// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2019 Western Digital Corporation or its affiliates. * Copyright (C) 2023 Ventana Micro Systems Inc. * * Authors: * Anup Patel <apatel@ventanamicro.com> */ #include <linux/bitops.h> #include <linux/errno.h> #include <linux/err.h> #include <linux/uaccess.h> #include <linux/kvm_host.h> #include <asm/cacheflush.h> #include <asm/hwcap.h> #include <asm/kvm_vcpu_vector.h> #include <asm/vector.h> #define KVM_RISCV_BASE_ISA_MASK GENMASK(25, 0) #define KVM_ISA_EXT_ARR(ext) \ [KVM_RISCV_ISA_EXT_##ext] = RISCV_ISA_EXT_##ext /* Mapping between KVM ISA Extension ID & Host ISA extension ID */ static const unsigned long kvm_isa_ext_arr[] = { /* Single letter extensions (alphabetically sorted) */ [KVM_RISCV_ISA_EXT_A] = RISCV_ISA_EXT_a, [KVM_RISCV_ISA_EXT_C] = RISCV_ISA_EXT_c, [KVM_RISCV_ISA_EXT_D] = RISCV_ISA_EXT_d, [KVM_RISCV_ISA_EXT_F] = RISCV_ISA_EXT_f, [KVM_RISCV_ISA_EXT_H] = RISCV_ISA_EXT_h, [KVM_RISCV_ISA_EXT_I] = RISCV_ISA_EXT_i, [KVM_RISCV_ISA_EXT_M] = RISCV_ISA_EXT_m, [KVM_RISCV_ISA_EXT_V] = RISCV_ISA_EXT_v, /* Multi letter extensions (alphabetically sorted) */ KVM_ISA_EXT_ARR(SSAIA), KVM_ISA_EXT_ARR(SSTC), KVM_ISA_EXT_ARR(SVINVAL), KVM_ISA_EXT_ARR(SVNAPOT), KVM_ISA_EXT_ARR(SVPBMT), KVM_ISA_EXT_ARR(ZBA), KVM_ISA_EXT_ARR(ZBB), KVM_ISA_EXT_ARR(ZBS), KVM_ISA_EXT_ARR(ZICBOM), KVM_ISA_EXT_ARR(ZICBOZ), KVM_ISA_EXT_ARR(ZICNTR), KVM_ISA_EXT_ARR(ZICSR), KVM_ISA_EXT_ARR(ZIFENCEI), KVM_ISA_EXT_ARR(ZIHINTPAUSE), KVM_ISA_EXT_ARR(ZIHPM), }; static unsigned long kvm_riscv_vcpu_base2isa_ext(unsigned long base_ext) { unsigned long i; for (i = 0; i < KVM_RISCV_ISA_EXT_MAX; i++) { if (kvm_isa_ext_arr[i] == base_ext) return i; } return KVM_RISCV_ISA_EXT_MAX; } static bool kvm_riscv_vcpu_isa_enable_allowed(unsigned long ext) { switch (ext) { case KVM_RISCV_ISA_EXT_H: return false; case KVM_RISCV_ISA_EXT_V: return riscv_v_vstate_ctrl_user_allowed(); default: break; } return true; } static bool kvm_riscv_vcpu_isa_disable_allowed(unsigned long ext) { switch (ext) { case KVM_RISCV_ISA_EXT_A: case KVM_RISCV_ISA_EXT_C: case KVM_RISCV_ISA_EXT_I: case KVM_RISCV_ISA_EXT_M: case KVM_RISCV_ISA_EXT_SSAIA: case KVM_RISCV_ISA_EXT_SSTC: case KVM_RISCV_ISA_EXT_SVINVAL: case KVM_RISCV_ISA_EXT_SVNAPOT: case KVM_RISCV_ISA_EXT_ZBA: case KVM_RISCV_ISA_EXT_ZBB: case KVM_RISCV_ISA_EXT_ZBS: case KVM_RISCV_ISA_EXT_ZICNTR: case KVM_RISCV_ISA_EXT_ZICSR: case KVM_RISCV_ISA_EXT_ZIFENCEI: case KVM_RISCV_ISA_EXT_ZIHINTPAUSE: case KVM_RISCV_ISA_EXT_ZIHPM: return false; default: break; } return true; } void kvm_riscv_vcpu_setup_isa(struct kvm_vcpu *vcpu) { unsigned long host_isa, i; for (i = 0; i < ARRAY_SIZE(kvm_isa_ext_arr); i++) { host_isa = kvm_isa_ext_arr[i]; if (__riscv_isa_extension_available(NULL, host_isa) && kvm_riscv_vcpu_isa_enable_allowed(i)) set_bit(host_isa, vcpu->arch.isa); } } static int kvm_riscv_vcpu_get_reg_config(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { unsigned long __user *uaddr = (unsigned long __user *)(unsigned