// SPDX-License-Identifier: GPL-2.0-or-later /* * * Copyright (C) 2000, 2001 Kanoj Sarcar * Copyright (C) 2000, 2001 Ralf Baechle * Copyright (C) 2000, 2001 Silicon Graphics, Inc. * Copyright (C) 2000, 2001, 2003 Broadcom Corporation */ #include <linux/cache.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/smp.h> #include <linux/spinlock.h> #include <linux/threads.h> #include <linux/export.h> #include <linux/time.h> #include <linux/timex.h> #include <linux/sched/mm.h> #include <linux/cpumask.h> #include <linux/cpu.h> #include <linux/err.h> #include <linux/ftrace.h> #include <linux/irqdomain.h> #include <linux/of.h> #include <linux/of_irq.h> #include <linux/atomic.h> #include <asm/cpu.h> #include <asm/ginvt.h> #include <asm/processor.h> #include <asm/idle.h> #include <asm/r4k-timer.h> #include <asm/mips-cps.h> #include <asm/mmu_context.h> #include <asm/time.h> #include <asm/setup.h> #include <asm/maar.h> int __cpu_number_map[CONFIG_MIPS_NR_CPU_NR_MAP]; /* Map physical to logical */ EXPORT_SYMBOL(__cpu_number_map); int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ EXPORT_SYMBOL(__cpu_logical_map); /* Number of TCs (or siblings in Intel speak) per CPU core */ int smp_num_siblings = 1; EXPORT_SYMBOL(smp_num_siblings); /* representing the TCs (or siblings in Intel speak) of each logical CPU */ cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly; EXPORT_SYMBOL(cpu_sibling_map); /* representing the core map of multi-core chips of each logical CPU */ cpumask_t cpu_core_map[NR_CPUS] __read_mostly; EXPORT_SYMBOL(cpu_core_map); static DECLARE_COMPLETION(cpu_starting); static DECLARE_COMPLETION(cpu_running); /* * A logical cpu mask containing only one VPE per core to * reduce the number of IPIs on large MT systems. */ cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly; EXPORT_SYMBOL(cpu_foreign_map); /* representing cpus for which sibling maps can be computed */ static cpumask_t cpu_sibling_setup_map; /* representing cpus for which core maps can be computed */ static cpumask_t cpu_core_setup_map; cpumask_t cpu_coherent_mask; unsigned int smp_max_threads __initdata = UINT_MAX; static int __init early_nosmt(char *s) { smp_max_threads = 1; return 0; } early_param("nosmt", early_nosmt); static int __init early_smt(char *s) { get_option(&s, &smp_max_threads); /* Ensure at least one thread is available */ smp_max_threads = clamp_val(smp_max_threads, 1U, UINT_MAX); return 0; } early_param("smt", early_smt); #ifdef CONFIG_GENERIC_IRQ_IPI static struct irq_desc *call_desc; static struct irq_desc *sched_desc; #endif static inline void set_cpu_sibling_map(int cpu) { int i; cpumask_set_cpu(cpu, &cpu_sibling_setup_map); if (smp_num_siblings > 1) { for_each_cpu(i, &cpu_sibling_setup_map) { if (cpus_are_siblings(cpu, i)) { cpumask_set_cpu(i, &cpu_sibling_map[cpu]); cpumask_set_cpu(cpu, &cpu_sibling_map[i]); } } } else cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]); } static inline void set_cpu_core_map(int cpu) { int i; cpumask_set_cpu(cpu, &cpu_core_setup_map); for_each_cpu(i, &cpu_core_setup_map) { if (cpu_data[cpu].package == cpu_data[i].package) { cpumask_set_cpu(i, &cpu_core_map[cpu]); cpumask_set_cpu(cpu, &cpu_core_map[i]); } } } /* * Calculate a new cpu_foreign_map mask whenever a * new cpu appears or disappears. */ void calculate_cpu_foreign_map(void) { int i, k, core_present; cpumask_t temp_foreign_map; /* Re-calculate the mask */ cpumask_clear(&temp_foreign_map); for_each_online_cpu(i) { core_present = 0; for_each_cpu(k, &temp_foreign_map) if (cpus_are_siblings(i, k)) core_present = 1; if (!core_present) cpumask_set_cpu(i, &temp_foreign_map); } for_each_online_cpu(i) cpumask_andnot(&cpu_foreign_map[i], &temp_foreign_map, &cpu_sibling_map[i]); } const struct plat_smp_ops *mp_ops; EXPORT_SYMBOL(mp_ops); void register_smp_ops(const struct plat_smp_ops *ops) { if (mp_ops) printk(KERN_WARNING "Overriding previously set SMP ops\n"); mp_ops = ops; } #ifdef CONFIG_GENERIC_IRQ_IPI void mips_smp_send_ipi_single(int cpu, unsigned int