// SPDX-License-Identifier: GPL-2.0 #include "cpumap.h" #include "debug.h" #include "env.h" #include "util/header.h" #include <linux/ctype.h> #include <linux/zalloc.h> #include "cgroup.h" #include <errno.h> #include <sys/utsname.h> #include <stdlib.h> #include <string.h> #include "pmus.h" #include "strbuf.h" struct perf_env perf_env; #ifdef HAVE_LIBBPF_SUPPORT #include "bpf-event.h" #include "bpf-utils.h" #include <bpf/libbpf.h> void perf_env__insert_bpf_prog_info(struct perf_env *env, struct bpf_prog_info_node *info_node) { __u32 prog_id = info_node->info_linear->info.id; struct bpf_prog_info_node *node; struct rb_node *parent = NULL; struct rb_node **p; down_write(&env->bpf_progs.lock); p = &env->bpf_progs.infos.rb_node; while (*p != NULL) { parent = *p; node = rb_entry(parent, struct bpf_prog_info_node, rb_node); if (prog_id < node->info_linear->info.id) { p = &(*p)->rb_left; } else if (prog_id > node->info_linear->info.id) { p = &(*p)->rb_right; } else { pr_debug("duplicated bpf prog info %u\n", prog_id); goto out; } } rb_link_node(&info_node->rb_node, parent, p); rb_insert_color(&info_node->rb_node, &env->bpf_progs.infos); env->bpf_progs.infos_cnt++; out: up_write(&env->bpf_progs.lock); } struct bpf_prog_info_node *perf_env__find_bpf_prog_info(struct perf_env *env, __u32 prog_id) { struct bpf_prog_info_node *node = NULL; struct rb_node *n; down_read(&env->bpf_progs.lock); n = env->bpf_progs.infos.rb_node; while (n) { node = rb_entry(n, struct bpf_prog_info_node, rb_node); if (prog_id < node->info_linear->info.id) n = n->rb_left; else if (prog_id > node->info_linear->info.id) n = n->rb_right; else goto out; } node = NULL; out: up_read(&env->bpf_progs.lock); return node; } bool perf_env__insert_btf(struct perf_env *env, struct btf_node *btf_node) { struct rb_node *parent = NULL; __u32 btf_id = btf_node->id; struct btf_node *node; struct rb_node **p; bool ret = true; down_write(&env->bpf_progs.lock); p = &env->bpf_progs.btfs.rb_node; while (*p != NULL) { parent = *p; node = rb_entry(parent, struct btf_node, rb_node); if (btf_id < node->id) { p = &(*p)->rb_left; } else if (btf_id > node->id) { p = &(*p)->rb_right; } else { pr_debug("duplicated btf %u\n", btf_id); ret = false; goto out; } } rb_link_node(&btf_node->rb_node, parent, p); rb_insert_color(&btf_node->rb_node, &env->bpf_progs.btfs); env->bpf_progs.btfs_cnt++; out: up_write(&env->bpf_progs.lock); return ret; } struct btf_node *perf_env__find_btf(struct perf_env *env, __u32 btf_id) { struct btf_node *node = NULL; struct rb_node *n; down_read(&env->bpf_progs.lock); n = env->bpf_progs.btfs.rb_node; while (n) { node = rb_entry(n, struct btf_node, rb_node); if (btf_id < node->id) n = n->rb_left; else if (btf_id > node->id) n = n->rb_right; else goto out; } node = NULL; out: up_read(&env->bpf_progs.lock); return node; } /* purge data in bpf_progs.infos tree */ static void perf_env__purge_bpf(struct perf_env *env) { struct rb_root *root; struct rb_node *next; down_write(&env->bpf_progs.lock); root = &env->bpf_progs.infos; next = rb_first(root); while (next) { struct bpf_prog_info_node *node; node = rb_entry(next, struct bpf_prog_info_node, rb_node); next = rb_next(&node->rb_node); rb_erase(&node->rb_node, root); zfree(&node->info_linear); free(node); } env->bpf_progs.infos_cnt = 0; root = &env->bpf_progs.btfs; next = rb_first(root); while (next) { struct btf_node *node; node = rb_entry(next, struct btf_node, rb_node); next = rb_next(&node->rb_node); rb_erase(&node->rb_node, root); free(node); } env->bpf_progs.btfs_cnt = 0; up_write(&env->bpf_progs.lock); } #else // HAVE_LIBBPF_SUPPORT static void perf_env__purge_bpf(struct perf_env *env __maybe_unused) { } #endif // HAVE_LIBBPF_SUPPORT void perf_env__exit(struct perf_env *env) { int i, j; perf_env__purge_bpf(env); perf_env__purge_cgroups(env); zfree(&env->hostname); zfree(&env->os_release); zfree(&env->version); zfree(&env->arch); zfree(&env->cpu_desc); zfree(&env->cpuid); zfree(&env->cmdline); zfree(&env->cmdline_argv); zfree(&env->sibling_dies); zfree(&env->sibling_cores); zfree(&env->sibling_threads); zfree(&env->pmu_mappings); zfree(&env->cpu); for (i = 0; i < env->nr_cpu_pmu_caps; i++) zfree(&env->cpu_pmu_caps[i]); zfree(&env->cpu_pmu_caps); zfree(&env->numa_map); for (i = 0; i < env->nr_numa_nodes; i++) perf_cpu_map__put(env->numa_nodes[i].map); zfree(&env->numa_nodes); for (i = 0; i < env->caches_cnt; i++) cpu_cache_level__free(&env->caches[i]); zfree(&env->caches); for (i = 0; i < env->nr_memory_nodes; i++) zfree(&env->memory_nodes[i].set); zfree(&env->memory_nodes); for (i = 0; i < env->nr_hybrid_nodes; i++) { zfree(&env->hybrid_nodes[i].pmu_name); zfree(&env->hybrid_nodes[i].cpus); } zfree(&env->hybrid_nodes); for (i = 0; i < env->nr_pmus_with_caps; i++) { for (j = 0; j < env->pmu_caps[i].nr_caps; j++) zfree(&env->pmu_caps[i].caps[j]); zfree(&env->pmu_caps[i].caps); zfree(&env->pmu_caps[i].pmu_name); } zfree(&env->pmu_caps); } void perf_env__init(struct perf_env *env) { #ifdef HAVE_LIBBPF_SUPPORT env->bpf_progs.infos = RB_ROOT; env->bpf_progs.btfs = RB_ROOT; init_rwsem(&env->bpf_progs.lock); #endif env->kernel_is_64_bit = -1; } static void perf_env__init_kernel_mode(struct perf_env *env) { const char *arch = perf_env__raw_arch(env); if (!strncmp(arch, "x86_64", 6) || !strncmp(arch, "aarch64", 7) || !strncmp(arch, "arm64", 5) || !strncmp(arch, "mips64", 6) || !strncmp(arch, "parisc64", 8) || !strncmp(arch, "riscv64", 7) || !strncmp(arch, "s390x", 5) || !strncmp(arch, "sparc64", 7)) env->kernel_is_64_bit = 1; else env->kernel_is_64_bit = 0; } int perf_env__kernel_is_64_bit(struct perf_env *env) { if (env->kernel_is_64_bit == -1) perf_env__init_kernel_mode(env); return env->kernel_is_64_bit; } int perf_env__set_cmdline(struct perf_env *env, int argc, const char *argv[]) { int i; /* do not include NULL termination */ env->cmdline_argv = calloc(argc, sizeof(char *)); if (env->cmdline_argv == NULL) goto out_enomem; /* * Must copy argv contents because it gets moved around during option * parsing: */ for (i = 0; i < argc ; i++) { env->cmdline_argv[i] = argv[i]; if (env->cmdline_argv[i] == NULL) goto out_free; } env->nr_cmdline = argc; return 0; out_free: zfree(&env->cmdline_argv); out_enomem: return -ENOMEM; } int perf_env__read_cpu_topology_map(struct perf_env *env) { int idx, nr_cpus; if (env->cpu != NULL) return 0; if (env->nr_cpus_avail == 0) env->nr_cpus_avail = cpu__max_present_cpu().cpu; nr_cpus = env->nr_cpus_avail; if (nr_cpus == -1) return -EINVAL; env->cpu = calloc(nr_cpus, sizeof(env->cpu[0])); if (env->cpu == NULL) return -ENOMEM; for (idx = 0; idx < nr_cpus; ++idx) { struct perf_cpu cpu = { .cpu = idx }; env->cpu[idx].core_id = cpu__get_core_id(cpu); env->cpu[idx].socket_id = cpu__get_socket_id(cpu); env->cpu[idx].die_id = cpu__get_die_id(cpu); } env->nr_cpus_avail = nr_cpus; return 0; } int perf_env__read_pmu_mappings(struct perf_env *env) { struct perf_pmu *pmu = NULL; u32 pmu_num = 0; struct strbuf sb; while ((pmu = perf_pmus__scan(pmu))) pmu_num++; if (!pmu_num) { pr_debug("pmu mappings not available\n"); return -ENOENT; } env->nr_pmu_mappings = pmu_num; if (strbuf_init(&sb, 128 * pmu_num) < 0) return -ENOMEM; while ((pmu = perf_pmus__scan(pmu))) { if (strbuf_addf(&sb, "%u:%s", pmu->type, pmu->name) < 0) goto error; /* include a NULL character at the end */ if (strbuf_add(&sb, "", 1) < 0) goto error; } env->pmu_mappings = strbuf_detach(&sb, NULL); return 0; error: strbuf_release(&sb); return -1; } int perf_env__read_cpuid(struct perf_env *env) { char cpuid[128]; int err = get_cpuid(cpuid, sizeof(cpuid)); if (err) return err; free(env->cpuid); env->cpuid = strdup(cpuid); if (env->cpuid == NULL) return ENOMEM; return 0; } static int perf_env__read_arch(struct perf_env *env) { struct utsname uts; if (env->arch) return 0; if (!uname(&uts)) env->arch = strdup(uts.machine); return env->arch ? 