offset.vm_offset); if (ctxt->offset.vcpu_offset) val -= *kern_hyp_va(ctxt->offset.vcpu_offset); vcpu_set_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu), val); __kvm_skip_instr(vcpu); return true; } static bool handle_ampere1_tcr(struct kvm_vcpu *vcpu) { u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu)); int rt = kvm_vcpu_sys_get_rt(vcpu); u64 val = vcpu_get_reg(vcpu, rt); if (sysreg != SYS_TCR_EL1) return false; /* * Affected parts do not advertise support for hardware Access Flag / * Dirty state management in ID_AA64MMFR1_EL1.HAFDBS, but the underlying * control bits are still functional. The architecture requires these be * RES0 on systems that do not implement FEAT_HAFDBS. * * Uphold the requirements of the architecture by masking guest writes * to TCR_EL1.{HA,HD} here. */ val &= ~(TCR_HD | TCR_HA); write_sysreg_el1(val, SYS_TCR); __kvm_skip_instr(vcpu); return true; } static bool kvm_hyp_handle_sysreg(struct kvm_vcpu *vcpu, u64 *exit_code) { if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM) && handle_tx2_tvm(vcpu)) return true; if (cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38) && handle_ampere1_tcr(vcpu)) return true; if (static_branch_unlikely(&vgic_v3_cpuif_trap) && __vgic_v3_perform_cpuif_access(vcpu) == 1) return true; if (esr_is_ptrauth_trap(kvm_vcpu_get_esr(vcpu))) return kvm_hyp_handle_ptrauth(vcpu, exit_code); if (kvm_hyp_handle_cntpct(vcpu)) return true; return false; } static bool kvm_hyp_handle_cp15_32(struct kvm_vcpu *vcpu, u64 *exit_code) { if (static_branch_unlikely(&vgic_v3_cpuif_trap) && __vgic_v3_perform_cpuif_access(vcpu) == 1) return true; return false; } static bool kvm_hyp_handle_memory_fault(struct kvm_vcpu *vcpu, u64 *exit_code) { if (!__populate_fault_info(vcpu)) return true; return false; } static bool kvm_hyp_handle_iabt_low(struct kvm_vcpu *vcpu, u64 *exit_code) __alias(kvm_hyp_handle_memory_fault); static bool kvm_hyp_handle_watchpt_low(struct kvm_vcpu *vcpu, u64 *exit_code) __alias(kvm_hyp_handle_memory_fault); static bool kvm_hyp_handle_dabt_low(struct kvm_vcpu *vcpu, u64 *exit_code) { if (kvm_hyp_handle_memory_fault(vcpu, exit_code)) return true; if (static_branch_unlikely(&vgic_v2_cpuif_trap)) { bool valid; valid = kvm_vcpu_trap_get_fault_type(vcpu) == ESR_ELx_FSC_FAULT && kvm_vcpu_dabt_isvalid(vcpu) && !kvm_vcpu_abt_issea(vcpu) && !kvm_vcpu_abt_iss1tw(vcpu); if (valid) { int ret = __vgic_v2_perform_cpuif_access(vcpu); if (ret == 1) return true; /* Promote an illegal access to an SError.*/ if (ret == -1) *exit_code = ARM_EXCEPTION_EL1_SERROR; } } return false; } typedef bool (*exit_handler_fn)(struct kvm_vcpu *, u64 *); static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu); static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code); /* * Allow the hypervisor to handle the exit with an exit handler if it has one. * * Returns true if the hypervisor handled the exit, and control should go back * to the guest, or false if it hasn't. */ static inline bool kvm_hyp_handle_exit(struct kvm_vcpu *vcpu, u64 *exit_code) { const exit_handler_fn *handlers = kvm_get_exit_handler_array(vcpu); exit_handler_fn fn; fn = handlers[kvm_vcpu_trap_get_class(vcpu)]; if (fn) return fn(vcpu, exit_code); return false; } static inline void synchronize_vcpu_pstate(struct kvm_vcpu *vcpu, u64 *exit_code) { /* * Check for the conditions of Cortex-A510's #2077057. When these occur * SPSR_EL2 can't be trusted, but isn't needed either as it is * unchanged from the value in vcpu_gp_regs(vcpu)->pstate. * Are we single-stepping the guest, and took a PAC exception from the * active-not-pending state? */ if (cpus_have_final_cap(ARM64_WORKAROUND_2077057) && vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && *vcpu_cpsr(vcpu) & DBG_SPSR_SS && ESR_ELx_EC(read_sysreg_el2(SYS_ESR)) == ESR_ELx_EC_PAC) write_sysreg_el2(*vcpu_cpsr(vcpu), SYS_SPSR); vcpu->arch.ctxt.regs.pstate = read_sysreg_el2(SYS_SPSR); } /* * Return true when we were able to fixup the guest exit and should return to * the guest, false when we should restore the host state and return to the * main run loop. */ static inline bool fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code) { /* * Save PSTATE early so that we can evaluate the vcpu mode * early on. */ synchronize_vcpu_pstate(vcpu, exit_code); /* * Check whether we want to repaint the state one way or * another. */ early_exit_filter(vcpu, exit_code); if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ) vcpu->arch.fault.esr_el2 = read_sysreg_el2(SYS_ESR); if (ARM_SERROR_PENDING(*exit_code) && ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ) { u8 esr_ec = kvm_vcpu_trap_get_class(vcpu); /* * HVC already have an adjusted PC, which we need to * correct in order to return to after having injected * the SError. * * SMC, on the other hand, is *trapped*, meaning its * preferred return address is the SMC itself. */ if (esr_ec == ESR_ELx_EC_HVC32 || esr_ec == ESR_ELx_EC_HVC64) write_sysreg_el2(read_sysreg_el2(SYS_ELR) - 4, SYS_ELR); } /* * We're using the raw exception code in order to only process * the trap if no SError is pending. We will come back to the * same PC once the SError has been injected, and replay the * trapping instruction. */ if (*exit_code != ARM_EXCEPTION_TRAP) goto exit; /* Check if there's an exit handler and allow it to handle the exit. */ if (kvm_hyp_handle_exit(vcpu, exit_code)) goto guest; exit: /* Return to the host kernel and handle the exit */ return false; guest: /* Re-enter the guest */ asm(ALTERNATIVE("nop", "dmb sy", ARM64_WORKAROUND_1508412)); return true; } static inline void __kvm_unexpected_el2_exception(void) { extern char __guest_exit_panic[]; unsigned long addr, fixup; struct kvm_exception_table_entry *entry, *end; unsigned long elr_el2 = read_sysreg(elr_el2); entry = &__start___kvm_ex_table; end = &__stop___kvm_ex_table; while (entry < end) { addr = (unsigned long)&entry->insn + entry->insn; fixup = (unsigned long)&entry->fixup + entry->fixup; if (addr != elr_el2) { entry++; continue; } write_sysreg(fixup, elr_el2); return; } /* Trigger a panic after restoring the hyp context. */ write_sysreg(__guest_exit_panic, elr_el2); } #endif /* __ARM64_KVM_HYP_SWITCH_H__ */