long)reg->addr; unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_RISCV_CONFIG); unsigned long reg_val; if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long)) return -EINVAL; switch (reg_num) { case KVM_REG_RISCV_CONFIG_REG(isa): reg_val = vcpu->arch.isa[0] & KVM_RISCV_BASE_ISA_MASK; break; case KVM_REG_RISCV_CONFIG_REG(zicbom_block_size): if (!riscv_isa_extension_available(vcpu->arch.isa, ZICBOM)) return -ENOENT; reg_val = riscv_cbom_block_size; break; case KVM_REG_RISCV_CONFIG_REG(zicboz_block_size): if (!riscv_isa_extension_available(vcpu->arch.isa, ZICBOZ)) return -ENOENT; reg_val = riscv_cboz_block_size; break; case KVM_REG_RISCV_CONFIG_REG(mvendorid): reg_val = vcpu->arch.mvendorid; break; case KVM_REG_RISCV_CONFIG_REG(marchid): reg_val = vcpu->arch.marchid; break; case KVM_REG_RISCV_CONFIG_REG(mimpid): reg_val = vcpu->arch.mimpid; break; case KVM_REG_RISCV_CONFIG_REG(satp_mode): reg_val = satp_mode >> SATP_MODE_SHIFT; break; default: return -ENOENT; } if (copy_to_user(uaddr, ®_val, KVM_REG_SIZE(reg->id))) return -EFAULT; return 0; } static int kvm_riscv_vcpu_set_reg_config(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { unsigned long __user *uaddr = (unsigned long __user *)(unsigned long)reg->addr; unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_RISCV_CONFIG); unsigned long i, isa_ext, reg_val; if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long)) return -EINVAL; if (copy_from_user(®_val, uaddr, KVM_REG_SIZE(reg->id))) return -EFAULT; switch (reg_num) { case KVM_REG_RISCV_CONFIG_REG(isa): /* * This ONE REG interface is only defined for * single letter extensions. */ if (fls(reg_val) >= RISCV_ISA_EXT_BASE) return -EINVAL; /* * Return early (i.e. do nothing) if reg_val is the same * value retrievable via kvm_riscv_vcpu_get_reg_config(). */ if (reg_val == (vcpu->arch.isa[0] & KVM_RISCV_BASE_ISA_MASK)) break; if (!vcpu->arch.ran_atleast_once) { /* Ignore the enable/disable request for certain extensions */ for (i = 0; i < RISCV_ISA_EXT_BASE; i++) { isa_ext = kvm_riscv_vcpu_base2isa_ext(i); if (isa_ext >= KVM_RISCV_ISA_EXT_MAX) { reg_val &= ~BIT(i); continue; } if (!kvm_riscv_vcpu_isa_enable_allowed(isa_ext)) if (reg_val & BIT(i)) reg_val &= ~BIT(i); if (!kvm_riscv_vcpu_isa_disable_allowed(isa_ext)) if (!(reg_val & BIT(i))) reg_val |= BIT(i); } reg_val &= riscv_isa_extension_base(NULL); /* Do not modify anything beyond single letter extensions */ reg_val = (vcpu->arch.isa[0] & ~KVM_RISCV_BASE_ISA_MASK) | (reg_val & KVM_RISCV_BASE_ISA_MASK); vcpu->arch.isa[0] = reg_val; kvm_riscv_vcpu_fp_reset(vcpu); } else { return -EBUSY; } break; case KVM_REG_RISCV_CONFIG_REG(zicbom_block_size): if (!riscv_isa_extension_available(vcpu->arch.isa, ZICBOM)) return -ENOENT; if (reg_val != riscv_cbom_block_size) return -EINVAL; break; case KVM_REG_RISCV_CONFIG_REG(zicboz_block_size): if (!riscv_isa_extension_available(vcpu->arch.isa, ZICBOZ)) return -ENOENT; if (reg_val != riscv_cboz_block_size) return -EINVAL; break; case KVM_REG_RISCV_CONFIG_REG(mvendorid): if (reg_val == vcpu->arch.mvendorid) break; if (!vcpu->arch.ran_atleast_once) vcpu->arch.mvendorid = reg_val; else return -EBUSY; break; case KVM_REG_RISCV_CONFIG_REG(marchid): if (reg_val == vcpu->arch.marchid) break; if (!vcpu->arch.ran_atleast_once) vcpu->arch.marchid = reg_val; else return -EBUSY; break; case KVM_REG_RISCV_CONFIG_REG(mimpid): if (reg_val == vcpu->arch.mimpid) break; if (!vcpu->arch.ran_atleast_once) vcpu->arch.mimpid = reg_val; else return -EBUSY; break; case KVM_REG_RISCV_CONFIG_REG(satp_mode): if (reg_val != (satp_mode >> SATP_MODE_SHIFT)) return -EINVAL; break; default: return -ENOENT; } return 0; } static int kvm_riscv_vcpu_get_reg_core(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { struct kvm_cpu_context *cntx = &vcpu->arch.guest_context; unsigned long __user *uaddr = (unsigned long __user *)(unsigned long)reg->addr; unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_RISCV_CORE); unsigned long reg_val; if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long)) return -EINVAL; if (reg_num >= sizeof(struct kvm_riscv_core) / sizeof(unsigned long)) return -ENOENT; if (reg_num == KVM_REG_RISCV_CORE_REG(regs.pc)) reg_val = cntx->sepc; else if (KVM_REG_RISCV_CORE_REG(regs.pc) < reg_num && reg_num <= KVM_REG_RISCV_CORE_REG(regs.t6)) reg_val = ((unsigned long *)cntx)[reg_num]; else if (reg_num == KVM_REG_RISCV_CORE_REG(mode)) reg_val = (cntx->sstatus & SR_SPP) ? KVM_RISCV_MODE_S : KVM_RISCV_MODE_U; else return -ENOENT; if (copy_to_user(uaddr, ®_val, KVM_REG_SIZE(reg->id))) return -EFAULT; return 0; } static int kvm_riscv_vcpu_set_reg_core(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { struct kvm_cpu_context *cntx = &vcpu->arch.guest_context; unsigned long __user *uaddr = (unsigned long __user *)(unsigned long)reg->addr; unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_RISCV_CORE); unsigned long reg_val; if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long)) return -EINVAL; if (reg_num >= sizeof(struct kvm_riscv_core) / sizeof(unsigned long)) return -ENOENT; if (copy_from_user(®_val, uaddr, KVM_REG_SIZE(reg->id))) return -EFAULT; if (reg_num == KVM_REG_RISCV_CORE_REG(regs.pc)) cntx->sepc = reg_val; else if (KVM_REG_RISCV_CORE_REG(regs.pc) < reg_num && reg_num <= KVM_REG_RISCV_CORE_REG(regs.t6)) ((unsigned long *)cntx)[reg_num] = reg_val; else if (reg_num == KVM_REG_RISCV_CORE_REG(mode)) { if (reg_val == KVM_RISCV_MODE_S) cntx->sstatus |= SR_SPP; else cntx->sstatus &= ~SR_SPP; } else return -ENOENT; return 0; } static int kvm_riscv_vcpu_general_get_csr(struct kvm_vcpu *vcpu, unsigned long reg_num, unsigned long *out_val) { struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr; if (reg_num >= sizeof(struct kvm_riscv_csr) / sizeof(unsigned long)) return -ENOENT; if (reg_num == KVM_REG_RISCV_CSR_REG(sip)) { kvm_riscv_vcpu_flush_interrupts(vcpu); *out_val = (csr->hvip >> VSIP_TO_HVIP_SHIFT) & VSIP_VALID_MASK; *out_val |= csr->hvip & ~IRQ_LOCAL_MASK; } else *out_val = ((unsigned long *)csr)[reg_num]; return 0; } static int kvm_riscv_vcpu_general_set_csr(struct kvm_vcpu *vcpu, unsigned long reg_num, unsigned long reg_val) { struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr; if (reg_num >= sizeof(struct kvm_riscv_csr) / sizeof(unsigned long)) return -ENOENT; if (reg_num == KVM_REG_RISCV_CSR_REG(sip)) { reg_val &= VSIP_VALID_MASK; reg_val <<= VSIP_TO_HVIP_SHIFT; } ((unsigned long *)csr)[reg_num] = reg_val; if (reg_num == KVM_REG_RISCV_CSR_REG(sip)) WRITE_ONCE(vcpu->arch.irqs_pending_mask[0], 0); return 0; } static int kvm_riscv_vcpu_get_reg_csr(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { int rc; unsigned long __user *uaddr = (unsigned long __user *)(unsigned long)reg->addr; unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_RISCV_CSR); unsigned long reg_val, reg_subtype; if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long)) return -EINVAL; reg_subtype = reg_num & KVM_REG_RISCV_SUBTYPE_MASK; reg_num &= ~KVM_REG_RISCV_SUBTYPE_MASK; switch (reg_subtype) { case KVM_REG_RISCV_CSR_GENERAL: rc = kvm_riscv_vcpu_general_get_csr(vcpu, reg_num, ®_val); break; case KVM_REG_RISCV_CSR_AIA: rc = kvm_riscv_vcpu_aia_get_csr(vcpu, reg_num, ®_val); break; default: rc = -ENOENT; break; } if (rc) return rc; if (copy_to_user(uaddr, ®_val, KVM_REG_SIZE(reg->id))) return -EFAULT; return 0; } static int kvm_riscv_vcpu_set_reg_csr(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { int rc; unsigned long __user *uaddr = (unsigned long __user *)(unsigned long)reg->addr; unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_RISCV_CSR); unsigned long reg_val, reg_subtype; if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long)) return -EINVAL; if (copy_from_user(®_val, uaddr, KVM_REG_SIZE(reg->id))) return -EFAULT; reg_subtype = reg_num & KVM_REG_RISCV_SUBTYPE_MASK; reg_num &= ~KVM_REG_RISCV_SUBTYPE_MASK; switch (reg_subtype) { case KVM_REG_RISCV_CSR_GENERAL: rc = kvm_riscv_vcpu_general_set_csr(vcpu, reg_num, reg_val); break; case KVM_REG_RISCV_CSR_AIA: rc = kvm_riscv_vcpu_aia_set_csr(vcpu, reg_num, reg_val); break; default: rc = -ENOENT; break; } if (rc) return rc; return 0; } static int riscv_vcpu_get_isa_ext_single(struct kvm_vcpu *vcpu, unsigned long reg_num, unsigned long *reg_val) { unsigned long host_isa_ext; if (reg_num >= KVM_RISCV_ISA_EXT_MAX || reg_num >= ARRAY_SIZE(kvm_isa_ext_arr)) return -ENOENT; host_isa_ext = kvm_isa_ext_arr[reg_num]; if (!__riscv_isa_extension_available(NULL, host_isa_ext)) return -ENOENT; *reg_val = 0; if (__riscv_isa_extension_available(vcpu->arch.isa, host_isa_ext)) *reg_val = 1; /* Mark the given extension as available */ return 0; } static int riscv_vcpu_set_isa_ext_single(struct kvm_vcpu *vcpu, unsigned long reg_num, unsigned long reg_val) { unsigned long host_isa_ext; if (reg_num >= KVM_RISCV_ISA_EXT_MAX || reg_num >= ARRAY_SIZE(kvm_isa_ext_arr)) return -ENOENT; host_isa_ext = kvm_isa_ext_arr[reg_num]; if (!__riscv_isa_extension_available(NULL, host_isa_ext)) return -ENOENT; if (reg_val == test_bit(host_isa_ext, vcpu->arch.isa)) return 0; if (!vcpu->arch.ran_atleast_once) { /* * All multi-letter extension and a few single letter * extension can be disabled */ if (reg_val == 1 && kvm_riscv_vcpu_isa_enable_allowed(reg_num)) set_bit(host_isa_ext, vcpu->arch.isa); else if (!reg_val && kvm_riscv_vcpu_isa_disable_allowed(reg_num)) clear_bit(host_isa_ext, vcpu->arch.isa); else return -EINVAL; kvm_riscv_vcpu_fp_reset(vcpu); } else { return -EBUSY; } return 0; } static int riscv_vcpu_get_isa_ext_multi(struct kvm_vcpu *vcpu, unsigned long reg_num, unsigned long *reg_val) { unsigned long i, ext_id, ext_val; if (reg_num > KVM_REG_RISCV_ISA_MULTI_REG_LAST) return -ENOENT; for (i = 0; i < BITS_PER_LONG; i++) { ext_id = i + reg_num * BITS_PER_LONG; if (ext_id >= KVM_RISCV_ISA_EXT_MAX) break; ext_val = 0; riscv_vcpu_get_isa_ext_single(vcpu, ext_id, &ext_val); if (ext_val) *reg_val |= KVM_REG_RISCV_ISA_MULTI_MASK(ext_id); } return 0; } static int riscv_vcpu_set_isa_ext_multi(struct kvm_vcpu *vcpu, unsigned long reg_num, unsigned long reg_val, bool enable) { unsigned long i, ext_id; if (reg_num > KVM_REG_RISCV_ISA_MULTI_REG_LAST) return -ENOENT; for_each_set_bit(i, ®_val, BITS_PER_LONG) { ext_id = i + reg_num * BITS_PER_LONG; if (ext_id >= KVM_RISCV_ISA_EXT_MAX) break; riscv_vcpu_set_isa_ext_single(vcpu, ext_id, enable); } return 0; } static int kvm_riscv_vcpu_get_reg_isa_ext(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { int rc; unsigned long __user *uaddr = (unsigned long __user *)(unsigned long)reg->addr; unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_RISCV_ISA_EXT); unsigned long reg_val, reg_subtype; if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long)) return -EINVAL; reg_subtype = reg_num & KVM_REG_RISCV_SUBTYPE_MASK; reg_num &= ~KVM_REG_RISCV_SUBTYPE_MASK; reg_val = 0; switch (reg_subtype) { case KVM_REG_RISCV_ISA_SINGLE: rc = riscv_vcpu_get_isa_ext_single(vcpu, reg_num, ®_val); break; case KVM_REG_RISCV_ISA_MULTI_EN: case KVM_REG_RISCV_ISA_MULTI_DIS: rc = riscv_vcpu_get_isa_ext_multi(vcpu, reg_num, ®_val); if (!rc && reg_subtype == KVM_REG_RISCV_ISA_MULTI_DIS) reg_val = ~reg_val; break; default: rc = -ENOENT; } if (rc) return rc; if (copy_to_user(uaddr, ®_val, KVM_REG_SIZE(reg->id))) return -EFAULT; return 0; } static int kvm_riscv_vcpu_set_reg_isa_ext(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { unsigned long __user *uaddr = (unsigned long __user *)(unsigned long)reg->addr; unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_RISCV_ISA_EXT); unsigned long reg_val, reg_subtype; if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long)) return -EINVAL; reg_subtype = reg_num & KVM_REG_RISCV_SUBTYPE_MASK; reg_num &= ~KVM_REG_RISCV_SUBTYPE_MASK; if (copy_from_user(®_val, uaddr, KVM_REG_SIZE(reg->id))) return -EFAULT; switch (reg_subtype) { case KVM_REG_RISCV_ISA_SINGLE: return riscv_vcpu_set_isa_ext_single(vcpu, reg_num, reg_val); case KVM_REG_RISCV_SBI_MULTI_EN: return riscv_vcpu_set_isa_ext_multi(vcpu, reg_num, reg_val, true); case KVM_REG_RISCV_SBI_MULTI_DIS: return riscv_vcpu_set_isa_ext_multi(vcpu, reg_num, reg_val, false); default: return -ENOENT; } return 0; } static int copy_config_reg_indices(const struct kvm_vcpu *vcpu, u64 __user *uindices) { int n = 0; for (int i = 0; i < sizeof(struct kvm_riscv_config)/sizeof(unsigned long); i++) { u64 size; u64 reg; /* * Avoid reporting config reg if the corresponding extension * was not available. */ if (i == KVM_REG_RISCV_CONFIG_REG(zicbom_block_size) && !riscv_isa_extension_available(vcpu->arch.isa, ZICBOM)) continue; else if (i == KVM_REG_RISCV_CONFIG_REG(zicboz_block_size) && !riscv_isa_extension_available(vcpu->arch.isa, ZICBOZ)) continue; size = IS_ENABLED(CONFIG_32BIT) ? KVM_REG_SIZE_U32 : KVM_REG_SIZE_U64; reg = KVM_REG_RISCV | size | KVM_REG_RISCV_CONFIG | i; if (uindices) { if (put_user(reg, uindices)) return -EFAULT; uindices++; } n++; } return n; } static unsigned long num_config_regs(const struct kvm_vcpu *vcpu) { return copy_config_reg_indices(vcpu, NULL); } static inline unsigned long num_core_regs(void) { return sizeof(struct kvm_riscv_core) / sizeof(unsigned long); } static int copy_core_reg_indices(u64 __user *uindices) { int n = num_core_regs(); for (int i = 0; i < n; i++) { u64 size = IS_ENABLED(CONFIG_32BIT) ? KVM_REG_SIZE_U32 : KVM_REG_SIZE_U64; u64 reg = KVM_REG_RISCV | size | KVM_REG_RISCV_CORE | i; if (uindices) { if (put_user(reg, uindices)) return -EFAULT; uindices++; } } return n; } static inline unsigned long num_csr_regs(const struct kvm_vcpu *vcpu) { unsigned long n = sizeof(struct kvm_riscv_csr) / sizeof(unsigned long); if (riscv_isa_extension_available(vcpu->arch.isa, SSAIA)) n += sizeof(struct kvm_riscv_aia_csr) / sizeof(unsigned long); return n; } static int copy_csr_reg_indices(const struct kvm_vcpu *vcpu, u64 __user *uindices) { int n1 = sizeof(struct kvm_riscv_csr) / sizeof(unsigned long); int n2 = 0; /* copy general csr regs */ for (int i = 0; i < n1; i++) { u64 size = IS_ENABLED(CONFIG_32BIT) ? KVM_REG_SIZE_U32 : KVM_REG_SIZE_U64; u64 reg = KVM_REG_RISCV | size | KVM_REG_RISCV_CSR | KVM_REG_RISCV_CSR_GENERAL | i; if (uindices) { if (put_user(reg, uindices)) return -EFAULT; uindices++; } } /* copy AIA csr regs */ if (riscv_isa_extension_available(vcpu->arch.isa, SSAIA)) { n2 = sizeof(struct kvm_riscv_aia_csr) / sizeof(unsigned long); for (int i = 0; i < n2; i++) { u64 size = IS_ENABLED(CONFIG_32BIT) ? KVM_REG_SIZE_U32 : KVM_REG_SIZE_U64; u64 reg = KVM_REG_RISCV | size | KVM_REG_RISCV_CSR | KVM_REG_RISCV_CSR_AIA | i; if (uindices) { if (put_user(reg, uindices)) return -EFAULT; uindices++; } } } return n1 + n2; } static inline unsigned long num_timer_regs(void) { return sizeof(struct kvm_riscv_timer) / sizeof(u64); } static int copy_timer_reg_indices(u64 __user *uindices) { int n = num_timer_regs(); for (int i = 0; i < n; i++) { u64 reg = KVM_REG_RISCV | KVM_REG_SIZE_U64 | KVM_REG_RISCV_TIMER | i; if (uindices) { if (put_user(reg, uindices)) return -EFAULT; uindices++; } } return n; } static inline unsigned long num_fp_f_regs(const struct kvm_vcpu *vcpu) { const struct kvm_cpu_context *cntx = &vcpu->arch.guest_context; if (riscv_isa_extension_available(vcpu->arch.isa, f)) return sizeof(cntx->fp.f) / sizeof(u32); else return 0; } static int copy_fp_f_reg_indices(const struct kvm_vcpu *vcpu, u64 __user *uindices) { int n = num_fp_f_regs(vcpu); for (int i = 0; i < n; i++) { u64 reg = KVM_REG_RISCV | KVM_REG_SIZE_U32 | KVM_REG_RISCV_FP_F | i; if (uindices) { if (put_user(reg, uindices)) return -EFAULT; uindices++; } } return n; } static inline unsigned long num_fp_d_regs(const struct kvm_vcpu *vcpu) { const struct kvm_cpu_context *cntx = &vcpu->arch.guest_context; if (riscv_isa_extension_available(vcpu->arch.isa, d)) return sizeof(cntx->fp.d.f) / sizeof(u64) + 1; else return 0; } static int copy_fp_d_reg_indices(const struct kvm_vcpu *vcpu, u64 __user *uindices) { int i; int n = num_fp_d_regs(vcpu); u64 reg; /* copy fp.d.f indices */ for (i = 0; i < n-1; i++) { reg = KVM_REG_RISCV | KVM_REG_SIZE_U64 | KVM_REG_RISCV_FP_D | i; if (uindices) { if (put_user(reg, uindices)) return -EFAULT; uindices++; } } /* copy fp.d.fcsr indices */ reg = KVM_REG_RISCV | KVM_REG_SIZE_U32 | KVM_REG_RISCV_FP_D | i; if (uindices) { if (put_user(reg, uindices)) return -EFAULT; uindices++; } return n; } static int copy_isa_ext_reg_indices(const struct kvm_vcpu *vcpu, u64 __user *uindices) { unsigned int n = 0; unsigned long isa_ext; for (int i = 0; i < KVM_RISCV_ISA_EXT_MAX; i++) { u64 size = IS_ENABLED(CONFIG_32BIT) ? KVM_REG_SIZE_U32 : KVM_REG_SIZE_U64; u64 reg = KVM_REG_RISCV | size | KVM_REG_RISCV_ISA_EXT | i; isa_ext = kvm_isa_ext_arr[i]; if (!__riscv_isa_extension_available(NULL, isa_ext)) continue; if (uindices) { if (put_user(reg, uindices)) return -EFAULT; uindices++; } n++; } return n; } static inline unsigned long num_isa_ext_regs(const struct kvm_vcpu *vcpu) { return copy_isa_ext_reg_indices(vcpu, NULL);; } static inline unsigned long num_sbi_ext_regs(void) { /* * number of KVM_REG_RISCV_SBI_SINGLE + * 2 x (number of KVM_REG_RISCV_SBI_MULTI) */ return KVM_RISCV_SBI_EXT_MAX + 2*(KVM_REG_RISCV_SBI_MULTI_REG_LAST+1); } static int copy_sbi_ext_reg_indices(u64 __user *uindices) { int n; /* copy KVM_REG_RISCV_SBI_SINGLE */ n = KVM_RISCV_SBI_EXT_MAX; for (int i = 0; i < n; i++) { u64 size = IS_ENABLED(CONFIG_32BIT) ? KVM_REG_SIZE_U32 : KVM_REG_SIZE_U64; u64 reg = KVM_REG_RISCV | size | KVM_REG_RISCV_SBI_EXT | KVM_REG_RISCV_SBI_SINGLE | i; if (uindices) { if (put_user(reg, uindices)) return -EFAULT; uindices++; } } /* copy KVM_REG_RISCV_SBI_MULTI */ n = KVM_REG_RISCV_SBI_MULTI_REG_LAST + 1; for (int i = 0; i < n; i++) { u64 size = IS_ENABLED(CONFIG_32BIT) ? KVM_REG_SIZE_U32 : KVM_REG_SIZE_U64; u64 reg = KVM_REG_RISCV | size | KVM_REG_RISCV_SBI_EXT | KVM_REG_RISCV_SBI_MULTI_EN | i; if (uindices) { if (put_user(reg, uindices)) return -EFAULT; uindices++; } reg = KVM_REG_RISCV | size | KVM_REG_RISCV_SBI_EXT | KVM_REG_RISCV_SBI_MULTI_DIS | i; if (uindices) { if (put_user(reg, uindices)) return -EFAULT; uindices++; } } return