// SPDX-License-Identifier: GPL-2.0+ /* * CAAM control-plane driver backend * Controller-level driver, kernel property detection, initialization * * Copyright 2008-2012 Freescale Semiconductor, Inc. * Copyright 2018-2019, 2023 NXP */ #include <linux/device.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/platform_device.h> #include <linux/sys_soc.h> #include <linux/fsl/mc.h> #include "compat.h" #include "debugfs.h" #include "regs.h" #include "intern.h" #include "jr.h" #include "desc_constr.h" #include "ctrl.h" bool caam_dpaa2; EXPORT_SYMBOL(caam_dpaa2); #ifdef CONFIG_CAAM_QI #include "qi.h" #endif /* * Descriptor to instantiate RNG State Handle 0 in normal mode and * load the JDKEK, TDKEK and TDSK registers */ static void build_instantiation_desc(u32 *desc, int handle, int do_sk) { u32 *jump_cmd, op_flags; init_job_desc(desc, 0); op_flags = OP_TYPE_CLASS1_ALG | OP_ALG_ALGSEL_RNG | (handle << OP_ALG_AAI_SHIFT) | OP_ALG_AS_INIT | OP_ALG_PR_ON; /* INIT RNG in non-test mode */ append_operation(desc, op_flags); if (!handle && do_sk) { /* * For SH0, Secure Keys must be generated as well */ /* wait for done */ jump_cmd = append_jump(desc, JUMP_CLASS_CLASS1); set_jump_tgt_here(desc, jump_cmd); /* * load 1 to clear written reg: * resets the done interrupt and returns the RNG to idle. */ append_load_imm_u32(desc, 1, LDST_SRCDST_WORD_CLRW); /* Initialize State Handle */ append_operation(desc, OP_TYPE_CLASS1_ALG | OP_ALG_ALGSEL_RNG | OP_ALG_AAI_RNG4_SK); } append_jump(desc, JUMP_CLASS_CLASS1 | JUMP_TYPE_HALT); } /* Descriptor for deinstantiation of State Handle 0 of the RNG block. */ static void build_deinstantiation_desc(u32 *desc, int handle) { init_job_desc(desc, 0); /* Uninstantiate State Handle 0 */ append_operation(desc, OP_TYPE_CLASS1_ALG | OP_ALG_ALGSEL_RNG | (handle << OP_ALG_AAI_SHIFT) | OP_ALG_AS_INITFINAL); append_jump(desc, JUMP_CLASS_CLASS1 | JUMP_TYPE_HALT); } static const struct of_device_id imx8m_machine_match[] = { { .compatible = "fsl,imx8mm", }, { .compatible = "fsl,imx8mn", }, { .compatible = "fsl,imx8mp", }, { .compatible = "fsl,imx8mq", }, { .compatible = "fsl,imx8ulp", }, { } }; /* * run_descriptor_deco0 - runs a descriptor on DECO0, under direct control of * the software (no JR/QI used). * @ctrldev - pointer to device * @status - descriptor status, after being run * * Return: - 0 if no error occurred * - -ENODEV if the DECO couldn't be acquired * - -EAGAIN if an error occurred while executing the descriptor */ static inline int run_descriptor_deco0(struct device *ctrldev, u32 *desc, u32 *status) { struct caam_drv_private *ctrlpriv = dev_get_drvdata(ctrldev); struct caam_ctrl __iomem *ctrl = ctrlpriv->ctrl; struct caam_deco __iomem *deco = ctrlpriv->deco; unsigned int timeout = 100000; u32 deco_dbg_reg, deco_state, flags; int i; if (ctrlpriv->virt_en == 1 || /* * Apparently on i.MX8M{Q,M,N,P} it doesn't matter if virt_en == 1 * and the following steps should be performed regardless */ of_match_node(imx8m_machine_match, of_root)) { clrsetbits_32(&ctrl->deco_rsr, 0, DECORSR_JR0); while (!(rd_reg32(&ctrl->deco_rsr) & DECORSR_VALID) && --timeout) cpu_relax(); timeout = 100000; } clrsetbits_32(&ctrl->deco_rq, 0, DECORR_RQD0ENABLE); while (!