// SPDX-License-Identifier: GPL-2.0 /* * Page table allocation functions * * Copyright IBM Corp. 2016 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com> */ #include <linux/sysctl.h> #include <linux/slab.h> #include <linux/mm.h> #include <asm/mmu_context.h> #include <asm/pgalloc.h> #include <asm/gmap.h> #include <asm/tlb.h> #include <asm/tlbflush.h> #ifdef CONFIG_PGSTE int page_table_allocate_pgste = 0; EXPORT_SYMBOL(page_table_allocate_pgste); static struct ctl_table page_table_sysctl[] = { { .procname = "allocate_pgste", .data = &page_table_allocate_pgste, .maxlen = sizeof(int), .mode = S_IRUGO | S_IWUSR, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_ONE, }, { } }; static int __init page_table_register_sysctl(void) { return register_sysctl("vm", page_table_sysctl) ? 0 : -ENOMEM; } __initcall(page_table_register_sysctl); #endif /* CONFIG_PGSTE */ unsigned long *crst_table_alloc(struct mm_struct *mm) { struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL, CRST_ALLOC_ORDER); if (!ptdesc) return NULL; arch_set_page_dat(ptdesc_page(ptdesc), CRST_ALLOC_ORDER); return (unsigned long *) ptdesc_to_virt(ptdesc); } void crst_table_free(struct mm_struct *mm, unsigned long *table) { pagetable_free(virt_to_ptdesc(table)); } static void __crst_table_upgrade(void *arg) { struct mm_struct *mm = arg; /* change all active ASCEs to avoid the creation of new TLBs */ if (current->active_mm == mm) { S390_lowcore.user_asce = mm->context.asce; __ctl_load(S390_lowcore.user_asce, 7, 7); } __tlb_flush_local(); } int crst_table_upgrade(struct mm_struct *mm, unsigned long end) { unsigned long *pgd = NULL, *p4d = NULL, *__pgd; unsigned long asce_limit = mm->context.asce_limit; /* upgrade should only happen from 3 to 4, 3 to 5, or 4 to 5 levels */ VM_BUG_ON(asce_limit < _REGION2_SIZE); if (end <= asce_limit) return 0; if (asce_limit == _REGION2_SIZE) { p4d = crst_table_alloc(mm); if (unlikely(!p4d)) goto err_p4d; crst_table_init(p4d, _REGION2_ENTRY_EMPTY); } if (end > _REGION1_SIZE) { pgd = crst_table_alloc(mm); if (unlikely(!pgd)) goto err_pgd; crst_table_init(pgd, _REGION1_ENTRY_EMPTY); } spin_lock_bh(&mm->page_table_lock); /* * This routine gets called with mmap_lock lock held and there is * no reason to optimize for the case of otherwise. However, if * that would ever change, the below check will let us know. */ VM_BUG_ON(asce_limit != mm->context.asce_limit); if (p4d) { __pgd = (unsigned long *) mm->pgd; p4d_populate(mm, (p4d_t *) p4d, (pud_t *) __pgd); mm->pgd = (pgd_t *) p4d; mm->context.asce_limit = _REGION1_SIZE; mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH | _ASCE_USER_BITS | _ASCE_TYPE_REGION2; mm_inc_nr_puds(mm); } if (pgd) { __pgd = (unsigned long *) mm->pgd; pgd_populate(mm, (pgd_t *) pgd, (p4d_t *) __pgd); mm->pgd = (pgd_t *) pgd; mm->context.asce_limit = TASK_SIZE_MAX; mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH | _ASCE_USER_BITS | _ASCE_TYPE_REGION1; } spin_unlock_bh(&mm->page_table_lock); on_each_cpu(__crst_table_upgrade, mm, 0); return 0; err_pgd: crst_table_free(mm, p4d); err_p4d: return -ENOMEM; } static inline unsigned int atomic_xor_bits(atomic_t *v, unsigned int bits) { return atomic_fetch_xor(bits, v) ^ bits; } #ifdef CONFIG_PGSTE struct page *page_table_alloc_pgste(struct mm_struct *mm) { struct ptdesc *ptdesc; u64 *table; ptdesc = pagetable_alloc(GFP_KERNEL, 0); if (ptdesc) { table = (u64 *)ptdesc_to_virt(ptdesc); memset64(table, _PAGE_INVALID, PTRS_PER_PTE); memset64(table + PTRS_PER_PTE, 