action) { mips_smp_send_ipi_mask(cpumask_of(cpu), action); } void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action) { unsigned long flags; unsigned int core; int cpu; local_irq_save(flags); switch (action) { case SMP_CALL_FUNCTION: __ipi_send_mask(call_desc, mask); break; case SMP_RESCHEDULE_YOURSELF: __ipi_send_mask(sched_desc, mask); break; default: BUG(); } if (mips_cpc_present()) { for_each_cpu(cpu, mask) { if (cpus_are_siblings(cpu, smp_processor_id())) continue; core = cpu_core(&cpu_data[cpu]); while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) { mips_cm_lock_other_cpu(cpu, CM_GCR_Cx_OTHER_BLOCK_LOCAL); mips_cpc_lock_other(core); write_cpc_co_cmd(CPC_Cx_CMD_PWRUP); mips_cpc_unlock_other(); mips_cm_unlock_other(); } } } local_irq_restore(flags); } static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id) { scheduler_ipi(); return IRQ_HANDLED; } static irqreturn_t ipi_call_interrupt(int irq, void *dev_id) { generic_smp_call_function_interrupt(); return IRQ_HANDLED; } static void smp_ipi_init_one(unsigned int virq, const char *name, irq_handler_t handler) { int ret; irq_set_handler(virq, handle_percpu_irq); ret = request_irq(virq, handler, IRQF_PERCPU, name, NULL); BUG_ON(ret); } static unsigned int call_virq, sched_virq; int mips_smp_ipi_allocate(const struct cpumask *mask) { int virq; struct irq_domain *ipidomain; struct device_node *node; node = of_irq_find_parent(of_root); ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI); /* * Some platforms have half DT setup. So if we found irq node but * didn't find an ipidomain, try to search for one that is not in the * DT. */ if (node && !ipidomain) ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI); /* * There are systems which use IPI IRQ domains, but only have one * registered when some runtime condition is met. For example a Malta * kernel may include support for GIC & CPU interrupt controller IPI * IRQ domains, but if run on a system with no GIC & no MT ASE then * neither will be supported or registered. * * We only have a problem if we're actually using multiple CPUs so fail * loudly if that is the case. Otherwise simply return, skipping IPI * setup, if we're running with only a single CPU. */ if (!ipidomain) { BUG_ON(num_present_cpus() > 1); return 0; } virq = irq_reserve_ipi(ipidomain, mask); BUG_ON(!virq); if (!call_virq) call_virq = virq; virq = irq_reserve_ipi(ipidomain, mask); BUG_ON(!virq); if (!sched_virq) sched_virq = virq; if (irq_domain_is_ipi_per_cpu(ipidomain)) { int cpu; for_each_cpu(cpu, mask) { smp_ipi_init_one(call_virq + cpu, "IPI call", ipi_call_interrupt); smp_ipi_init_one(sched_virq + cpu, "IPI resched", ipi_resched_interrupt); } } else { smp_ipi_init_one(call_virq, "IPI call", ipi_call_interrupt); smp_ipi_init_one(sched_virq, "IPI resched", ipi_resched_interrupt); } return 0; } int mips_smp_ipi_free(const struct cpumask *mask) { struct irq_domain *ipidomain; struct device_node *node; node = of_irq_find_parent(of_root); ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI); /* * Some platforms have half DT setup. So if we found irq node but * didn't find an ipidomain, try to search for one that is not in the * DT. */ if (node && !ipidomain) ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI); BUG_ON(!ipidomain); if (irq_domain_is_ipi_per_cpu(ipidomain)) { int cpu; for_each_cpu(cpu, mask) { free_irq(call_virq + cpu, NULL); free_irq(sched_virq + cpu, NULL); } } irq_destroy_ipi(call_virq, mask); irq_destroy_ipi(sched_virq, mask); return 0; } static int __init mips_smp_ipi_init(void) { if (num_possible_cpus() == 1) return 0; mips_smp_ipi_allocate(cpu_possible_mask); call_desc = irq_to_desc(call_virq); sched_desc = irq_to_desc(sched_virq); return 0; } early_initcall(mips_smp_ipi_init); #endif /* * First C code run on the secondary CPUs after being started up by * the master. */ asmlinkage void start_secondary(void) { unsigned int cpu; cpu_probe(); per_cpu_trap_init(false); mips_clockevent_init(); mp_ops->init_secondary(); cpu_report(); maar_init(); /* * XXX parity