(rd_reg32(&ctrl->deco_rq) & DECORR_DEN0) && --timeout) cpu_relax(); if (!timeout) { dev_err(ctrldev, "failed to acquire DECO 0\n"); clrsetbits_32(&ctrl->deco_rq, DECORR_RQD0ENABLE, 0); return -ENODEV; } for (i = 0; i < desc_len(desc); i++) wr_reg32(&deco->descbuf[i], caam32_to_cpu(*(desc + i))); flags = DECO_JQCR_WHL; /* * If the descriptor length is longer than 4 words, then the * FOUR bit in JRCTRL register must be set. */ if (desc_len(desc) >= 4) flags |= DECO_JQCR_FOUR; /* Instruct the DECO to execute it */ clrsetbits_32(&deco->jr_ctl_hi, 0, flags); timeout = 10000000; do { deco_dbg_reg = rd_reg32(&deco->desc_dbg); if (ctrlpriv->era < 10) deco_state = (deco_dbg_reg & DESC_DBG_DECO_STAT_MASK) >> DESC_DBG_DECO_STAT_SHIFT; else deco_state = (rd_reg32(&deco->dbg_exec) & DESC_DER_DECO_STAT_MASK) >> DESC_DER_DECO_STAT_SHIFT; /* * If an error occurred in the descriptor, then * the DECO status field will be set to 0x0D */ if (deco_state == DECO_STAT_HOST_ERR) break; cpu_relax(); } while ((deco_dbg_reg & DESC_DBG_DECO_STAT_VALID) && --timeout); *status = rd_reg32(&deco->op_status_hi) & DECO_OP_STATUS_HI_ERR_MASK; if (ctrlpriv->virt_en == 1) clrsetbits_32(&ctrl->deco_rsr, DECORSR_JR0, 0); /* Mark the DECO as free */ clrsetbits_32(&ctrl->deco_rq, DECORR_RQD0ENABLE, 0); if (!timeout) return -EAGAIN; return 0; } /* * deinstantiate_rng - builds and executes a descriptor on DECO0, * which deinitializes the RNG block. * @ctrldev - pointer to device * @state_handle_mask - bitmask containing the instantiation status * for the RNG4 state handles which exist in * the RNG4 block: 1 if it's been instantiated * * Return: - 0 if no error occurred * - -ENOMEM if there isn't enough memory to allocate the descriptor * - -ENODEV if DECO0 couldn't be acquired * - -EAGAIN if an error occurred when executing the descriptor */ static int deinstantiate_rng(struct device *ctrldev, int state_handle_mask) { u32 *desc, status; int sh_idx, ret = 0; desc = kmalloc(CAAM_CMD_SZ * 3, GFP_KERNEL); if (!desc) return -ENOMEM; for (sh_idx = 0; sh_idx < RNG4_MAX_HANDLES; sh_idx++) { /* * If the corresponding bit is set, then it means the state * handle was initialized by us, and thus it needs to be * deinitialized as well */ if ((1 << sh_idx) & state_handle_mask) { /* * Create the descriptor for deinstantating this state * handle */ build_deinstantiation_desc(desc, sh_idx); /* Try to run it through DECO0 */ ret = run_descriptor_deco0(ctrldev, desc, &status); if (ret || (status && status != JRSTA_SSRC_JUMP_HALT_CC)) { dev_err(ctrldev, "Failed to deinstantiate RNG4 SH%d\n", sh_idx); break; } dev_info(ctrldev, "Deinstantiated RNG4 SH%d\n", sh_idx); } } kfree(desc); return ret; } static void devm_deinstantiate_rng(void *data) { struct device *ctrldev = data; struct caam_drv_private *ctrlpriv = dev_get_drvdata(ctrldev); /* * De-initialize RNG state handles initialized by this driver. * In case of SoCs with Management Complex, RNG is managed by MC f/w. */ if (ctrlpriv->rng4_sh_init) deinstantiate_rng(ctrldev, ctrlpriv->rng4_sh_init); } /* * instantiate_rng - builds and executes a descriptor on DECO0, * which initializes the RNG block. * @ctrldev - pointer to device * @state_handle_mask - bitmask containing the instantiation status * for the RNG4 state handles which exist in * the RNG4 block: 1 if it's been instantiated * by an external entry, 0 otherwise. * @gen_sk - generate data to be loaded into the JDKEK, TDKEK and TDSK; * Caution: this can be done only once; if the keys need to be * regenerated, a POR is required * * Return: - 0 if no error occurred * - -ENOMEM if there isn't enough memory to allocate the descriptor * - -ENODEV if DECO0 couldn't be acquired * - -EAGAIN if an error occurred when executing the descriptor * f.i. there was a RNG hardware error due to not "good enough" * entropy being acquired. */ static int instantiate_rng(struct device *ctrldev, int state_handle_mask, int gen_sk) { struct caam_drv_private *ctrlpriv = dev_get_drvdata(ctrldev); struct caam_ctrl __iomem *ctrl; u32 *desc, status = 0, rdsta_val; int ret = 0, sh_idx; ctrl = (struct caam_ctrl __iomem *)ctrlpriv->ctrl; desc = kmalloc(CAAM_CMD_SZ * 7, GFP_KERNEL); if (!desc) return -ENOMEM; for (sh_idx = 0; sh_idx < RNG4_MAX_HANDLES; sh_idx++) { const