// SPDX-License-Identifier: GPL-2.0-only /* * Remote processor machine-specific module for DA8XX * * Copyright (C) 2013 Texas Instruments, Inc. */ #include <linux/bitops.h> #include <linux/clk.h> #include <linux/reset.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/irq.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of_reserved_mem.h> #include <linux/platform_device.h> #include <linux/remoteproc.h> #include "remoteproc_internal.h" static char *da8xx_fw_name; module_param(da8xx_fw_name, charp, 0444); MODULE_PARM_DESC(da8xx_fw_name, "Name of DSP firmware file in /lib/firmware (if not specified defaults to 'rproc-dsp-fw')"); /* * OMAP-L138 Technical References: * http://www.ti.com/product/omap-l138 */ #define SYSCFG_CHIPSIG0 BIT(0) #define SYSCFG_CHIPSIG1 BIT(1) #define SYSCFG_CHIPSIG2 BIT(2) #define SYSCFG_CHIPSIG3 BIT(3) #define SYSCFG_CHIPSIG4 BIT(4) #define DA8XX_RPROC_LOCAL_ADDRESS_MASK (SZ_16M - 1) /** * struct da8xx_rproc_mem - internal memory structure * @cpu_addr: MPU virtual address of the memory region * @bus_addr: Bus address used to access the memory region * @dev_addr: Device address of the memory region from DSP view * @size: Size of the memory region */ struct da8xx_rproc_mem { void __iomem *cpu_addr; phys_addr_t bus_addr; u32 dev_addr; size_t size; }; /** * struct da8xx_rproc - da8xx remote processor instance state * @rproc: rproc handle * @mem: internal memory regions data * @num_mems: number of internal memory regions * @dsp_clk: placeholder for platform's DSP clk * @ack_fxn: chip-specific ack function for ack'ing irq * @irq_data: ack_fxn function parameter * @chipsig: virt ptr to DSP interrupt registers (CHIPSIG & CHIPSIG_CLR) * @bootreg: virt ptr to DSP boot address register (HOST1CFG) * @irq: irq # used by this instance */ struct da8xx_rproc { struct rproc *rproc; struct da8xx_rproc_mem *mem; int num_mems; struct clk *dsp_clk; struct reset_control *dsp_reset; void (*ack_fxn)(struct irq_data *data); struct irq_data *irq_data; void __iomem *chipsig; void __iomem *bootreg; int irq; }; /** * handle_event() - inbound virtqueue message workqueue function * * This function is registered as a kernel thread and is scheduled by the * kernel handler. */ static irqreturn_t handle_event(int irq, void *p) { struct rproc *rproc = p; /* Process incoming buffers on all our vrings */ rproc_vq_interrupt(rproc, 0); rproc_vq_interrupt(rproc, 1); return IRQ_HANDLED; } /** * da8xx_rproc_callback() - inbound virtqueue message handler * * This handler is invoked directly by the kernel whenever the remote * core (DSP) has modified the state of a virtqueue. There is no * "payload" message indicating the virtqueue index as is the case with * mailbox-based implementations on OMAP4. As such, this handler "polls" * each known virtqueue index for every invocation. */ static irqreturn_t da8xx_rproc_callback(int irq, void *p) { struct rproc *rproc = p; struct da8xx_rproc *drproc = rproc->priv; u32 chipsig; chipsig = readl(drproc->chipsig); if (chipsig & SYSCFG_CHIPSIG0) { /* Clear interrupt level source */ writel(SYSCFG_CHIPSIG0, drproc->chipsig + 4); /* * ACK intr to AINTC. * * It has already been ack'ed by the kernel before calling * this function, but since the ARM<->DSP interrupts in the * CHIPSIG register are "level" instead of "pulse" variety, * we need to ack it after taking down the level else we'll * be called again immediately after returning. */ drproc->ack_fxn(drproc->irq_data); return IRQ_WAKE_THREAD; } return IRQ_HANDLED; } static int da8xx_rproc_start(struct rproc *rproc) { struct device *dev = rproc->dev.parent; struct da8xx_rproc *drproc = rproc->priv; struct clk *dsp_clk = drproc->dsp_clk; struct reset_control *dsp_reset = drproc->dsp_reset; int ret; /* hw requires the start (boot) address be on 1KB boundary */ if (rproc->bootaddr & 0x3ff) { dev_err(dev, "invalid boot address: must be aligned to 1KB\n"); return -EINVAL; } writel(rproc->bootaddr, drproc->bootreg); ret = clk_prepare_enable(dsp_clk); if (ret) { dev_err(dev, "clk_prepare_enable() failed: %d\n", ret); return ret; } ret = reset_control_deassert(dsp_reset); if (ret) { dev_err(dev, "reset_control_deassert() failed: %d\n", ret); clk_disable_unprepare(dsp_clk); return ret; } return 0; } static int da8xx_rproc_stop(struct rproc *rproc) { struct da8xx_rproc *drproc = rproc->priv; struct device *dev = rproc->dev.parent; int ret; ret = reset_control_assert(drproc->dsp_reset); if (ret) { dev_err(dev, "reset_control_assert() failed: %d\n", ret); return ret; } clk_disable_unprepare(drproc->dsp_clk); return 0; } /* kick a virtqueue */ static void da8xx_rproc_kick(struct rproc *rproc, int vqid) { struct da8xx_rproc *drproc = rproc->priv; /* Interrupt remote proc */ writel(SYSCFG_CHIPSIG2, drproc->chipsig); } static const struct rproc_ops da8xx_rproc_ops = { .start = da8xx_rproc_start, .stop = da8xx_rproc_stop, .kick = da8xx_rproc_kick, }; static int da8xx_rproc_get_internal_memories(struct platform_device *pdev, struct da8xx_rproc *drproc) { static const char * const mem_names[] = {"l2sram", "l1pram", "l1dram"}; int num_mems = ARRAY_SIZE(mem_names); struct device *dev = &pdev->dev; struct resource *res; int i; drproc->mem = devm_kcalloc(dev, num_mems, sizeof(*drproc->mem), GFP_KERNEL); if (!drproc->mem) return -ENOMEM; for (i = 0; i < num_mems; i++) { res = platform_get_resource_byname(pdev, IORESOURCE_MEM, mem_names[i]); drproc->mem[i].cpu_addr = devm_ioremap_resource(dev, res); if (IS_ERR(drproc->mem[i].cpu_addr)) { dev_err(dev, "failed to parse and map %s memory\n", mem_names[i]); return PTR_ERR(drproc->mem[i].cpu_addr); } drproc->mem[i].bus_addr = res->start; drproc->mem[i].dev_addr = res->start & DA8XX_RPROC_LOCAL_ADDRESS_MASK; drproc->mem[i].size = resource_size(res); dev_dbg(dev, "memory %8s: bus addr %pa size 0x%zx va %p da 0x%x\n", mem_names[i], &drproc->mem[i].bus_addr, drproc->mem[i].size, drproc->mem[i].cpu_addr, drproc->mem[i].dev_addr); } drproc->num_mems = num_mems; return 0; } static int da8xx_rproc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct da8xx_rproc *drproc; struct rproc *rproc; struct irq_data *irq_data; struct resource *bootreg_res; struct resource *chipsig_res; struct clk *dsp_clk; struct reset_control *dsp_reset; void __iomem *chipsig; void __iomem *bootreg; int irq; int ret; irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; irq_data = irq_get_irq_data(irq); if (!irq_data) { dev_err(dev, "irq_get_irq_data(%d): NULL\n", irq); return -EINVAL; } bootreg_res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "host1cfg"); bootreg = devm_ioremap_resource(dev, bootreg_res); if (IS_ERR(bootreg)) return PTR_ERR(bootreg); chipsig_res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "chipsig"); chipsig = devm_ioremap_resource(dev, chipsig_res); if (IS_ERR(chipsig)) return PTR_ERR(chipsig); dsp_clk = devm_clk_get(dev, NULL); if (IS_ERR(dsp_clk)) { dev_err(dev, "clk_get error: %ld\n", PTR_ERR(dsp_clk)); return PTR_ERR(dsp_clk); } dsp_reset = devm_reset_control_get_exclusive(dev, NULL); if (IS_ERR(dsp_reset)) { if (PTR_ERR(dsp_reset) != -EPROBE_DEFER) dev_err(dev, "unable to get reset control: %ld\n", PTR_ERR(dsp_reset)); return PTR_ERR(dsp_reset); } if (dev->of_node) { ret = of_reserved_mem_device_init(dev); if (ret) { dev_err(dev, "device does not have specific CMA pool: %d\n", ret); return ret; } } rproc = rproc_alloc(dev, "dsp", &da8xx_rproc_ops, da8xx_fw_name, sizeof(*drproc)); if (!rproc) { ret = -ENOMEM; goto free_mem; } /* error recovery is not supported at present */ rproc->recovery_disabled = true; drproc = rproc->priv; drproc->rproc = rproc; drproc->dsp_clk = dsp_clk; drproc->dsp_reset = dsp_reset; rproc->has_iommu = false; ret = da8xx_rproc_get_internal_memories(pdev, drproc); if (ret) goto free_rproc; platform_set_drvdata(pdev, rproc); /* everything the ISR needs is now setup, so hook it up */ ret = devm_request_threaded_irq(dev, irq, da8xx_rproc_callback, handle_event, 0, "da8xx-remoteproc", rproc); if (ret) { dev_err(dev, "devm_request_threaded_irq error: %d\n", ret); goto free_rproc; } /* * rproc_add() can end up enabling the DSP's clk with the DSP * *not* in reset, but da8xx_rproc_start() needs the DSP to be * held in reset at the time it is called. */ ret = reset_control_assert(dsp_reset); if (ret) goto free_rproc; drproc->chipsig = chipsig; drproc->bootreg = bootreg; drproc->ack_fxn = irq_data->chip->irq_ack; drproc->irq_data = irq_data; drproc->irq = irq; ret = rproc_add(rproc); if (ret) { dev_err(dev, "rproc_add failed: %d\n", ret); goto free_rproc; } return 0; free_rproc: rproc_free(rproc); free_mem: if (dev->of_node) of_reserved_mem_device_release(dev); return ret; } static void da8xx_rproc_remove(struct platform_device *pdev) { struct rproc *rproc = platform_get_drvdata(pdev); struct da8xx_rproc *drproc = rproc->priv; struct device *dev = &pdev->dev; /* * The devm subsystem might end up releasing things before * freeing the irq, thus allowing an interrupt to sneak in while * the device is being removed. This should prevent that. */ disable_irq(drproc->irq); rproc_del(rproc); rproc_free(rproc); if (dev->of_node) of_reserved_mem_device_release(dev); } static const struct of_device_id davinci_rproc_of_match[] __maybe_unused = { { .compatible = "ti,da850-dsp", }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, davinci_rproc_of_match); static struct platform_driver da8xx_rproc_driver = { .probe = da8xx_rproc_probe, .remove_new = da8xx_rproc_remove, .driver = { .name = "davinci-rproc", .of_match_table = of_match_ptr(davinci_rproc_of_match), }, }; module_platform_driver(da8xx_rproc_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("DA8XX Remote Processor control driver");