protection should be folded in here when it's converted * to an option instead of something based on .cputype */ calibrate_delay(); cpu = smp_processor_id(); cpu_data[cpu].udelay_val = loops_per_jiffy; set_cpu_sibling_map(cpu); set_cpu_core_map(cpu); cpumask_set_cpu(cpu, &cpu_coherent_mask); notify_cpu_starting(cpu); /* Notify boot CPU that we're starting & ready to sync counters */ complete(&cpu_starting); synchronise_count_slave(cpu); /* The CPU is running and counters synchronised, now mark it online */ set_cpu_online(cpu, true); calculate_cpu_foreign_map(); /* * Notify boot CPU that we're up & online and it can safely return * from __cpu_up */ complete(&cpu_running); /* * irq will be enabled in ->smp_finish(), enabling it too early * is dangerous. */ WARN_ON_ONCE(!irqs_disabled()); mp_ops->smp_finish(); cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); } static void stop_this_cpu(void *dummy) { /* * Remove this CPU: */ set_cpu_online(smp_processor_id(), false); calculate_cpu_foreign_map(); local_irq_disable(); while (1); } void smp_send_stop(void) { smp_call_function(stop_this_cpu, NULL, 0); } void __init smp_cpus_done(unsigned int max_cpus) { } /* called from main before smp_init() */ void __init smp_prepare_cpus(unsigned int max_cpus) { init_new_context(current, &init_mm); current_thread_info()->cpu = 0; mp_ops->prepare_cpus(max_cpus); set_cpu_sibling_map(0); set_cpu_core_map(0); calculate_cpu_foreign_map(); #ifndef CONFIG_HOTPLUG_CPU init_cpu_present(cpu_possible_mask); #endif cpumask_copy(&cpu_coherent_mask, cpu_possible_mask); } /* preload SMP state for boot cpu */ void smp_prepare_boot_cpu(void) { if (mp_ops->prepare_boot_cpu) mp_ops->prepare_boot_cpu(); set_cpu_possible(0, true); set_cpu_online(0, true); } int __cpu_up(unsigned int cpu, struct task_struct *tidle) { int err; err = mp_ops->boot_secondary(cpu, tidle); if (err) return err; /* Wait for CPU to start and be ready to sync counters */ if (!wait_for_completion_timeout(&cpu_starting, msecs_to_jiffies(1000))) { pr_crit("CPU%u: failed to start\n", cpu); return -EIO; } synchronise_count_master(cpu); /* Wait for CPU to finish startup & mark itself online before return */ wait_for_completion(&cpu_running); return 0; } /* Not really SMP stuff ... */ int setup_profiling_timer(unsigned int multiplier) { return 0; } static void flush_tlb_all_ipi(void *info) { local_flush_tlb_all(); } void flush_tlb_all(void) { if (cpu_has_mmid) { htw_stop(); ginvt_full(); sync_ginv(); instruction_hazard(); htw_start(); return; } on_each_cpu(flush_tlb_all_ipi, NULL, 1); } static void flush_tlb_mm_ipi(void *mm) { drop_mmu_context((struct mm_struct *)mm); } /* * Special Variant of smp_call_function for use by TLB functions: * * o No return value * o collapses to normal function call on UP kernels * o collapses to normal function call on systems with a single shared * primary cache. */ static inline void smp_on_other_tlbs(void (*func) (void *info), void *info) { smp_call_function(func, info, 1); } static inline void smp_on_each_tlb(void (*func) (void *info), void *info) { preempt_disable(); smp_on_other_tlbs(func, info); func(info); preempt_enable(); } /* * The following tlb flush calls are invoked when old translations are * being torn down, or pte attributes are changing. For single threaded * address spaces, a new context is obtained on the current cpu, and tlb * context on other cpus are invalidated to force a new context allocation * at switch_mm time, should the mm ever be used on other cpus. For * multithreaded address spaces, inter-CPU interrupts have to be sent. * Another case where inter-CPU interrupts are required is when the target * mm might be active on another cpu (eg debuggers doing the flushes on * behalf of debugees, kswapd stealing pages from another process etc). * Kanoj 07/00. */ void flush_tlb_mm(struct mm_struct *mm) { if (!mm) return; if (atomic_read(&mm->mm_users) == 0) return; /* happens as a result of exit_mmap() */ preempt_disable(); if (cpu_has_mmid) { /* * No need to worry about