u32 rdsta_if = RDSTA_IF0 << sh_idx; const u32 rdsta_pr = RDSTA_PR0 << sh_idx; const u32 rdsta_mask = rdsta_if | rdsta_pr; /* Clear the contents before using the descriptor */ memset(desc, 0x00, CAAM_CMD_SZ * 7); /* * If the corresponding bit is set, this state handle * was initialized by somebody else, so it's left alone. */ if (rdsta_if & state_handle_mask) { if (rdsta_pr & state_handle_mask) continue; dev_info(ctrldev, "RNG4 SH%d was previously instantiated without prediction resistance. Tearing it down\n", sh_idx); ret = deinstantiate_rng(ctrldev, rdsta_if); if (ret) break; } /* Create the descriptor for instantiating RNG State Handle */ build_instantiation_desc(desc, sh_idx, gen_sk); /* Try to run it through DECO0 */ ret = run_descriptor_deco0(ctrldev, desc, &status); /* * If ret is not 0, or descriptor status is not 0, then * something went wrong. No need to try the next state * handle (if available), bail out here. * Also, if for some reason, the State Handle didn't get * instantiated although the descriptor has finished * without any error (HW optimizations for later * CAAM eras), then try again. */ if (ret) break; rdsta_val = rd_reg32(&ctrl->r4tst[0].rdsta) & RDSTA_MASK; if ((status && status != JRSTA_SSRC_JUMP_HALT_CC) || (rdsta_val & rdsta_mask) != rdsta_mask) { ret = -EAGAIN; break; } dev_info(ctrldev, "Instantiated RNG4 SH%d\n", sh_idx); } kfree(desc); if (ret) return ret; return devm_add_action_or_reset(ctrldev, devm_deinstantiate_rng, ctrldev); } /* * kick_trng - sets the various parameters for enabling the initialization * of the RNG4 block in CAAM * @dev - pointer to the controller device * @ent_delay - Defines the length (in system clocks) of each entropy sample. */ static void kick_trng(struct device *dev, int ent_delay) { struct caam_drv_private *ctrlpriv = dev_get_drvdata(dev); struct caam_ctrl __iomem *ctrl; struct rng4tst __iomem *r4tst; u32 val, rtsdctl; ctrl = (struct caam_ctrl __iomem *)ctrlpriv->ctrl; r4tst = &ctrl->r4tst[0]; /* * Setting both RTMCTL:PRGM and RTMCTL:TRNG_ACC causes TRNG to * properly invalidate the entropy in the entropy register and * force re-generation. */ clrsetbits_32(&r4tst->rtmctl, 0, RTMCTL_PRGM | RTMCTL_ACC); /* * Performance-wise, it does not make sense to * set the delay to a value that is lower * than the last one that worked (i.e. the state handles * were instantiated properly). */ rtsdctl = rd_reg32(&r4tst->rtsdctl); val = (rtsdctl & RTSDCTL_ENT_DLY_MASK) >> RTSDCTL_ENT_DLY_SHIFT; if (ent_delay > val) { val = ent_delay; /* min. freq. count, equal to 1/4 of the entropy sample length */ wr_reg32(&r4tst->rtfrqmin, val >> 2); /* disable maximum frequency count */ wr_reg32(&r4tst->rtfrqmax, RTFRQMAX_DISABLE); } wr_reg32(&r4tst->rtsdctl, (val << RTSDCTL_ENT_DLY_SHIFT) | RTSDCTL_SAMP_SIZE_VAL); /* * To avoid reprogramming the self-test parameters over and over again, * use RTSDCTL[SAMP_SIZE] as an indicator. */ if ((rtsdctl & RTSDCTL_SAMP_SIZE_MASK) != RTSDCTL_SAMP_SIZE_VAL) { wr_reg32(&r4tst->rtscmisc, (2 << 16) | 32); wr_reg32(&r4tst->rtpkrrng, 570); wr_reg32(&r4tst->rtpkrmax, 1600); wr_reg32(&r4tst->rtscml, (122 << 16) | 317); wr_reg32(&r4tst->rtscrl[0], (80 << 16) | 107); wr_reg32(&r4tst->rtscrl[1], (57 << 16) | 62); wr_reg32(&r4tst->rtscrl[2], (39 << 16) | 39); wr_reg32(&r4tst->rtscrl[3], (27 << 16) | 26); wr_reg32(&r4tst->rtscrl[4], (19 << 16) | 18); wr_reg32(&r4tst->rtscrl[5], (18 << 16) | 17); } /* * select raw sampling in both entropy shifter * and statistical checker; ; put RNG4 into run mode */ clrsetbits_32(&r4tst->rtmctl, RTMCTL_PRGM | RTMCTL_ACC, RTMCTL_SAMP_MODE_RAW_ES_SC); } static int caam_get_era_from_hw(struct caam_perfmon __iomem *perfmon) { static const struct { u16 ip_id; u8 maj_rev; u8 