// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 1999, 2000, 05, 06 Ralf Baechle (ralf@linux-mips.org) * Copyright (C) 1999, 2000 Silicon Graphics, Inc. */ #include <linux/bcd.h> #include <linux/clockchips.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/sched_clock.h> #include <linux/interrupt.h> #include <linux/kernel_stat.h> #include <linux/param.h> #include <linux/smp.h> #include <linux/time.h> #include <linux/timex.h> #include <linux/mm.h> #include <linux/platform_device.h> #include <asm/time.h> #include <asm/sgialib.h> #include <asm/sn/klconfig.h> #include <asm/sn/arch.h> #include <asm/sn/addrs.h> #include <asm/sn/agent.h> #include "ip27-common.h" static int rt_next_event(unsigned long delta, struct clock_event_device *evt) { unsigned int cpu = smp_processor_id(); int slice = cputoslice(cpu); unsigned long cnt; cnt = LOCAL_HUB_L(PI_RT_COUNT); cnt += delta; LOCAL_HUB_S(PI_RT_COMPARE_A + PI_COUNT_OFFSET * slice, cnt); return LOCAL_HUB_L(PI_RT_COUNT) >= cnt ? -ETIME : 0; } static DEFINE_PER_CPU(struct clock_event_device, hub_rt_clockevent); static DEFINE_PER_CPU(char [11], hub_rt_name); static irqreturn_t hub_rt_counter_handler(int irq, void *dev_id) { unsigned int cpu = smp_processor_id(); struct clock_event_device *cd = &per_cpu(hub_rt_clockevent, cpu); int slice = cputoslice(cpu); /* * Ack */ LOCAL_HUB_S(PI_RT_PEND_A + PI_COUNT_OFFSET * slice, 0); cd->event_handler(cd); return IRQ_HANDLED; } struct irqaction hub_rt_irqaction = { .handler = hub_rt_counter_handler, .percpu_dev_id = &hub_rt_clockevent, .flags = IRQF_PERCPU | IRQF_TIMER, .name = "hub-rt", }; /* * This is a hack; we really need to figure these values out dynamically * * Since 800 ns works very well with various HUB frequencies, such as * 360, 380, 390 and 400 MHZ, we use 800 ns rtc cycle time. * * Ralf: which clock rate is used to feed the counter? */ #define NSEC_PER_CYCLE 800 #define CYCLES_PER_SEC (NSEC_PER_SEC / NSEC_PER_CYCLE) void hub_rt_clock_event_init(void) { unsigned int cpu = smp_processor_id(); struct clock_event_device *cd = &per_cpu(hub_rt_clockevent, cpu); unsigned char *name = per_cpu(hub_rt_name, cpu); sprintf(name, "hub-rt %d", cpu); cd->name = name; cd->features = CLOCK_EVT_FEAT_ONESHOT; clockevent_set_clock(cd, CYCLES_PER_SEC); cd->max_delta_ns = clockevent_delta2ns(0xfffffffffffff, cd); cd->max_delta_ticks = 0xfffffffffffff; cd->min_delta_ns = clockevent_delta2ns(0x300, cd); cd->min_delta_ticks = 0x300; cd->rating = 200; cd->irq = IP27_RT_TIMER_IRQ; cd->cpumask = cpumask_of(cpu); cd->set_next_event = rt_next_event; clockevents_register_device(cd); enable_percpu_irq(IP27_RT_TIMER_IRQ, IRQ_TYPE_NONE); } static void __init hub_rt_clock_event_global_init(void) { irq_set_handler(IP27_RT_TIMER_IRQ, handle_percpu_devid_irq); irq_set_percpu_devid(IP27_RT_TIMER_IRQ); setup_percpu_irq(IP27_RT_TIMER_IRQ, &hub_rt_irqaction); } static u64 hub_rt_read(struct clocksource *cs) { return REMOTE_HUB_L(cputonasid(0), PI_RT_COUNT); } struct clocksource hub_rt_clocksource = { .name = "HUB-RT", .rating = 200, .read = hub_rt_read, .mask = CLOCKSOURCE_MASK(52), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; static u64 notrace hub_rt_read_sched_clock(void) { return REMOTE_HUB_L(cputonasid(0), PI_RT_COUNT); } static void __init hub_rt_clocksource_init(void) { struct clocksource *cs = &hub_rt_clocksource; clocksource_register_hz(cs, CYCLES_PER_SEC); sched_clock_register(hub_rt_read_sched_clock, 52, CYCLES_PER_SEC); } void __init plat_time_init(void) { hub_rt_clocksource_init(); hub_rt_clock_event_global_init(); hub_rt_clock_event_init(); } void hub_rtc_init(nasid_t nasid) { /* * We only need to initialize the current node. * If this is not the current node then it is a cpuless * node and timeouts will not happen there. */ if (get_nasid() == nasid) { LOCAL_HUB_S(PI_RT_EN_A, 1); LOCAL_HUB_S(PI_RT_EN_B, 1); LOCAL_HUB_S(PI_PROF_EN_A, 0); LOCAL_HUB_S(PI_PROF_EN_B, 0); LOCAL_HUB_S(PI_RT_COUNT, 0); LOCAL_HUB_S(PI_RT_PEND_A, 0); LOCAL_HUB_S(PI_RT_PEND_B, 0); } }