0, PTRS_PER_PTE); } return ptdesc_page(ptdesc); } void page_table_free_pgste(struct page *page) { pagetable_free(page_ptdesc(page)); } #endif /* CONFIG_PGSTE */ /* * A 2KB-pgtable is either upper or lower half of a normal page. * The second half of the page may be unused or used as another * 2KB-pgtable. * * Whenever possible the parent page for a new 2KB-pgtable is picked * from the list of partially allocated pages mm_context_t::pgtable_list. * In case the list is empty a new parent page is allocated and added to * the list. * * When a parent page gets fully allocated it contains 2KB-pgtables in both * upper and lower halves and is removed from mm_context_t::pgtable_list. * * When 2KB-pgtable is freed from to fully allocated parent page that * page turns partially allocated and added to mm_context_t::pgtable_list. * * If 2KB-pgtable is freed from the partially allocated parent page that * page turns unused and gets removed from mm_context_t::pgtable_list. * Furthermore, the unused parent page is released. * * As follows from the above, no unallocated or fully allocated parent * pages are contained in mm_context_t::pgtable_list. * * The upper byte (bits 24-31) of the parent page _refcount is used * for tracking contained 2KB-pgtables and has the following format: * * PP AA * 01234567 upper byte (bits 24-31) of struct page::_refcount * || || * || |+--- upper 2KB-pgtable is allocated * || +---- lower 2KB-pgtable is allocated * |+------- upper 2KB-pgtable is pending for removal * +-------- lower 2KB-pgtable is pending for removal * * (See commit 620b4e903179 ("s390: use _refcount for pgtables") on why * using _refcount is possible). * * When 2KB-pgtable is allocated the corresponding AA bit is set to 1. * The parent page is either: * - added to mm_context_t::pgtable_list in case the second half of the * parent page is still unallocated; * - removed from mm_context_t::pgtable_list in case both hales of the * parent page are allocated; * These operations are protected with mm_context_t::lock. * * When 2KB-pgtable is deallocated the corresponding AA bit is set to 0 * and the corresponding PP bit is set to 1 in a single atomic operation. * Thus, PP and AA bits corresponding to the same 2KB-pgtable are mutually * exclusive and may never be both set to 1! * The parent page is either: * - added to mm_context_t::pgtable_list in case the second half of the * parent page is still allocated; * - removed from mm_context_t::pgtable_list in case the second half of * the parent page is unallocated; * These operations are protected with mm_context_t::lock. * * It is important to understand that mm_context_t::lock only protects * mm_context_t::pgtable_list and AA bits, but not the parent page itself * and PP bits. * * Releasing the parent page happens whenever the PP bit turns from 1 to 0, * while both AA bits and the second PP bit are already unset. Then the * parent page does not contain any 2KB-pgtable fragment anymore, and it has * also been removed from mm_context_t::pgtable_list. It is safe to release * the page therefore. * * PGSTE memory spaces use full 4KB-pgtables and do not need most of the * logic described above. Both AA bits are set to 1 to denote a 4KB-pgtable * while the PP bits are never used, nor such a page is added to or removed * from mm_context_t::pgtable_list. * * pte_free_defer() overrides those rules: it takes the page off pgtable_list, * and prevents both 2K fragments from being reused. pte_free_defer() has to * guarantee that its pgtable cannot be reused before the RCU grace period * has elapsed (which page_table_free_rcu() does not actually guarantee). * But for simplicity, because page->rcu_head overlays page->lru, and because * the RCU callback might not be called before the mm_context_t has been freed, * pte_free_defer() in this implementation prevents both fragments from being * reused, and delays making the call to RCU until both fragments are freed. */ unsigned long *page_table_alloc(struct mm_struct *mm) { unsigned long *table; struct ptdesc *ptdesc; unsigned int mask, bit; /* Try to get a fragment of a 4K page as a 2K page table */ if (!mm_alloc_pgste(mm)) { table = NULL; spin_lock_bh(&mm->context.lock); if (!list_empty(&mm->context.pgtable_list)) { ptdesc = list_first_entry(&mm->context.pgtable_list, struct ptdesc, pt_list); mask = atomic_read(&ptdesc->_refcount) >> 24; /* * The pending removal bits must also be checked. * Failure to do so might lead to an impossible * value of (i.e 0x13 or 0x23) written to _refcount. * Such values violate the assumption that pending and * allocation bits are mutually exclusive, and the rest * of the code unrails as result. That could lead to * a whole bunch of races and corruptions. */ mask = (mask | (mask >> 4)) & 0x03U; if (mask != 0x03U) { table = (unsigned long *) ptdesc_to_virt(ptdesc); bit = mask & 1; /* =1 -> second 2K */ if (bit) table += PTRS_PER_PTE; atomic_xor_bits(&ptdesc->_refcount, 0x01U << (bit + 24)); list_del_init(&ptdesc->pt_list); } } spin_unlock_bh(&mm->context.lock); if (table) return table; } /* Allocate a fresh page */ ptdesc = pagetable_alloc(GFP_KERNEL, 0); if (!ptdesc) return NULL; if (!pagetable_pte_ctor(ptdesc)) { pagetable_free(ptdesc); return NULL; } arch_set_page_dat(ptdesc_page(ptdesc), 0); /* Initialize page table */ table = (unsigned long *) ptdesc_to_virt(ptdesc); if (mm_alloc_pgste(mm)) { /* Return 4K page table with PGSTEs */ INIT_LIST_HEAD(&ptdesc->pt_list); atomic_xor_bits(&ptdesc->_refcount, 0x03U << 24); memset64((u64 *)table, _PAGE_INVALID, PTRS_PER_PTE); memset64((u64 *)table + PTRS_PER_PTE, 0, PTRS_PER_PTE); } else { /* Return the first 2K fragment of the page */ atomic_xor_bits(&ptdesc->_refcount, 0x01U << 24); memset64((u64 *)table, _PAGE_INVALID, 2 * PTRS_PER_PTE); spin_lock_bh(&mm->context.lock); list_add(&ptdesc->pt_list, &mm->context.pgtable_list); spin_unlock_bh(&mm->context.lock); } return table; } static void page_table_release_check(struct page *page, void *table, unsigned int half, unsigned int mask) { char msg[128]; if (!IS_ENABLED(CONFIG_DEBUG_VM)) return; if (!mask && list_empty(&page->lru)) return; snprintf(msg, sizeof(msg), "Invalid pgtable %p release half 0x%02x mask 0x%02x", table, half, mask); dump_page(page, msg); } static void pte_free_now(struct rcu_head *head) { struct ptdesc *ptdesc; ptdesc = container_of(head, struct ptdesc, pt_rcu_head); pagetable_pte_dtor(ptdesc); pagetable_free(ptdesc); } void page_table_free(struct mm_struct *mm, unsigned long *table) { unsigned int mask, bit, half; struct ptdesc *ptdesc = virt_to_ptdesc(table); if (!mm_alloc_pgste(mm)) { /* Free 2K page table fragment of a 4K page */ bit = ((unsigned long) table & ~PAGE_MASK)/(PTRS_PER_PTE*sizeof(pte_t)); spin_lock_bh(&mm->context.lock); /* * Mark the page for delayed release. The actual release * will happen outside of the critical section from this * function or from __tlb_remove_table() */ mask = atomic_xor_bits(&ptdesc->_refcount, 0x11U << (bit + 24)); mask >>= 24; if ((mask & 