era; } id[] = { {0x0A10, 1, 1}, {0x0A10, 2, 2}, {0x0A12, 1, 3}, {0x0A14, 1, 3}, {0x0A14, 2, 4}, {0x0A16, 1, 4}, {0x0A10, 3, 4}, {0x0A11, 1, 4}, {0x0A18, 1, 4}, {0x0A11, 2, 5}, {0x0A12, 2, 5}, {0x0A13, 1, 5}, {0x0A1C, 1, 5} }; u32 ccbvid, id_ms; u8 maj_rev, era; u16 ip_id; int i; ccbvid = rd_reg32(&perfmon->ccb_id); era = (ccbvid & CCBVID_ERA_MASK) >> CCBVID_ERA_SHIFT; if (era) /* This is '0' prior to CAAM ERA-6 */ return era; id_ms = rd_reg32(&perfmon->caam_id_ms); ip_id = (id_ms & SECVID_MS_IPID_MASK) >> SECVID_MS_IPID_SHIFT; maj_rev = (id_ms & SECVID_MS_MAJ_REV_MASK) >> SECVID_MS_MAJ_REV_SHIFT; for (i = 0; i < ARRAY_SIZE(id); i++) if (id[i].ip_id == ip_id && id[i].maj_rev == maj_rev) return id[i].era; return -ENOTSUPP; } /** * caam_get_era() - Return the ERA of the SEC on SoC, based * on "sec-era" optional property in the DTS. This property is updated * by u-boot. * In case this property is not passed an attempt to retrieve the CAAM * era via register reads will be made. * * @perfmon: Performance Monitor Registers */ static int caam_get_era(struct caam_perfmon __iomem *perfmon) { struct device_node *caam_node; int ret; u32 prop; caam_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0"); ret = of_property_read_u32(caam_node, "fsl,sec-era", &prop); of_node_put(caam_node); if (!ret) return prop; else return caam_get_era_from_hw(perfmon); } /* * ERRATA: imx6 devices (imx6D, imx6Q, imx6DL, imx6S, imx6DP and imx6QP) * have an issue wherein AXI bus transactions may not occur in the correct * order. This isn't a problem running single descriptors, but can be if * running multiple concurrent descriptors. Reworking the driver to throttle * to single requests is impractical, thus the workaround is to limit the AXI * pipeline to a depth of 1 (from it's default of 4) to preclude this situation * from occurring. */ static void handle_imx6_err005766(u32 __iomem *mcr) { if (of_machine_is_compatible("fsl,imx6q") || of_machine_is_compatible("fsl,imx6dl") || of_machine_is_compatible("fsl,imx6qp")) clrsetbits_32(mcr, MCFGR_AXIPIPE_MASK, 1 << MCFGR_AXIPIPE_SHIFT); } static const struct of_device_id caam_match[] = { { .compatible = "fsl,sec-v4.0", }, { .compatible = "fsl,sec4.0", }, {}, }; MODULE_DEVICE_TABLE(of, caam_match); struct caam_imx_data { const struct clk_bulk_data *clks; int num_clks; }; static const struct clk_bulk_data caam_imx6_clks[] = { { .id = "ipg" }, { .id = "mem" }, { .id = "aclk" }, { .id = "emi_slow" }, }; static const struct caam_imx_data caam_imx6_data = { .clks = caam_imx6_clks, .num_clks = ARRAY_SIZE(caam_imx6_clks), }; static const struct clk_bulk_data caam_imx7_clks[] = { { .id = "ipg" }, { .id = "aclk" }, }; static const struct caam_imx_data caam_imx7_data = { .clks = caam_imx7_clks, .num_clks = ARRAY_SIZE(caam_imx7_clks), }; static const struct clk_bulk_data caam_imx6ul_clks[] = { { .id = "ipg" }, { .id = "mem" }, { .id = "aclk" }, }; static const struct caam_imx_data caam_imx6ul_data = { .clks = caam_imx6ul_clks, .num_clks = ARRAY_SIZE(caam_imx6ul_clks), }; static const struct clk_bulk_data caam_vf610_clks[] = { { .id = "ipg" }, }; static const struct caam_imx_data caam_vf610_data = { .clks = caam_vf610_clks, .num_clks = ARRAY_SIZE(caam_vf610_clks), }; static const struct soc_device_attribute caam_imx_soc_table[] = { { .soc_id = "i.MX6UL", .data = &caam_imx6ul_data }, { .soc_id = "i.MX6*", .data = &caam_imx6_data }, { .soc_id = "i.MX7*", .data = &caam_imx7_data }, { .soc_id = "i.MX8M*", .data = &caam_imx7_data }, { .soc_id = "VF*", .data = &caam_vf610_data }, { .family = "Freescale i.MX" }, { /* sentinel */ } }; static void disable_clocks(void *data) { struct caam_drv_private *ctrlpriv = data; clk_bulk_disable_unprepare(ctrlpriv->num_clks, ctrlpriv->clks); } static int init_clocks(struct device *dev, const struct caam_imx_data *data) { struct caam_drv_private *ctrlpriv = dev_get_drvdata(dev); int ret; ctrlpriv->num_clks = data->num_clks; ctrlpriv->clks = devm_kmemdup(dev, data->clks, data->num_clks * sizeof(data->clks[0]), GFP_KERNEL); if (!ctrlpriv->clks) return -ENOMEM; ret = devm_clk_bulk_get(dev, ctrlpriv->num_clks, ctrlpriv->clks); if (ret) { dev_err(dev, "Failed to request all necessary clocks\n"); return ret; } ret = clk_bulk_prepare_enable(ctrlpriv->num_clks, ctrlpriv->clks); if (ret) { dev_err(dev, "Failed to prepare/enable all necessary clocks\n"); return ret; } return devm_add_action_or_reset(dev, disable_clocks, ctrlpriv); } static void caam_remove_debugfs(void *root) { debugfs_remove_recursive(root); } #ifdef CONFIG_FSL_MC_BUS static bool check_version(struct fsl_mc_version *mc_version, u32 major, u32 minor, u32 revision) { if (mc_version->major > major) return true; if (mc_version->major == major) { if (mc_version->minor > minor) return true; if (mc_version->minor == minor && mc_version->revision > revision) return true; } return false; } #endif static bool needs_entropy_delay_adjustment(void) { if (of_machine_is_compatible("fsl,imx6sx")) return true; return false; } static int caam_ctrl_rng_init(struct device *dev) { struct caam_drv_private *ctrlpriv = dev_get_drvdata(dev); struct caam_ctrl __iomem *ctrl = ctrlpriv->ctrl; int ret, gen_sk, ent_delay = RTSDCTL_ENT_DLY_MIN; u8 rng_vid; if (ctrlpriv->era < 10) { struct caam_perfmon __iomem *perfmon; perfmon = ctrlpriv->total_jobrs ? (struct caam_perfmon __iomem *)&ctrlpriv->jr[0]->perfmon : (struct caam_perfmon __iomem *)&ctrl->perfmon; rng_vid = (rd_reg32(&perfmon->cha_id_ls) & CHA_ID_LS_RNG_MASK) >> CHA_ID_LS_RNG_SHIFT; } else { struct version_regs __iomem *vreg; vreg = ctrlpriv->total_jobrs ? (struct version_regs __iomem *)&ctrlpriv->jr[0]->vreg : (struct version_regs __iomem *)&ctrl->vreg; rng_vid = (rd_reg32(&vreg->rng) & CHA_VER_VID_MASK) >> CHA_VER_VID_SHIFT; } /* * If SEC has RNG version >= 4 and RNG state handle has not been * already instantiated, do RNG instantiation * In case of SoCs with Management Complex, RNG is managed by MC f/w. */ if (!(ctrlpriv->mc_en && ctrlpriv->pr_support) && rng_vid >= 4) { ctrlpriv->rng4_sh_init = rd_reg32(&ctrl->r4tst[0].rdsta); /* * If the secure keys (TDKEK, JDKEK, TDSK), were already * generated, signal this to the function that is instantiating * the state handles. An error would occur if RNG4 attempts * to regenerate these keys before the next POR. */ gen_sk = ctrlpriv->rng4_sh_init & RDSTA_SKVN ? 0 : 1; ctrlpriv->rng4_sh_init &= RDSTA_MASK; do { int inst_handles = rd_reg32(&ctrl->r4tst[0].rdsta) & RDSTA_MASK; /* * If either SH were instantiated by somebody else * (e.g. u-boot) then it is assumed that the entropy * parameters are properly set and thus the function * setting these (kick_trng(...)) is skipped. * Also, if a handle was instantiated, do not change * the TRNG parameters. */ if (needs_entropy_delay_adjustment()) ent_delay = 12000; if (!(ctrlpriv->rng4_sh_init || inst_handles)) { dev_info(dev, "Entropy delay = %u\n", ent_delay); kick_trng(dev, ent_delay); ent_delay += 400; } /* * if instantiate_rng(...) fails, the loop will rerun * and the kick_trng(...) function will modify the * upper and lower limits of the entropy sampling * interval, leading to a successful initialization of * the RNG. */ ret = instantiate_rng(dev, inst_handles, gen_sk); /* * Entropy delay is determined via TRNG characterization. * TRNG characterization is run across different voltages * and temperatures. * If worst case value for ent_dly is identified, * the loop can be skipped for that platform. */ if (needs_entropy_delay_adjustment()) break; if (ret == -EAGAIN) /* * if here, the loop will rerun, * so don't hog the CPU */ cpu_relax(); } while ((ret == -EAGAIN) && (ent_delay < RTSDCTL_ENT_DLY_MAX)); if (ret) { dev_err(dev, "failed to instantiate RNG"); return ret; } /* * Set handles initialized by this module as the complement of * the already initialized ones */ ctrlpriv->rng4_sh_init = ~ctrlpriv->rng4_sh_init & RDSTA_MASK; /* Enable RDB bit so that RNG works faster */ clrsetbits_32(&ctrl->scfgr, 0, SCFGR_RDBENABLE); } return 0; } /* Indicate if the internal state of the CAAM is lost during PM */ static int caam_off_during_pm(void) { bool not_off_during_pm = of_machine_is_compatible("fsl,imx6q") || of_machine_is_compatible("fsl,imx6qp") || of_machine_is_compatible("fsl,imx6dl"); return not_off_during_pm ? 0 : 1; } static void caam_state_save(struct device *dev) { struct caam_drv_private *ctrlpriv = dev_get_drvdata(dev); struct caam_ctl_state *state = &ctrlpriv->state; struct caam_ctrl __iomem *ctrl = ctrlpriv->ctrl; u32 deco_inst, jr_inst; int i; state->mcr = rd_reg32(&ctrl->mcr); state->scfgr = rd_reg32(&ctrl->scfgr); deco_inst = (rd_reg32(&ctrl->perfmon.cha_num_ms) & CHA_ID_MS_DECO_MASK) >> CHA_ID_MS_DECO_SHIFT; for (i = 0; i < deco_inst; i++) { state->deco_mid[i].liodn_ms = rd_reg32(&ctrl->deco_mid[i].liodn_ms); state->deco_mid[i].liodn_ls = rd_reg32(&ctrl->deco_mid[i].liodn_ls); } jr_inst = (rd_reg32(&ctrl->perfmon.cha_num_ms) & CHA_ID_MS_JR_MASK) >> CHA_ID_MS_JR_SHIFT; for (i = 0; i < jr_inst; i++) { state->jr_mid[i].liodn_ms = rd_reg32(&ctrl->jr_mid[i].liodn_ms); state->jr_mid[i].liodn_ls = rd_reg32(&ctrl->jr_mid[i].liodn_ls); } } static void caam_state_restore(const struct device *dev) { const struct caam_drv_private *ctrlpriv = dev_get_drvdata(dev); const struct caam_ctl_state *state = &ctrlpriv->state; struct caam_ctrl __iomem *ctrl = ctrlpriv->ctrl; u32 deco_inst, jr_inst; int i; wr_reg32(&ctrl->mcr, state->mcr); wr_reg32(&ctrl->scfgr, state->scfgr); deco_inst = (rd_reg32(&ctrl->perfmon.cha_num_ms) & CHA_ID_MS_DECO_MASK) >> CHA_ID_MS_DECO_SHIFT; for (i = 0; i < deco_inst; i++) { wr_reg32(&ctrl->deco_mid[i].liodn_ms, state->deco_mid[i].liodn_ms); wr_reg32(&ctrl->deco_mid[i].liodn_ls, state->deco_mid[i].liodn_ls); } jr_inst = (rd_reg32(&ctrl->perfmon.cha_num_ms) & CHA_ID_MS_JR_MASK) >> CHA_ID_MS_JR_SHIFT; for (i = 0; i < jr_inst; i++) { wr_reg32(&ctrl->jr_mid[i].liodn_ms, state->jr_mid[i].liodn_ms); wr_reg32(&ctrl->jr_mid[i].liodn_ls, state->jr_mid[i].liodn_ls); } if (ctrlpriv->virt_en == 1) clrsetbits_32(&ctrl->jrstart, 0, JRSTART_JR0_START | JRSTART_JR1_START | JRSTART_JR2_START | JRSTART_JR3_START); } static int caam_ctrl_suspend(struct device *dev) { const struct caam_drv_private *ctrlpriv = dev_get_drvdata(dev); if (ctrlpriv->caam_off_during_pm && !ctrlpriv->optee_en) caam_state_save(dev); return 0; } static int caam_ctrl_resume(struct device *dev) { struct caam_drv_private *ctrlpriv = dev_get_drvdata(dev); int ret = 0; if (ctrlpriv->caam_off_during_pm && !ctrlpriv->optee_en) { caam_state_restore(dev); /* HW and rng will be reset so deinstantiation can be removed */ devm_remove_action(dev, devm_deinstantiate_rng, dev); ret = caam_ctrl_rng_init(dev); } return ret; } static DEFINE_SIMPLE_DEV_PM_OPS(caam_ctrl_pm_ops, caam_ctrl_suspend, caam_ctrl_resume); /* Probe routine for CAAM top (controller) level */ static int caam_probe(struct platform_device *pdev) { int ret, ring; u64 caam_id; const struct soc_device_attribute *imx_soc_match; struct device *dev; struct device_node *nprop, *np; struct caam_ctrl __iomem *ctrl; struct caam_drv_private *ctrlpriv; struct caam_perfmon __iomem *perfmon; struct dentry *dfs_root; u32 scfgr, comp_params; int pg_size; int BLOCK_OFFSET = 0; bool reg_access = true; ctrlpriv = devm_kzalloc(&pdev->dev, sizeof(*ctrlpriv), GFP_KERNEL); if (!ctrlpriv) return -ENOMEM; dev = &pdev->dev; dev_set_drvdata(dev, ctrlpriv); nprop = pdev->dev.of_node; imx_soc_match = soc_device_match(caam_imx_soc_table); if (!imx_soc_match && of_match_node(imx8m_machine_match, of_root)) return -EPROBE_DEFER; caam_imx = (bool)imx_soc_match; ctrlpriv->caam_off_during_pm = caam_imx && caam_off_during_pm(); if (imx_soc_match) { /* * Until Layerscape and i.MX OP-TEE get in sync, * only i.MX OP-TEE use cases disallow access to * caam page 0 (controller) registers. */ np = of_find_compatible_node(NULL, NULL, "linaro,optee-tz"); ctrlpriv->optee_en = !!np; of_node_put(np); reg_access = !ctrlpriv->optee_en; if (!imx_soc_match->data) { dev_err(dev, "No clock data provided for i.MX SoC"); return -EINVAL; } ret = init_clocks(dev, imx_soc_match->data); if (ret) return ret; } /* Get configuration properties from device tree */ /* First, get register page */ ctrl = devm_of_iomap(dev, nprop, 0, NULL); ret = PTR_ERR_OR_ZERO(ctrl); if (ret) { dev_err(dev, "caam: of_iomap() failed\n"); return ret; } ring = 0; for_each_available_child_of_node(nprop, np) if (of_device_is_compatible(np, "fsl,sec-v4.0-job-ring") || of_device_is_compatible(np, "fsl,sec4.0-job-ring")) { u32 reg; if (of_property_read_u32_index(np, "reg", 0, ®)) { dev_err(dev, "%s read reg property error\n", np->full_name); continue; } ctrlpriv->jr[ring] = (struct caam_job_ring __iomem __force *) ((__force uint8_t *)ctrl + reg); ctrlpriv->total_jobrs++; ring++; } /* * Wherever possible, instead of accessing registers from the global page, * use the alias registers in the first (cf. DT nodes order) * job ring's page. */ perfmon = ring ? (struct caam_perfmon __iomem *)&ctrlpriv->jr[0]->perfmon : (struct caam_perfmon __iomem *)&ctrl->perfmon; caam_little_end = !(bool)(rd_reg32(&perfmon->status) & (CSTA_PLEND | CSTA_ALT_PLEND)); comp_params = rd_reg32(&perfmon->comp_parms_ms); if (reg_access && comp_params & CTPR_MS_PS && rd_reg32(&ctrl->mcr) & MCFGR_LONG_PTR) caam_ptr_sz = sizeof(u64); else caam_ptr_sz = sizeof(u32); caam_dpaa2 = !!(comp_params & CTPR_MS_DPAA2); ctrlpriv->qi_present = !!(comp_params & CTPR_MS_QI_MASK); #ifdef CONFIG_CAAM_QI /* If (DPAA 1.x) QI present, check whether dependencies are available */ if (ctrlpriv->qi_present && !caam_dpaa2) { ret = qman_is_probed(); if (!ret) { return -EPROBE_DEFER; } else if (ret < 0) { dev_err(dev, "failing probe due to qman probe error\n"); return -ENODEV; } ret = qman_portals_probed(); if (!ret) { return -EPROBE_DEFER; } else if (ret < 0) { dev_err(dev, "failing probe due to qman portals probe error\n"); return -ENODEV; } } #endif /* Allocating the BLOCK_OFFSET based on the supported page size on * the platform */ pg_size = (comp_params & CTPR_MS_PG_SZ_MASK) >> CTPR_MS_PG_SZ_SHIFT; if (pg_size == 0) BLOCK_OFFSET = PG_SIZE_4K; else BLOCK_OFFSET = PG_SIZE_64K; ctrlpriv->ctrl = (struct caam_ctrl __iomem __force *)ctrl; ctrlpriv->assure = (struct caam_assurance __iomem __force *) ((__force uint8_t *)ctrl + BLOCK_OFFSET * ASSURE_BLOCK_NUMBER ); ctrlpriv->deco = (struct caam_deco __iomem __force *) ((__force uint8_t *)ctrl + BLOCK_OFFSET * DECO_BLOCK_NUMBER ); /* Get the IRQ of the controller (for security violations only) */ ctrlpriv->secvio_irq = irq_of_parse_and_map(nprop, 0); np = of_find_compatible_node(NULL, NULL, "fsl,qoriq-mc"); ctrlpriv->mc_en = !!np; of_node_put(np); #ifdef CONFIG_FSL_MC_BUS if (ctrlpriv->mc_en) { struct fsl_mc_version *mc_version; mc_version = fsl_mc_get_version(); if (mc_version) ctrlpriv->pr_support = check_version(mc_version, 10, 20, 0); else return -EPROBE_DEFER; } #endif if (!reg_access) goto set_dma_mask; /* * Enable DECO