0 : -ENOMEM; } static int perf_env__read_nr_cpus_avail(struct perf_env *env) { if (env->nr_cpus_avail == 0) env->nr_cpus_avail = cpu__max_present_cpu().cpu; return env->nr_cpus_avail ? 0 : -ENOENT; } const char *perf_env__raw_arch(struct perf_env *env) { return env && !perf_env__read_arch(env) ? env->arch : "unknown"; } int perf_env__nr_cpus_avail(struct perf_env *env) { return env && !perf_env__read_nr_cpus_avail(env) ? env->nr_cpus_avail : 0; } void cpu_cache_level__free(struct cpu_cache_level *cache) { zfree(&cache->type); zfree(&cache->map); zfree(&cache->size); } /* * Return architecture name in a normalized form. * The conversion logic comes from the Makefile. */ static const char *normalize_arch(char *arch) { if (!strcmp(arch, "x86_64")) return "x86"; if (arch[0] == 'i' && arch[2] == '8' && arch[3] == '6') return "x86"; if (!strcmp(arch, "sun4u") || !strncmp(arch, "sparc", 5)) return "sparc"; if (!strncmp(arch, "aarch64", 7) || !strncmp(arch, "arm64", 5)) return "arm64"; if (!strncmp(arch, "arm", 3) || !strcmp(arch, "sa110")) return "arm"; if (!strncmp(arch, "s390", 4)) return "s390"; if (!strncmp(arch, "parisc", 6)) return "parisc"; if (!strncmp(arch, "powerpc", 7) || !strncmp(arch, "ppc", 3)) return "powerpc"; if (!strncmp(arch, "mips", 4)) return "mips"; if (!strncmp(arch, "sh", 2) && isdigit(arch[2])) return "sh"; if (!strncmp(arch, "loongarch", 9)) return "loongarch"; return arch; } const char *perf_env__arch(struct perf_env *env) { char *arch_name; if (!env || !env->arch) { /* Assume local operation */ static struct utsname uts = { .machine[0] = '\0', }; if (uts.machine[0] == '\0' && uname(&uts) < 0) return NULL; arch_name = uts.machine; } else arch_name = env->arch; return normalize_arch(arch_name); } const char *perf_env__cpuid(struct perf_env *env) { int status; if (!env || !env->cpuid) { /* Assume local operation */ status = perf_env__read_cpuid(env); if (status) return NULL; } return env->cpuid; } int perf_env__nr_pmu_mappings(struct perf_env *env) { int status; if (!env || !env->nr_pmu_mappings) { /* Assume local operation */ status = perf_env__read_pmu_mappings(env); if (status) return 0; } return env->nr_pmu_mappings; } const char *perf_env__pmu_mappings(struct perf_env *env) { int status; if (!env || !env->pmu_mappings) { /* Assume local operation */ status = perf_env__read_pmu_mappings(env); if (status) return NULL; } return env->pmu_mappings; } int perf_env__numa_node(struct perf_env *env, struct perf_cpu cpu) { if (!env->nr_numa_map) { struct numa_node *nn; int i, nr = 0; for (i = 0; i < env->nr_numa_nodes; i++) { nn = &env->numa_nodes[i]; nr = max(nr, perf_cpu_map__max(nn->map).cpu); } nr++; /* * We initialize the numa_map array to prepare * it for missing cpus, which return node -1 */ env->numa_map = malloc(nr * sizeof(int)); if (!env->numa_map) return -1; for (i = 0; i < nr; i++) env->numa_map[i] = -1; env->nr_numa_map = nr; for (i = 0; i < env->nr_numa_nodes; i++) { struct perf_cpu tmp; int j; nn = &env->numa_nodes[i]; perf_cpu_map__for_each_cpu(tmp, j, nn->map) env->numa_map[tmp.cpu] = i; } } return cpu.cpu >= 0 && cpu.cpu < env->nr_numa_map ? env->numa_map[cpu.cpu] : -1; } char *perf_env__find_pmu_cap(struct perf_env *env, const char *pmu_name, const char *cap) { char *cap_eq; int cap_size; char **ptr; int i, j; if (!pmu_name || !cap) return NULL; cap_size = strlen(cap); cap_eq = zalloc(cap_size + 2); if (!cap_eq) return NULL; memcpy(cap_eq, cap, cap_size); cap_eq[cap_size] = '='; if (!strcmp(pmu_name, "cpu")) { for (i = 0; i < env->nr_cpu_pmu_caps; i++) { if (!strncmp(env->cpu_pmu_caps[i], cap_eq, cap_size + 1)) { free(cap_eq); return &env->cpu_pmu_caps[i][cap_size + 1]; } } goto out; } for (i = 0; i < env->nr_pmus_with_caps; i++) { if (strcmp(env->pmu_caps[i].pmu_name, pmu_name)) continue; ptr = env->pmu_caps[i].caps; for (j = 0; j < env->pmu_caps[i].nr_caps; j++) { if (!strncmp(ptr[j], cap_eq, cap_size + 1)) { free(cap_eq); return &ptr[j][cap_size + 1]; } } } out: free(cap_eq); return NULL; }