other CPUs - the ginvt in * drop_mmu_context() will be globalized. */ } else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { smp_on_other_tlbs(flush_tlb_mm_ipi, mm); } else { unsigned int cpu; for_each_online_cpu(cpu) { if (cpu != smp_processor_id() && cpu_context(cpu, mm)) set_cpu_context(cpu, mm, 0); } } drop_mmu_context(mm); preempt_enable(); } struct flush_tlb_data { struct vm_area_struct *vma; unsigned long addr1; unsigned long addr2; }; static void flush_tlb_range_ipi(void *info) { struct flush_tlb_data *fd = info; local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); } void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { struct mm_struct *mm = vma->vm_mm; unsigned long addr; u32 old_mmid; preempt_disable(); if (cpu_has_mmid) { htw_stop(); old_mmid = read_c0_memorymapid(); write_c0_memorymapid(cpu_asid(0, mm)); mtc0_tlbw_hazard(); addr = round_down(start, PAGE_SIZE * 2); end = round_up(end, PAGE_SIZE * 2); do { ginvt_va_mmid(addr); sync_ginv(); addr += PAGE_SIZE * 2; } while (addr < end); write_c0_memorymapid(old_mmid); instruction_hazard(); htw_start(); } else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { struct flush_tlb_data fd = { .vma = vma, .addr1 = start, .addr2 = end, }; smp_on_other_tlbs(flush_tlb_range_ipi, &fd); local_flush_tlb_range(vma, start, end); } else { unsigned int cpu; int exec = vma->vm_flags & VM_EXEC; for_each_online_cpu(cpu) { /* * flush_cache_range() will only fully flush icache if * the VMA is executable, otherwise we must invalidate * ASID without it appearing to has_valid_asid() as if * mm has been completely unused by that CPU. */ if (cpu != smp_processor_id() && cpu_context(cpu, mm)) set_cpu_context(cpu, mm, !exec); } local_flush_tlb_range(vma, start, end); } preempt_enable(); } static void flush_tlb_kernel_range_ipi(void *info) { struct flush_tlb_data *fd = info; local_flush_tlb_kernel_range(fd->addr1, fd->addr2); } void flush_tlb_kernel_range(unsigned long start, unsigned long end) { struct flush_tlb_data fd = { .addr1 = start, .addr2 = end, }; on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1); } static void flush_tlb_page_ipi(void *info) { struct flush_tlb_data *fd = info; local_flush_tlb_page(fd->vma, fd->addr1); } void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) { u32 old_mmid; preempt_disable(); if (cpu_has_mmid) { htw_stop(); old_mmid = read_c0_memorymapid(); write_c0_memorymapid(cpu_asid(0, vma->vm_mm)); mtc0_tlbw_hazard(); ginvt_va_mmid(page); sync_ginv(); write_c0_memorymapid(old_mmid); instruction_hazard(); htw_start(); } else if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) { struct flush_tlb_data fd = { .vma = vma, .addr1 = page, }; smp_on_other_tlbs(flush_tlb_page_ipi, &fd); local_flush_tlb_page(vma, page); } else { unsigned int cpu; for_each_online_cpu(cpu) { /* * flush_cache_page() only does partial flushes, so * invalidate ASID without it appearing to * has_valid_asid() as if mm has been completely unused * by that CPU. */ if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm)) set_cpu_context(cpu, vma->vm_mm, 1); } local_flush_tlb_page(vma, page); } preempt_enable(); } static void flush_tlb_one_ipi(void *info) { unsigned long vaddr = (unsigned long) info; local_flush_tlb_one(vaddr); } void flush_tlb_one(unsigned long vaddr) { smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr); } EXPORT_SYMBOL(flush_tlb_page); EXPORT_SYMBOL(flush_tlb_one); #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { if (mp_ops->cleanup_dead_cpu) mp_ops->cleanup_dead_cpu(cpu); } #endif #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST static void tick_broadcast_callee(void *info) { tick_receive_broadcast(); } static DEFINE_PER_CPU(call_single_data_t, tick_broadcast_csd) = CSD_INIT(tick_broadcast_callee, NULL); void tick_broadcast(const struct cpumask *mask) { call_single_data_t *csd; int cpu; for_each_cpu(cpu, mask) { csd = &per_cpu(tick_broadcast_csd, cpu); smp_call_function_single_async(cpu, csd); } } #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */