// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved. */ /* * Oracle Data Analytics Accelerator (DAX) * * DAX is a coprocessor which resides on the SPARC M7 (DAX1) and M8 * (DAX2) processor chips, and has direct access to the CPU's L3 * caches as well as physical memory. It can perform several * operations on data streams with various input and output formats. * The driver provides a transport mechanism only and has limited * knowledge of the various opcodes and data formats. A user space * library provides high level services and translates these into low * level commands which are then passed into the driver and * subsequently the hypervisor and the coprocessor. The library is * the recommended way for applications to use the coprocessor, and * the driver interface is not intended for general use. * * See Documentation/arch/sparc/oradax/oracle-dax.rst for more details. */ #include <linux/uaccess.h> #include <linux/module.h> #include <linux/delay.h> #include <linux/cdev.h> #include <linux/slab.h> #include <linux/mm.h> #include <asm/hypervisor.h> #include <asm/mdesc.h> #include <asm/oradax.h> MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Driver for Oracle Data Analytics Accelerator"); #define DAX_DBG_FLG_BASIC 0x01 #define DAX_DBG_FLG_STAT 0x02 #define DAX_DBG_FLG_INFO 0x04 #define DAX_DBG_FLG_ALL 0xff #define dax_err(fmt, ...) pr_err("%s: " fmt "\n", __func__, ##__VA_ARGS__) #define dax_info(fmt, ...) pr_info("%s: " fmt "\n", __func__, ##__VA_ARGS__) #define dax_dbg(fmt, ...) do { \ if (dax_debug & DAX_DBG_FLG_BASIC)\ dax_info(fmt, ##__VA_ARGS__); \ } while (0) #define dax_stat_dbg(fmt, ...) do { \ if (dax_debug & DAX_DBG_FLG_STAT) \ dax_info(fmt, ##__VA_ARGS__); \ } while (0) #define dax_info_dbg(fmt, ...) do { \ if (dax_debug & DAX_DBG_FLG_INFO) \ dax_info(fmt, ##__VA_ARGS__); \ } while (0) #define DAX1_MINOR 1 #define DAX1_MAJOR 1 #define DAX2_MINOR 0 #define DAX2_MAJOR 2 #define DAX1_STR "ORCL,sun4v-dax" #define DAX2_STR "ORCL,sun4v-dax2" #define DAX_CA_ELEMS (DAX_MMAP_LEN / sizeof(struct dax_cca)) #define DAX_CCB_USEC 100 #define DAX_CCB_RETRIES 10000 /* stream types */ enum { OUT, PRI, SEC, TBL, NUM_STREAM_TYPES }; /* completion status */ #define CCA_STAT_NOT_COMPLETED 0 #define CCA_STAT_COMPLETED 1 #define CCA_STAT_FAILED 2 #define CCA_STAT_KILLED 3 #define CCA_STAT_NOT_RUN 4 #define CCA_STAT_PIPE_OUT 5 #define CCA_STAT_PIPE_SRC 6 #define CCA_STAT_PIPE_DST 7 /* completion err */ #define CCA_ERR_SUCCESS 0x0 /* no error */ #define CCA_ERR_OVERFLOW 0x1 /* buffer overflow */ #define CCA_ERR_DECODE 0x2 /* CCB decode error */ #define CCA_ERR_PAGE_OVERFLOW 0x3 /* page overflow */ #define CCA_ERR_KILLED 0x7 /* command was killed */ #define CCA_ERR_TIMEOUT 0x8 /* Timeout */ #define CCA_ERR_ADI 0x9 /* ADI error */ #define CCA_ERR_DATA_FMT 0xA /* data format error */ #define CCA_ERR_OTHER_NO_RETRY 0xE /* Other error, do not retry */ #define CCA_ERR_OTHER_RETRY 0xF /* Other error, retry */ #define CCA_ERR_PARTIAL_SYMBOL 0x80 /* QP partial symbol warning */ /* CCB address types */ #define DAX_ADDR_TYPE_NONE 0 #define DAX_ADDR_TYPE_VA_ALT 1 /* secondary context */ #define DAX_ADDR_TYPE_RA 2 /* real address */ #define DAX_ADDR_TYPE_VA 3 /* virtual address */ /* dax_header_t opcode */ #define DAX_OP_SYNC_NOP 0x0 #define DAX_OP_EXTRACT 0x1 #define DAX_OP_SCAN_VALUE 0x2 #define DAX_OP_SCAN_RANGE 0x3 #define DAX_OP_TRANSLATE 0x4 #define DAX_OP_SELECT 0x5 #define DAX_OP_INVERT 0x10 /* OR with translate, scan opcodes */ struct dax_header { u32 ccb_version:4; /* 31:28 CCB Version */ /* 27:24 Sync Flags */ u32 pipe:1; /* Pipeline */ u32 longccb:1; /* Longccb. Set for scan with lu2, lu3, lu4. */ u32 cond:1; /* Conditional */ u32 serial:1; /* Serial */ u32 opcode:8; /* 23:16 Opcode */ /* 15:0 Address Type. */ u32 reserved:3; /* 15:13 reserved */ u32 table_addr_type:2; /* 12:11 Huffman Table Address Type */ u32 out_addr_type:3; /* 10:8 Destination Address Type */ u32 sec_addr_type:3; /* 7:5 Secondary Source Address Type */ u32 pri_addr_type:3; /* 4:2 Primary Source Address Type */ u32 cca_addr_type:2; /* 1:0 Completion Address Type */ }; struct dax_control { u32 pri_fmt:4; /* 31:28 Primary Input Format */ u32 pri_elem_size:5; /* 27:23 Primary Input Element Size(less1) */ u32 pri_offset:3; /* 22:20 Primary Input Starting Offset */ u32 sec_encoding:1; /* 19 Secondary Input Encoding */ /* (must be 0 for Select) */ u32 sec_offset:3; /* 18:16 Secondary Input Starting Offset */ u32 sec_elem_size:2; /* 15:14 Secondary Input Element Size */ /* (must be 0 for Select) */ u32 out_fmt:2; /* 13:12 Output Format */ u32 out_elem_size:2; /* 11:10 Output Element Size */ u32 misc:10; /* 9:0 Opcode specific info */ }; struct dax_data_access { u64 flow_ctrl:2; /* 63:62 Flow Control Type */ u64 pipe_target:2; /* 61:60 Pipeline Target */ u64 out_buf_size:20; /* 59:40 Output Buffer Size */ /* (cachelines less 1) */ u64 unused1:8; /* 39:32 Reserved, Set to 0 */ u64 out_alloc:5; /* 31:27 Output Allocation */ u64 unused2:1; /* 26 Reserved */ u64 pri_len_fmt:2; /* 25:24 Input Length Format */ u64 pri_len:24; /* 23:0 Input Element/Byte/Bit Count */ /* (less 1) */ }; struct dax_ccb { struct dax_header hdr; /* CCB Header */ struct dax_control ctrl;/* Control Word */ void *ca; /* Completion Address */ void *pri; /* Primary Input Address */ struct dax_data_access dac; /* Data Access Control */ void *sec; /* Secondary Input Address */ u64 dword5; /* depends on opcode */ void *out; /* Output Address */ void *tbl; /* Table Address or bitmap */ }; struct dax_cca { u8 status; /* user may mwait on this address */ u8 err; /* user visible error notification */ u8 rsvd[2]; /* reserved */ u32 n_remaining; /* for QP partial symbol warning */ u32 output_sz; /* output in bytes */ u32 rsvd2; /* reserved */ u64 run_cycles; /* run time in OCND2 cycles */ u64 run_stats; /* nothing reported in version 1.0 */ u32 n_processed; /* number input elements */ u32 rsvd3[5]; /* reserved */ u64 retval; /* command return value */ u64 rsvd4[8]; /* reserved */ }; /* per thread CCB context */ struct dax_ctx { struct dax_ccb *ccb_buf; u64 ccb_buf_ra; /* cached RA of ccb_buf */ struct dax_cca *ca_buf; u64 ca_buf_ra; /* cached RA of ca_buf */ struct page *pages[DAX_CA_ELEMS][NUM_STREAM_TYPES]; /* array of locked pages */ struct task_struct *owner; /* thread that owns ctx */ struct task_struct *client; /* requesting thread */ union ccb_result result; u32 ccb_count; u32 fail_count; }; /* driver public entry points */ static int dax_open(struct inode *inode, struct file *file); static ssize_t dax_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos); static ssize_t dax_write(struct file *filp, const char __user *buf, size_t count, loff_t *ppos); static int dax_devmap(struct file *f, struct vm_area_struct *vma); static int dax_close(struct inode *i, struct file *f); static const struct file_operations dax_fops = { .owner = THIS_MODULE, .open = dax_open, .read = dax_read, .write = dax_write, .mmap = dax_devmap, .release = dax_close, }; static int dax_ccb_exec(struct dax_ctx *ctx, const char __user *buf, size_t count, loff_t *ppos); static int dax_ccb_info(u64 ca, struct ccb_info_result *info); static int dax_ccb_kill(u64 ca, u16 *kill_res); static struct cdev c_dev; static dev_t first; static const struct class cl = { .name = DAX_NAME, }; static int max_ccb_version; static int dax_debug; module_param(dax_debug, int, 0644); MODULE_PARM_DESC(dax_debug, "Debug flags"); static int __init dax_attach(void) { unsigned long dummy, hv_rv, major, minor, minor_requested, max_ccbs; struct mdesc_handle *hp = mdesc_grab(); char *prop, *dax_name; bool found = false; int len, ret = 0; u64 pn; if (hp == NULL) { dax_err("Unable to grab mdesc"); return -ENODEV; } mdesc_for_each_node_by_name(hp, pn, "virtual-device") { prop = (char *)mdesc_get_property(hp, pn, "name", &len); if (prop == NULL) continue; if (strncmp(prop, "dax", strlen("dax"))) continue; dax_dbg("Found node 0x%llx = %s", pn, prop); prop = (char *)mdesc_get_property(hp, pn, "compatible", &len); if (prop == NULL) continue; dax_dbg("Found node 0x%llx = %s", pn, prop); found = true; break; } if (!found) { dax_err("No DAX device found"); ret = -ENODEV; goto done; } if (strncmp(prop, DAX2_STR, strlen(DAX2_STR)) == 0) { dax_name = DAX_NAME "2"; major = DAX2_MAJOR; minor_requested = DAX2_MINOR; max_ccb_version = 1; dax_dbg("MD indicates DAX2 coprocessor"); } else if (strncmp(prop, DAX1_STR, strlen(DAX1_STR)) == 0) { dax_name = DAX_NAME "1"; major = DAX1_MAJOR; minor_requested = DAX1_MINOR; max_ccb_version = 0; dax_dbg("MD indicates DAX1 coprocessor"); } else { dax_err("Unknown dax type: %s", prop); ret = -ENODEV; goto done; } minor = minor_requested; dax_dbg("Registering DAX HV api with major %ld minor %ld", major, minor); if (sun4v_hvapi_register(HV_GRP_DAX, major, &minor)) { dax_err("hvapi_register failed"); ret = -ENODEV; goto done; } else { dax_dbg("Max minor supported by HV = %ld (major %ld)", minor, major); minor = min(minor, minor_requested); dax_dbg("registered DAX major %ld minor %ld", major, minor); } /* submit a zero length ccb array to query coprocessor queue size */ hv_rv = sun4v_ccb_submit(0, 0, HV_CCB_QUERY_CMD, 0, &max_ccbs, &dummy); if (hv_rv != 0) { dax_err("get_hwqueue_size failed with status=%ld and max_ccbs=%ld", hv_rv, max_ccbs); ret = -ENODEV; goto done; } if (max_ccbs != DAX_MAX_CCBS) { dax_err("HV reports unsupported max_ccbs=%ld", max_ccbs); ret = -ENODEV; goto done; } if (alloc_chrdev_region(&first, 0, 1, DAX_NAME) < 0) { dax_err("alloc_chrdev_region failed"); ret = -ENXIO; goto done; } ret = class_register(&cl); if (ret) goto class_error; if (device_create(&cl, NULL, first, NULL, dax_name) == NULL) { dax_err("device_create failed"); ret = -ENXIO; goto device_error; } cdev_init(&c_dev, &dax_fops); if (cdev_add(&c_dev, first, 1) == -1) { dax_err("cdev_add failed"); ret = -ENXIO; goto cdev_error; } pr_info("Attached DAX module\n"); goto done; cdev_error: device_destroy(&cl, first); device_error: class_unregister(&cl); class_error: unregister_chrdev_region(first, 1); done: mdesc_release(hp); return ret; } module_init(dax_attach); static void __exit dax_detach(void) { pr_info("Cleaning up DAX module\n"); cdev_del(&c_dev); device_destroy(&cl, first); class_unregister(&cl); unregister_chrdev_region(first, 1); } module_exit(dax_detach); /* map completion area */ static int dax_devmap(struct file *f, struct vm_area_struct *vma) { struct dax_ctx *ctx = (struct dax_ctx *)f->private_data; size_t len = vma->vm_end - vma->vm_start; dax_dbg("len=0x%lx, flags=0x%lx", len, vma->vm_flags); if (ctx->owner != current) { dax_dbg("devmap called from wrong thread"); return -EINVAL; } if (len != DAX_MMAP_LEN) { dax_dbg("len(%lu) != DAX_MMAP_LEN(%d)", len, DAX_MMAP_LEN); return -EINVAL; } /* completion area is mapped read-only for user */ if (vma->vm_flags & VM_WRITE) return -EPERM; vm_flags_clear(vma, VM_MAYWRITE); if (remap_pfn_range(vma, vma->vm_start, ctx->ca_buf_ra >> PAGE_SHIFT, len, vma->vm_page_prot)) return -EAGAIN; dax_dbg("mmapped completion area at uva 0x%lx", vma->vm_start); return 0; } /* Unlock user pages. Called during dequeue or device close */ static void dax_unlock_pages(struct dax_ctx *ctx, int ccb_index, int nelem) { int i, j; for (i = ccb_index; i < ccb_index + nelem; i++) { for (j = 0; j < NUM_STREAM_TYPES; j++) { struct page *p = ctx->pages[i][j]; if (p) { dax_dbg("freeing page %p", p); unpin_user_pages_dirty_lock(&p, 1, j == OUT); ctx->pages[i][j] = NULL; } } } } static int dax_lock_page(void *va, struct page **p) { int ret; dax_dbg("uva %p", va); ret = pin_user_pages_fast((unsigned long)va, 1, FOLL_WRITE, p); if (ret == 1) { dax_dbg("locked page %p, for VA %p", *p, va); return 0; } dax_dbg("pin_user_pages failed, va=%p, ret=%d", va, ret); return -1; } static int dax_lock_pages(struct dax_ctx *ctx, int idx, int nelem, u64 *err_va) { int i; for (i = 0; i < nelem; i++) { struct dax_ccb *ccbp = &ctx->ccb_buf[i]; /* * For each address in the CCB whose type is virtual, * lock the page and change the type to virtual alternate * context. On error, return the offending address in * err_va. */ if (ccbp->hdr.out_addr_type == DAX_ADDR_TYPE_VA) { dax_dbg("output"); if (dax_lock_page(ccbp->out, &ctx->pages[i + idx][OUT]) != 0) { *err_va = (u64)ccbp->out; goto error; } ccbp->hdr.out_addr_type = DAX_ADDR_TYPE_VA_ALT; } if (ccbp->hdr.pri_addr_type == DAX_ADDR_TYPE_VA) { dax_dbg("input"); if (dax_lock_page(ccbp->pri, &ctx->pages[i + idx][PRI]) != 0) { *err_va = (u64)ccbp->pri; goto error; } ccbp->hdr.pri_addr_type = DAX_ADDR_TYPE_VA_ALT; } if (ccbp->hdr.sec_addr_type == DAX_ADDR_TYPE_VA) { dax_dbg("sec input"); if (dax_lock_page(ccbp->sec, &ctx->pages[i + idx][SEC]) != 0) { *err_va = (u64)ccbp->sec; goto error; } ccbp->hdr.sec_addr_type = DAX_ADDR_TYPE_VA_ALT; } if (ccbp->hdr.table_addr_type == DAX_ADDR_TYPE_VA) { dax_dbg("tbl"); if (dax_lock_page(ccbp->tbl, &ctx->pages[i + idx][TBL]) != 0) { *err_va = (u64)ccbp->tbl; goto error; } ccbp->hdr.table_addr_type = DAX_ADDR_TYPE_VA_ALT; } /* skip over 2nd 64 bytes of long CCB */ if (ccbp->hdr.longccb) i++; } return DAX_SUBMIT_OK; error: dax_unlock_pages(ctx, idx, nelem); return DAX_SUBMIT_ERR_NOACCESS; } static void dax_ccb_wait(struct dax_ctx *ctx, int idx) { int ret, nretries; u16 kill_res; dax_dbg("idx=%d", idx); for (nretries = 0; nretries < DAX_CCB_RETRIES; nretries++) { if (ctx->ca_buf[idx].status == CCA_STAT_NOT_COMPLETED) udelay(DAX_CCB_USEC); else return; } dax_dbg("ctx (%p): CCB[%d] timed out, wait usec=%d, retries=%d. Killing ccb", (void *)ctx, idx, DAX_CCB_USEC, DAX_CCB_RETRIES); ret = dax_ccb_kill(ctx->ca_buf_ra + idx * sizeof(struct dax_cca), &kill_res); dax_dbg("Kill CCB[%d] %s", idx, ret ? "failed" : "succeeded"); } static int dax_close(struct inode *ino, struct file *f) { struct dax_ctx *ctx = (struct dax_ctx *)f->private_data; int i; f->private_data = NULL; for (i = 0; i < DAX_CA_ELEMS; i++) { if (ctx->ca_buf[i].status == CCA_STAT_NOT_COMPLETED) { dax_dbg("CCB[%d] not completed", i); dax_ccb_wait(ctx, i); } dax_unlock_pages(ctx, i, 1); } kfree(ctx->ccb_buf); kfree(ctx->ca_buf); dax_stat_dbg("CCBs: %d good, %d bad", ctx->ccb_count, ctx->fail_count); kfree(ctx); return 0; } static ssize_t dax_read(struct file *f, char __user *buf, size_t count, loff_t *ppos) { struct dax_ctx *ctx = f->private_data; if (ctx->client != current) return -EUSERS; ctx->client = NULL; if (count != sizeof(union ccb_result)) return -EINVAL; if (copy_to_user(buf, &ctx->result, sizeof(union ccb_result))) return -EFAULT; return count; } static ssize_t dax_write(struct file *f, const char __user *buf, size_t count, loff_t *ppos) { struct dax_ctx *ctx = f->private_data; struct dax_command hdr; unsigned long ca; int i, idx, ret; if (ctx->client != NULL) return -EINVAL; if (count == 0 || count > DAX_MAX_CCBS * sizeof(struct dax_ccb)) return -EINVAL; if (count % sizeof(struct dax_ccb) == 0) return dax_ccb_exec(ctx, buf, count, ppos); /* CCB EXEC */ if (count != sizeof(struct dax_command)) return -EINVAL; /* immediate command */ if (ctx->owner != current) return -EUSERS; if (copy_from_user(&hdr, buf, sizeof(hdr))) return -EFAULT; ca = ctx->ca_buf_ra + hdr.ca_offset; switch (hdr.command) { case CCB_KILL: if (hdr.ca_offset >= DAX_MMAP_LEN) { dax_dbg("invalid ca_offset (%d) >= ca_buflen (%d)", hdr.ca_offset, DAX_MMAP_LEN); return -EINVAL; } ret = dax_ccb_kill(ca, &ctx->result.kill.action); if (ret != 0) { dax_dbg("dax_ccb_kill failed (ret=%d)", ret); return ret; } dax_info_dbg("killed (ca_offset %d)", hdr.ca_offset); idx = hdr.ca_offset / sizeof(struct dax_cca); ctx->ca_buf[idx].status = CCA_STAT_KILLED; ctx->ca_buf[idx].err = CCA_ERR_KILLED; ctx->client = current; return count; case CCB_INFO: if (hdr.ca_offset >= DAX_MMAP_LEN) { dax_dbg("invalid ca_offset (%d) >= ca_buflen (%d)", hdr.ca_offset, DAX_MMAP_LEN); return -EINVAL; } ret = dax_ccb_info(ca, &ctx->result.info); if (ret != 0) { dax_dbg("dax_ccb_info failed (ret=%d)", ret); return ret; } dax_info_dbg("info succeeded on ca_offset %d", hdr.ca_offset); ctx->client = current; return count; case CCB_DEQUEUE: for (i = 0; i < DAX_CA_ELEMS; i++) { if (ctx->ca_buf[i].status != CCA_STAT_NOT_COMPLETED) dax_unlock_pages(ctx, i, 1); } return count; default: return -EINVAL; } } static int dax_open(struct inode *inode, struct file *f) { struct dax_ctx *ctx = NULL; int i; ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); if (ctx == NULL) goto done; ctx->ccb_buf = kcalloc(DAX_MAX_CCBS, sizeof(struct dax_ccb), GFP_KERNEL); if (ctx->ccb_buf == NULL) goto done; ctx->ccb_buf_ra = virt_to_phys(ctx->ccb_buf); dax_dbg("ctx->ccb_buf=0x%p, ccb_buf_ra=0x%llx", (void *)ctx->ccb_buf, ctx->ccb_buf_ra); /* allocate CCB completion area buffer */ ctx->ca_buf = kzalloc(DAX_MMAP_LEN, GFP_KERNEL); if (ctx->ca_buf == NULL) goto alloc_error; for (i = 0; i < DAX_CA_ELEMS; i++) ctx->ca_buf[i].status = CCA_STAT_COMPLETED; ctx->ca_buf_ra = virt_to_phys(ctx->ca_buf); dax_dbg("ctx=0x%p, ctx->ca_buf=0x%p, ca_buf_ra=0x%llx", (void *)ctx, (void *)ctx->ca_buf, ctx->ca_buf_ra); ctx->owner = current; f->private_data = ctx; return 0; alloc_error: kfree(ctx->ccb_buf); done: kfree(ctx); return -ENOMEM; } static char *dax_hv_errno(unsigned long hv_ret, int *ret) { switch (hv_ret) { case HV_EBADALIGN: *ret = -EFAULT; return "HV_EBADALIGN"; case HV_ENORADDR: *ret = -EFAULT; return "HV_ENORADDR"; case HV_EINVAL: *ret = -EINVAL; return "HV_EINVAL"; case HV_EWOULDBLOCK: *ret = -EAGAIN; return "HV_EWOULDBLOCK"; case HV_ENOACCESS: *ret = -EPERM; return "HV_ENOACCESS"; default: break; } *ret = -EIO; return "UNKNOWN"; } static int dax_ccb_kill(u64 ca, u16 *kill_res) { unsigned long hv_ret; int count, ret = 0; char *err_str; for (count = 0; count < DAX_CCB_RETRIES; count++) { dax_dbg("attempting kill on ca_ra 0x%llx", ca); hv_ret = sun4v_ccb_kill(ca, kill_res); if (hv_ret == HV_EOK) { dax_info_dbg("HV_EOK (ca_ra 0x%llx): %d", ca, *kill_res); } else { err_str = dax_hv_errno(hv_ret, &ret); dax_dbg("%s (ca_ra 0x%llx)", err_str, ca); } if (ret != -EAGAIN) return ret; dax_info_dbg("ccb_kill count = %d", count); udelay(DAX_CCB_USEC); } return -EAGAIN; } static int dax_ccb_info(u64 ca, struct ccb_info_result *info) { unsigned long hv_ret; char *err_str; int ret = 0; dax_dbg("attempting info on ca_ra 0x%llx", ca); hv_ret = sun4v_ccb_info(ca, info); if (hv_ret == HV_EOK) { dax_info_dbg("HV_EOK (ca_ra 0x%llx): %d", ca, info->state); if (info->state == DAX_CCB_ENQUEUED) { dax_info_dbg("dax_unit %d, queue_num %d, queue_pos %d", info->inst_num, info->q_num, info->q_pos); } } else { err_str = dax_hv_errno(hv_ret, &ret); dax_dbg("%s (ca_ra 0x%llx)", err_str, ca); } return ret; } static void dax_prt_ccbs(struct dax_ccb *ccb, int nelem) { int i, j; u64 *ccbp; dax_dbg("ccb buffer:"); for (i = 0; i < nelem; i++) { ccbp = (u64 *)&ccb[i]; dax_dbg(" %sccb[%d]", ccb[i].hdr.longccb ? "long " : "", i); for (j = 0; j < 8; j++) dax_dbg("\tccb[%d].dwords[%d]=0x%llx", i, j, *(ccbp + j)); } } /* * Validates user CCB content. Also sets completion address and address types * for all addresses contained in CCB. */ static int dax_preprocess_usr_ccbs(struct dax_ctx *ctx, int idx, int nelem) { int i; /* * The user is not allowed to specify real address types in * the CCB header. This must be enforced by the kernel before * submitting the CCBs to HV. The only allowed values for all * address fields are VA or IMM */ for (i = 0; i < nelem; i++) { struct dax_ccb *ccbp = &ctx->ccb_buf[i]; unsigned long ca_offset; if (ccbp->hdr.ccb_version > max_ccb_version) return DAX_SUBMIT_ERR_CCB_INVAL; switch (ccbp->hdr.opcode) { case DAX_OP_SYNC_NOP: case DAX_OP_EXTRACT: case DAX_OP_SCAN_VALUE: case DAX_OP_SCAN_RANGE: case DAX_OP_TRANSLATE: case DAX_OP_SCAN_VALUE | DAX_OP_INVERT: case DAX_OP_SCAN_RANGE | DAX_OP_INVERT: case DAX_OP_TRANSLATE | DAX_OP_INVERT: case DAX_OP_SELECT: break; default: return DAX_SUBMIT_ERR_CCB_INVAL; } if (ccbp->hdr.out_addr_type != DAX_ADDR_TYPE_VA && ccbp->hdr.out_addr_type != DAX_ADDR_TYPE_NONE) { dax_dbg("invalid out_addr_type in user CCB[%d]", i); return DAX_SUBMIT_ERR_CCB_INVAL; } if (ccbp->hdr.pri_addr_type != DAX_ADDR_TYPE_VA && ccbp->hdr.pri_addr_type != DAX_ADDR_TYPE_NONE) { dax_dbg("invalid pri_addr_type in user CCB[%d]", i); return DAX_SUBMIT_ERR_CCB_INVAL; } if (ccbp->hdr.sec_addr_type != DAX_ADDR_TYPE_VA && ccbp->hdr.sec_addr_type != DAX_ADDR_TYPE_NONE) { dax_dbg("invalid sec_addr_type in user CCB[%d]", i); return DAX_SUBMIT_ERR_CCB_INVAL; } if (ccbp->hdr.table_addr_type != DAX_ADDR_TYPE_VA && ccbp->hdr.table_addr_type != DAX_ADDR_TYPE_NONE) { dax_dbg("invalid table_addr_type in user CCB[%d]", i); return DAX_SUBMIT_ERR_CCB_INVAL; } /* set completion (real) address and address type */ ccbp->hdr.cca_addr_type = DAX_ADDR_TYPE_RA; ca_offset = (idx + i) * sizeof(struct dax_cca); ccbp->ca = (void *)ctx->ca_buf_ra + ca_offset; memset(&ctx->ca_buf[idx + i], 0, sizeof(struct dax_cca)); dax_dbg("ccb[%d]=%p, ca_offset=0x%lx, compl RA=0x%llx", i, ccbp, ca_offset, ctx->ca_buf_ra + ca_offset); /* skip over 2nd 64 bytes of long CCB */ if (ccbp->hdr.longccb) i++; } return DAX_SUBMIT_OK; } static int dax_ccb_exec(struct dax_ctx *ctx, const char __user *buf, size_t count, loff_t *ppos) { unsigned long accepted_len, hv_rv; int i, idx, nccbs, naccepted; ctx->client = current; idx = *ppos; nccbs = count / sizeof(struct dax_ccb); if (ctx->owner != current) { dax_dbg("wrong thread"); ctx->result.exec.status = DAX_SUBMIT_ERR_THR_INIT; return 0; } dax_dbg("args: ccb_buf_len=%ld, idx=%d", count, idx); /* for given index and length, verify ca_buf range exists */ if (idx < 0 || idx > (DAX_CA_ELEMS - nccbs)) { ctx->result.exec.status = DAX_SUBMIT_ERR_NO_CA_AVAIL; return 0; } /* * Copy CCBs into kernel buffer to prevent modification by the * user in between validation and submission. */ if (copy_from_user(ctx->ccb_buf, buf, count)) { dax_dbg("copyin of user CCB buffer failed"); ctx->result.exec.status = DAX_SUBMIT_ERR_CCB_ARR_MMU_MISS; return 0; } /* check to see if ca_buf[idx] .. ca_buf[idx + nccbs] are available */ for (i = idx; i < idx + nccbs; i++) { if (ctx->ca_buf[i].status == CCA_STAT_NOT_COMPLETED) { dax_dbg("CA range not available, dequeue needed"); ctx->result.exec.status = DAX_SUBMIT_ERR_NO_CA_AVAIL; return 0; } } dax_unlock_pages(ctx, idx, nccbs); ctx->result.exec.status = dax_preprocess_usr_ccbs(ctx, idx, nccbs); if (ctx->result.exec.status != DAX_SUBMIT_OK) return 0; ctx->result.exec.status = dax_lock_pages(ctx, idx, nccbs, &ctx->result.exec.status_data); if (ctx->result.exec.status != DAX_SUBMIT_OK) return 0; if (dax_debug & DAX_DBG_FLG_BASIC) dax_prt_ccbs(ctx->ccb_buf, nccbs); hv_rv = sun4v_ccb_submit(ctx->ccb_buf_ra, count, HV_CCB_QUERY_CMD | HV_CCB_VA_SECONDARY, 0, &accepted_len, &ctx->result.exec.status_data); switch (hv_rv) { case HV_EOK: /* * Hcall succeeded with no errors but the accepted * length may be less than the requested length. The * only way the driver can resubmit the remainder is * to wait for completion of the submitted CCBs since * there is no way to guarantee the ordering semantics * required by the client applications. Therefore we * let the user library deal with resubmissions. */ ctx->result.exec.status = DAX_SUBMIT_OK; break; case HV_EWOULDBLOCK: /* * This is a transient HV API error. The user library * can retry. */ dax_dbg("hcall returned HV_EWOULDBLOCK"); ctx->result.exec.status = DAX_SUBMIT_ERR_WOULDBLOCK; break; case HV_ENOMAP: /* * HV was unable to translate a VA. The VA it could * not translate is returned in the status_data param. */ dax_dbg("hcall returned HV_ENOMAP"); ctx->result.exec.status = DAX_SUBMIT_ERR_NOMAP; break; case HV_EINVAL: /* * This is the result of an invalid user CCB as HV is * validating some of the user CCB fields. Pass this * error back to the user. There is no supporting info * to isolate the invalid field. */ dax_dbg("hcall returned HV_EINVAL"); ctx->result.exec.status = DAX_SUBMIT_ERR_CCB_INVAL; break; case HV_ENOACCESS: /* * HV found a VA that did not have the appropriate * permissions (such as the w bit). The VA in question * is returned in status_data param. */ dax_dbg("hcall returned HV_ENOACCESS"); ctx->result.exec.status = DAX_SUBMIT_ERR_NOACCESS; break; case HV_EUNAVAILABLE: /* * The requested CCB operation could not be performed * at this time. Return the specific unavailable code * in the status_data field. */ dax_dbg("hcall returned HV_EUNAVAILABLE"); ctx->result.exec.status = DAX_SUBMIT_ERR_UNAVAIL; break; default: ctx->result.exec.status = DAX_SUBMIT_ERR_INTERNAL; dax_dbg("unknown hcall return value (%ld)", hv_rv); break; } /* unlock pages associated with the unaccepted CCBs */ naccepted = accepted_len / sizeof(struct dax_ccb); dax_unlock_pages(ctx, idx + naccepted, nccbs - naccepted); /* mark unaccepted CCBs as not completed */ for (i = idx + naccepted; i < idx + nccbs; i++) ctx->ca_buf[i].status = CCA_STAT_COMPLETED; ctx->ccb_count += naccepted; ctx->fail_count += nccbs - naccepted; dax_dbg("hcall rv=%ld, accepted_len=%ld, status_data=0x%llx, ret status=%d", hv_rv, accepted_len, ctx->result.exec.status_data, ctx->result.exec.status); if (count == accepted_len) ctx->client = NULL; /* no read needed to complete protocol */ return accepted_len; }