watchdogs and, if this is a PHYS_ADDR_T_64BIT kernel, * long pointers in master configuration register. * In case of SoCs with Management Complex, MC f/w performs * the configuration. */ if (!ctrlpriv->mc_en) clrsetbits_32(&ctrl->mcr, MCFGR_AWCACHE_MASK, MCFGR_AWCACHE_CACH | MCFGR_AWCACHE_BUFF | MCFGR_WDENABLE | MCFGR_LARGE_BURST); handle_imx6_err005766(&ctrl->mcr); /* * Read the Compile Time parameters and SCFGR to determine * if virtualization is enabled for this platform */ scfgr = rd_reg32(&ctrl->scfgr); ctrlpriv->virt_en = 0; if (comp_params & CTPR_MS_VIRT_EN_INCL) { /* VIRT_EN_INCL = 1 & VIRT_EN_POR = 1 or * VIRT_EN_INCL = 1 & VIRT_EN_POR = 0 & SCFGR_VIRT_EN = 1 */ if ((comp_params & CTPR_MS_VIRT_EN_POR) || (!(comp_params & CTPR_MS_VIRT_EN_POR) && (scfgr & SCFGR_VIRT_EN))) ctrlpriv->virt_en = 1; } else { /* VIRT_EN_INCL = 0 && VIRT_EN_POR_VALUE = 1 */ if (comp_params & CTPR_MS_VIRT_EN_POR) ctrlpriv->virt_en = 1; } if (ctrlpriv->virt_en == 1) clrsetbits_32(&ctrl->jrstart, 0, JRSTART_JR0_START | JRSTART_JR1_START | JRSTART_JR2_START | JRSTART_JR3_START); set_dma_mask: ret = dma_set_mask_and_coherent(dev, caam_get_dma_mask(dev)); if (ret) { dev_err(dev, "dma_set_mask_and_coherent failed (%d)\n", ret); return ret; } ctrlpriv->era = caam_get_era(perfmon); ctrlpriv->domain = iommu_get_domain_for_dev(dev); dfs_root = debugfs_create_dir(dev_name(dev), NULL); if (IS_ENABLED(CONFIG_DEBUG_FS)) { ret = devm_add_action_or_reset(dev, caam_remove_debugfs, dfs_root); if (ret) return ret; } caam_debugfs_init(ctrlpriv, perfmon, dfs_root); /* Check to see if (DPAA 1.x) QI present. If so, enable */ if (ctrlpriv->qi_present && !caam_dpaa2) { ctrlpriv->qi = (struct caam_queue_if __iomem __force *) ((__force uint8_t *)ctrl + BLOCK_OFFSET * QI_BLOCK_NUMBER ); /* This is all that's required to physically enable QI */ wr_reg32(&ctrlpriv->qi->qi_control_lo, QICTL_DQEN); /* If QMAN driver is present, init CAAM-QI backend */ #ifdef CONFIG_CAAM_QI ret = caam_qi_init(pdev); if (ret) dev_err(dev, "caam qi i/f init failed: %d\n", ret); #endif } /* If no QI and no rings specified, quit and go home */ if ((!ctrlpriv->qi_present) && (!ctrlpriv->total_jobrs)) { dev_err(dev, "no queues configured, terminating\n"); return -ENOMEM; } comp_params = rd_reg32(&perfmon->comp_parms_ls); ctrlpriv->blob_present = !!(comp_params & CTPR_LS_BLOB); /* * Some SoCs like the LS1028A (non-E) indicate CTPR_LS_BLOB support, * but fail when actually using it due to missing AES support, so * check both here. */ if (ctrlpriv->era < 10) { ctrlpriv->blob_present = ctrlpriv->blob_present && (rd_reg32(&perfmon->cha_num_ls) & CHA_ID_LS_AES_MASK); } else { struct version_regs __iomem *vreg; vreg = ctrlpriv->total_jobrs ? (struct version_regs __iomem *)&ctrlpriv->jr[0]->vreg : (struct version_regs __iomem *)&ctrl->vreg; ctrlpriv->blob_present = ctrlpriv->blob_present && (rd_reg32(&vreg->aesa) & CHA_VER_MISC_AES_NUM_MASK); } if (reg_access) { ret = caam_ctrl_rng_init(dev); if (ret) return ret; } caam_id = (u64)rd_reg32(&perfmon->caam_id_ms) << 32 | (u64)rd_reg32(&perfmon->caam_id_ls); /* Report "alive" for developer to see */ dev_info(dev, "device ID = 0x%016llx (Era %d)\n", caam_id, ctrlpriv->era); dev_info(dev, "job rings = %d, qi = %d\n", ctrlpriv->total_jobrs, ctrlpriv->qi_present); ret = devm_of_platform_populate(dev); if (ret) dev_err(dev, "JR platform devices creation error\n"); return ret; } static struct platform_driver caam_driver = { .driver = { .name = "caam", .of_match_table = caam_match, .pm = pm_ptr(&caam_ctrl_pm_ops), }, .probe = caam_probe, }; module_platform_driver(caam_driver); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("FSL CAAM request backend"); MODULE_AUTHOR("Freescale Semiconductor - NMG/STC");