// SPDX-License-Identifier: GPL-2.0-only /* * IEEE754 floating point arithmetic * single precision: MADDF.f (Fused Multiply Add) * MADDF.fmt: FPR[fd] = FPR[fd] + (FPR[fs] x FPR[ft]) * * MIPS floating point support * Copyright (C) 2015 Imagination Technologies, Ltd. * Author: Markos Chandras <markos.chandras@imgtec.com> */ #include "ieee754sp.h" static union ieee754sp _sp_maddf(union ieee754sp z, union ieee754sp x, union ieee754sp y, enum maddf_flags flags) { int re; int rs; unsigned int rm; u64 rm64; u64 zm64; int s; COMPXSP; COMPYSP; COMPZSP; EXPLODEXSP; EXPLODEYSP; EXPLODEZSP; FLUSHXSP; FLUSHYSP; FLUSHZSP; ieee754_clearcx(); rs = xs ^ ys; if (flags & MADDF_NEGATE_PRODUCT) rs ^= 1; if (flags & MADDF_NEGATE_ADDITION) zs ^= 1; /* * Handle the cases when at least one of x, y or z is a NaN. * Order of precedence is sNaN, qNaN and z, x, y. */ if (zc == IEEE754_CLASS_SNAN) return ieee754sp_nanxcpt(z); if (xc == IEEE754_CLASS_SNAN) return ieee754sp_nanxcpt(x); if (yc == IEEE754_CLASS_SNAN) return ieee754sp_nanxcpt(y); if (zc == IEEE754_CLASS_QNAN) return z; if (xc == IEEE754_CLASS_QNAN) return x; if (yc == IEEE754_CLASS_QNAN) return y; if (zc == IEEE754_CLASS_DNORM) SPDNORMZ; /* ZERO z cases are handled separately below */ switch (CLPAIR(xc, yc)) { /* * Infinity handling */ case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF): ieee754_setcx(IEEE754_INVALID_OPERATION); return ieee754sp_indef(); case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF): if ((zc == IEEE754_CLASS_INF) && (zs != rs)) { /* * Cases of addition of infinities with opposite signs * or subtraction of infinities with same signs. */ ieee754_setcx(IEEE754_INVALID_OPERATION); return ieee754sp_indef(); } /* * z is here either not an infinity, or an infinity having the * same sign as product (x*y). The result must be an infinity, * and its sign is determined only by the sign of product (x*y). */ return ieee754sp_inf(rs); case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO): if (zc == IEEE754_CLASS_INF) return ieee754sp_inf(zs); if (zc == IEEE754_CLASS_ZERO) { /* Handle cases +0 + (-0) and similar ones. */ if (zs == rs) /* * Cases of addition of zeros of equal signs * or subtraction of zeroes of opposite signs. * The sign of the resulting zero is in any * such case determined only by the sign of z. */ return z; return ieee754sp_zero(ieee754_csr.rm == FPU_CSR_RD); } /* x*y is here 0, and z is not 0, so just return z */ return z; case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM): SPDNORMX; fallthrough; case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM): if (zc == IEEE754_CLASS_INF) return ieee754sp_inf(zs); SPDNORMY; break; case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM): if (zc == IEEE754_CLASS_INF) return ieee754sp_inf(zs); SPDNORMX; break; case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_NORM): if (zc == IEEE754_CLASS_INF) return ieee754sp_inf(zs); /* continue to real computations */ } /* Finally get to do some computation */ /* * Do the multiplication bit first * * rm = xm * ym, re = xe + ye basically * * At this point xm and ym should have been normalized. */ /* rm = xm * ym, re = xe+ye basically */ assert(xm & SP_HIDDEN_BIT); assert(ym & SP_HIDDEN_BIT); re = xe + ye; /* Multiple 24 bit xm and ym to give 48 bit results */ rm64 = (uint64_t)xm * ym; /* Shunt to top of word */ rm64 = rm64 << 16; /* Put explicit bit at bit 62 if necessary */ if ((int64_t) rm64 < 0) { rm64 = rm64 >> 1; re++; } assert(rm64 & (1 << 62)); if (zc == IEEE754_CLASS_ZERO) { /* * Move explicit bit from bit 62 to bit 26 since the * ieee754sp_format code expects the mantissa to be * 27 bits wide (24 + 3 rounding bits). */ rm = XSPSRS64(rm64, (62 - 26)); return ieee754sp_format(rs, re, rm); } /* Move explicit bit from bit 23 to bit 62 */ zm64 = (uint64_t)zm << (62 - 23); assert(zm64 & (1 << 62)); /* Make the exponents the same */ if (ze > re) { /* * Have to shift r fraction right to align. */ s = ze - re; rm64 = XSPSRS64(rm64, s); re += s; } else if (re > ze) { /* * Have to shift z fraction right to align. */ s = re - ze; zm64 = XSPSRS64(zm64, s); ze += s; } assert(ze == re); assert(ze <= SP_EMAX); /* Do the addition */ if (zs == rs) { /* * Generate 64 bit result by adding two 63 bit numbers * leaving result in zm64, zs and ze. */ zm64 = zm64 + rm64; if ((int64_t)zm64 < 0) { /* carry out */ zm64 = XSPSRS1(zm64); ze++; } } else { if (zm64 >= rm64) { zm64 = zm64 - rm64; } else { zm64 = rm64 - zm64; zs = rs; } if (zm64 == 0) return ieee754sp_zero(ieee754_csr.rm == FPU_CSR_RD); /* * Put explicit bit at bit 62 if necessary. */ while ((zm64 >> 62) == 0) { zm64 <<= 1; ze--; } } /* * Move explicit bit from bit 62 to bit 26 since the * ieee754sp_format code expects the mantissa to be * 27 bits wide (24 + 3 rounding bits). */ zm = XSPSRS64(zm64, (62 - 26)); return ieee754sp_format(zs, ze, zm); } union ieee754sp ieee754sp_maddf(union ieee754sp z, union ieee754sp x, union ieee754sp y) { return _sp_maddf(z, x, y, 0); } union ieee754sp ieee754sp_msubf(union ieee754sp z, union ieee754sp x, union ieee754sp y) { return _sp_maddf(z, x, y, MADDF_NEGATE_PRODUCT); } union ieee754sp ieee754sp_madd(union ieee754sp z, union ieee754sp x, union ieee754sp y) { return _sp_maddf(z, x, y, 0); } union ieee754sp ieee754sp_msub(union ieee754sp z, union ieee754sp x, union ieee754sp y) { return _sp_maddf(z, x, y, MADDF_NEGATE_ADDITION); } union ieee754sp ieee754sp_nmadd(union ieee754sp z, union ieee754sp x, union ieee754sp y) { return _sp_maddf(z, x, y, MADDF_NEGATE_PRODUCT|MADDF_NEGATE_ADDITION); } union ieee754sp ieee754sp_nmsub(union ieee754sp z, union ieee754sp x, union ieee754sp y) { return _sp_maddf(z, x, y, MADDF_NEGATE_PRODUCT); }