0x03U) && !folio_test_active(ptdesc_folio(ptdesc))) { /* * Other half is allocated, and neither half has had * its free deferred: add page to head of list, to make * this freed half available for immediate reuse. */ list_add(&ptdesc->pt_list, &mm->context.pgtable_list); } else { /* If page is on list, now remove it. */ list_del_init(&ptdesc->pt_list); } spin_unlock_bh(&mm->context.lock); mask = atomic_xor_bits(&ptdesc->_refcount, 0x10U << (bit + 24)); mask >>= 24; if (mask != 0x00U) return; half = 0x01U << bit; } else { half = 0x03U; mask = atomic_xor_bits(&ptdesc->_refcount, 0x03U << 24); mask >>= 24; } page_table_release_check(ptdesc_page(ptdesc), table, half, mask); if (folio_test_clear_active(ptdesc_folio(ptdesc))) call_rcu(&ptdesc->pt_rcu_head, pte_free_now); else pte_free_now(&ptdesc->pt_rcu_head); } void page_table_free_rcu(struct mmu_gather *tlb, unsigned long *table, unsigned long vmaddr) { struct mm_struct *mm; unsigned int bit, mask; struct ptdesc *ptdesc = virt_to_ptdesc(table); mm = tlb->mm; if (mm_alloc_pgste(mm)) { gmap_unlink(mm, table, vmaddr); table = (unsigned long *) ((unsigned long)table | 0x03U); tlb_remove_ptdesc(tlb, table); return; } bit = ((unsigned long) table & ~PAGE_MASK) / (PTRS_PER_PTE*sizeof(pte_t)); spin_lock_bh(&mm->context.lock); /* * Mark the page for delayed release. The actual release will happen * outside of the critical section from __tlb_remove_table() or from * page_table_free() */ mask = atomic_xor_bits(&ptdesc->_refcount, 0x11U << (bit + 24)); mask >>= 24; if ((mask & 0x03U) && !folio_test_active(ptdesc_folio(ptdesc))) { /* * Other half is allocated, and neither half has had * its free deferred: add page to end of list, to make * this freed half available for reuse once its pending * bit has been cleared by __tlb_remove_table(). */ list_add_tail(&ptdesc->pt_list, &mm->context.pgtable_list); } else { /* If page is on list, now remove it. */ list_del_init(&ptdesc->pt_list); } spin_unlock_bh(&mm->context.lock); table = (unsigned long *) ((unsigned long) table | (0x01U << bit)); tlb_remove_table(tlb, table); } void __tlb_remove_table(void *_table) { unsigned int mask = (unsigned long) _table & 0x03U, half = mask; void *table = (void *)((unsigned long) _table ^ mask); struct ptdesc *ptdesc = virt_to_ptdesc(table); switch (half) { case 0x00U: /* pmd, pud, or p4d */ pagetable_free(ptdesc); return; case 0x01U: /* lower 2K of a 4K page table */ case 0x02U: /* higher 2K of a 4K page table */ mask = atomic_xor_bits(&ptdesc->_refcount, mask << (4 + 24)); mask >>= 24; if (mask != 0x00U) return; break; case 0x03U: /* 4K page table with pgstes */ mask = atomic_xor_bits(&ptdesc->_refcount, 0x03U << 24); mask >>= 24; break; } page_table_release_check(ptdesc_page(ptdesc), table, half, mask); if (folio_test_clear_active(ptdesc_folio(ptdesc))) call_rcu(&ptdesc->pt_rcu_head, pte_free_now); else pte_free_now(&ptdesc->pt_rcu_head); } #ifdef CONFIG_TRANSPARENT_HUGEPAGE void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable) { struct page *page; page = virt_to_page(pgtable); SetPageActive(page); page_table_free(mm, (unsigned long *)pgtable); /* * page_table_free() does not do the pgste gmap_unlink() which * page_table_free_rcu() does: warn us if pgste ever reaches here. */ WARN_ON_ONCE(mm_has_pgste(mm)); } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ /* * Base infrastructure required to generate basic asces, region, segment, * and page tables that do not make use of enhanced features like EDAT1. */ static struct kmem_cache *base_pgt_cache; static unsigned long *base_pgt_alloc(void) { unsigned long *table; table = kmem_cache_alloc(base_pgt_cache, GFP_KERNEL); if (table) memset64((u64 *)table, _PAGE_INVALID, PTRS_PER_PTE); return table; } static void base_pgt_free(unsigned long *table) { kmem_cache_free(base_pgt_cache, table); } static unsigned long *base_crst_alloc(unsigned long val) { unsigned long *table; struct ptdesc *ptdesc; ptdesc = pagetable_alloc(GFP_KERNEL & ~__GFP_HIGHMEM, CRST_ALLOC_ORDER); if (!ptdesc) return NULL; table = ptdesc_address(ptdesc); crst_table_init(table, val); return table; } static void base_crst_free(unsigned long *table) { pagetable_free(virt_to_ptdesc(table)); } #define BASE_ADDR_END_FUNC(NAME, SIZE) \ static inline unsigned long base_##NAME##_addr_end(unsigned long addr, \ unsigned long end) \ { \ unsigned long next = (addr + (SIZE)) & ~((SIZE) - 1); \ \ return (next - 1) < (end - 1) ? next : end; \ } BASE_ADDR_END_FUNC(page, _PAGE_SIZE) BASE_ADDR_END_FUNC(segment, _SEGMENT_SIZE) BASE_ADDR_END_FUNC(region3, _REGION3_SIZE) BASE_ADDR_END_FUNC(region2, _REGION2_SIZE) BASE_ADDR_END_FUNC(region1, _REGION1_SIZE) static inline unsigned long base_lra(unsigned long address) { unsigned long real; asm volatile( " lra %0,0(%1)\n" : "=d" (real) : "a" (address) : "cc"); return real; } static int base_page_walk(unsigned long *origin, unsigned long addr, unsigned long end, int alloc) { unsigned long *pte, next; if (!alloc) return 0; pte = origin; pte += (addr & _PAGE_INDEX) >> _PAGE_SHIFT; do { next = base_page_addr_end(addr, end); *pte = base_lra(addr); } while (pte++, addr = next, addr < end); return 0; } static int base_segment_walk(unsigned long *origin, unsigned long addr, unsigned long end, int alloc) { unsigned long *ste, next, *table; int rc; ste = origin; ste += (addr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT; do { next = base_segment_addr_end(addr, end); if (*ste & _SEGMENT_ENTRY_INVALID) { if (!alloc) continue; table = base_pgt_alloc(); if (!table) return -ENOMEM; *ste = __pa(table) | _SEGMENT_ENTRY; } table = __va(*ste & _SEGMENT_ENTRY_ORIGIN); rc = base_page_walk(table, addr, next, alloc); if (rc) return rc; if (!alloc) base_pgt_free(table); cond_resched(); } while (ste++, addr = next, addr < end); return 0; } static int base_region3_walk(unsigned long *origin, unsigned long addr, unsigned long end, int alloc) { unsigned long *rtte, next, *table; int rc; rtte = origin; rtte += (addr & _REGION3_INDEX) >> _REGION3_SHIFT; do { next = base_region3_addr_end(addr, end); if (*rtte & _REGION_ENTRY_INVALID) { if (!alloc) continue; table = base_crst_alloc(_SEGMENT_ENTRY_EMPTY); if (!table) return -ENOMEM; *rtte = __pa(table) | _REGION3_ENTRY; } table = __va(*rtte & _REGION_ENTRY_ORIGIN); rc = base_segment_walk(table, addr, next, alloc); if (rc) return rc; if (!alloc) base_crst_free(table); } while (rtte++, addr = next, addr < end); return 0; } static int base_region2_walk(unsigned long *origin, unsigned long addr, unsigned long end, int alloc) { unsigned long *rste, next, *table; int rc; rste = origin; rste += (addr & _REGION2_INDEX) >> _REGION2_SHIFT; do { next = base_region2_addr_end(addr, end); if (*rste & _REGION_ENTRY_INVALID) { if (!alloc) continue; table = base_crst_alloc(_REGION3_ENTRY_EMPTY); if (!table) return -ENOMEM; *rste = __pa(table) | _REGION2_ENTRY; } table = __va(*rste & _REGION_ENTRY_ORIGIN); rc = base_region3_walk(table, addr, next, alloc); if (rc) return rc; if (!alloc) base_crst_free(table); } while (rste++, addr = next, addr < end); return 0; } static int base_region1_walk(unsigned long *origin, unsigned long addr, unsigned long end, int alloc) { unsigned long *rfte, next, *table; int rc; rfte = origin; rfte += (addr & _REGION1_INDEX) >> _REGION1_SHIFT; do { next = base_region1_addr_end(addr, end); if (*rfte & _REGION_ENTRY_INVALID) { if (!alloc) continue; table = base_crst_alloc(_REGION2_ENTRY_EMPTY); if (!table) return -ENOMEM; *rfte = __pa(table) | _REGION1_ENTRY; } table = __va(*rfte & _REGION_ENTRY_ORIGIN); rc = base_region2_walk(table, addr, next, alloc); if (rc) return rc; if (!alloc) base_crst_free(table); } while (rfte++, addr = next, addr < end); return 0; } /** * base_asce_free - free asce and tables returned from base_asce_alloc() * @asce: asce to be freed * * Frees all region, segment, and page tables that were allocated with a * corresponding base_asce_alloc() call. */ void base_asce_free(unsigned long asce) { unsigned long *table = __va(asce & _ASCE_ORIGIN); if (!asce) return; switch (asce & _ASCE_TYPE_MASK) { case _ASCE_TYPE_SEGMENT: base_segment_walk(table, 0, _REGION3_SIZE, 0); break; case _ASCE_TYPE_REGION3: base_region3_walk(table, 0, _REGION2_SIZE, 0); break; case _ASCE_TYPE_REGION2: base_region2_walk(table, 0, _REGION1_SIZE, 0); break; case _ASCE_TYPE_REGION1: base_region1_walk(table, 0, TASK_SIZE_MAX, 0); break; } base_crst_free(table); } static int base_pgt_cache_init(void) { static DEFINE_MUTEX(base_pgt_cache_mutex); unsigned long sz = _PAGE_TABLE_SIZE; if (base_pgt_cache) return 0; mutex_lock(&base_pgt_cache_mutex); if (!base_pgt_cache) base_pgt_cache = kmem_cache_create("base_pgt", sz, sz, 0, NULL); mutex_unlock(&base_pgt_cache_mutex); return base_pgt_cache ? 0 : -ENOMEM; } /** * base_asce_alloc - create kernel mapping without enhanced DAT features * @addr: virtual start address of kernel mapping * @num_pages: number of consecutive pages * * Generate an asce, including all required region, segment and page tables, * that can be used to access the virtual kernel mapping. The difference is * that the returned asce does not make use of any enhanced DAT features like * e.g. large pages. This is required for some I/O functions that pass an * asce, like e.g. some service call requests. * * Note: the returned asce may NEVER be attached to any cpu. It may only be * used for I/O requests. tlb entries that might result because the * asce was attached to a cpu won't be cleared. */ unsigned long base_asce_alloc(unsigned long addr, unsigned long num_pages) { unsigned long asce, *table, end; int rc; if (base_pgt_cache_init()) return 0; end = addr + num_pages * PAGE_SIZE; if (end <= _REGION3_SIZE) { table = base_crst_alloc(_SEGMENT_ENTRY_EMPTY); if (!table) return 0; rc = base_segment_walk(table, addr, end, 1); asce = __pa(table) | _ASCE_TYPE_SEGMENT | _ASCE_TABLE_LENGTH; } else if (end <= _REGION2_SIZE) { table = base_crst_alloc(_REGION3_ENTRY_EMPTY); if (!table) return 0; rc = base_region3_walk(table, addr, end, 1); asce = __pa(table) | _ASCE_TYPE_REGION3 | _ASCE_TABLE_LENGTH; } else if (end <= _REGION1_SIZE) { table = base_crst_alloc(_REGION2_ENTRY_EMPTY); if (!table) return 0; rc = base_region2_walk(table, addr, end, 1); asce = __pa(table) | _ASCE_TYPE_REGION2 | _ASCE_TABLE_LENGTH; } else { table = base_crst_alloc(_REGION1_ENTRY_EMPTY); if (!table) return 0; rc = base_region1_walk(table, addr, end, 1); asce = __pa(table) | _ASCE_TYPE_REGION1 | _ASCE_TABLE_LENGTH; } if (rc) { base_asce_free(asce); asce = 0; } return asce; }