num_sbi_ext_regs(); } /* * kvm_riscv_vcpu_num_regs - how many registers do we present via KVM_GET/SET_ONE_REG * * This is for all registers. */ unsigned long kvm_riscv_vcpu_num_regs(struct kvm_vcpu *vcpu) { unsigned long res = 0; res += num_config_regs(vcpu); res += num_core_regs(); res += num_csr_regs(vcpu); res += num_timer_regs(); res += num_fp_f_regs(vcpu); res += num_fp_d_regs(vcpu); res += num_isa_ext_regs(vcpu); res += num_sbi_ext_regs(); return res; } /* * kvm_riscv_vcpu_copy_reg_indices - get indices of all registers. */ int kvm_riscv_vcpu_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) { int ret; ret = copy_config_reg_indices(vcpu, uindices); if (ret < 0) return ret; uindices += ret; ret = copy_core_reg_indices(uindices); if (ret < 0) return ret; uindices += ret; ret = copy_csr_reg_indices(vcpu, uindices); if (ret < 0) return ret; uindices += ret; ret = copy_timer_reg_indices(uindices); if (ret < 0) return ret; uindices += ret; ret = copy_fp_f_reg_indices(vcpu, uindices); if (ret < 0) return ret; uindices += ret; ret = copy_fp_d_reg_indices(vcpu, uindices); if (ret < 0) return ret; uindices += ret; ret = copy_isa_ext_reg_indices(vcpu, uindices); if (ret < 0) return ret; uindices += ret; ret = copy_sbi_ext_reg_indices(uindices); if (ret < 0) return ret; return 0; } int kvm_riscv_vcpu_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { switch (reg->id & KVM_REG_RISCV_TYPE_MASK) { case KVM_REG_RISCV_CONFIG: return kvm_riscv_vcpu_set_reg_config(vcpu, reg); case KVM_REG_RISCV_CORE: return kvm_riscv_vcpu_set_reg_core(vcpu, reg); case KVM_REG_RISCV_CSR: return kvm_riscv_vcpu_set_reg_csr(vcpu, reg); case KVM_REG_RISCV_TIMER: return kvm_riscv_vcpu_set_reg_timer(vcpu, reg); case KVM_REG_RISCV_FP_F: return kvm_riscv_vcpu_set_reg_fp(vcpu, reg, KVM_REG_RISCV_FP_F); case KVM_REG_RISCV_FP_D: return kvm_riscv_vcpu_set_reg_fp(vcpu, reg, KVM_REG_RISCV_FP_D); case KVM_REG_RISCV_ISA_EXT: return kvm_riscv_vcpu_set_reg_isa_ext(vcpu, reg); case KVM_REG_RISCV_SBI_EXT: return kvm_riscv_vcpu_set_reg_sbi_ext(vcpu, reg); case KVM_REG_RISCV_VECTOR: return kvm_riscv_vcpu_set_reg_vector(vcpu, reg); default: break; } return -ENOENT; } int kvm_riscv_vcpu_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { switch (reg->id & KVM_REG_RISCV_TYPE_MASK) { case KVM_REG_RISCV_CONFIG: return kvm_riscv_vcpu_get_reg_config(vcpu, reg); case KVM_REG_RISCV_CORE: return kvm_riscv_vcpu_get_reg_core(vcpu, reg); case KVM_REG_RISCV_CSR: return kvm_riscv_vcpu_get_reg_csr(vcpu, reg); case KVM_REG_RISCV_TIMER: return kvm_riscv_vcpu_get_reg_timer(vcpu, reg); case KVM_REG_RISCV_FP_F: return kvm_riscv_vcpu_get_reg_fp(vcpu, reg, KVM_REG_RISCV_FP_F); case KVM_REG_RISCV_FP_D: return kvm_riscv_vcpu_get_reg_fp(vcpu, reg, KVM_REG_RISCV_FP_D); case KVM_REG_RISCV_ISA_EXT: return kvm_riscv_vcpu_get_reg_isa_ext(vcpu, reg); case KVM_REG_RISCV_SBI_EXT: return kvm_riscv_vcpu_get_reg_sbi_ext(vcpu, reg); case KVM_REG_RISCV_VECTOR: return kvm_riscv_vcpu_get_reg_vector(vcpu, reg); default: break; } return -ENOENT; }