// SPDX-License-Identifier: GPL-2.0 /* * machine_kexec.c - handle transition of Linux booting another kernel * Copyright (C) 2002-2003 Eric Biederman <ebiederm@xmission.com> * * GameCube/ppc32 port Copyright (C) 2004 Albert Herranz * LANDISK/sh4 supported by kogiidena */ #include <linux/mm.h> #include <linux/kexec.h> #include <linux/delay.h> #include <linux/reboot.h> #include <linux/numa.h> #include <linux/ftrace.h> #include <linux/suspend.h> #include <linux/memblock.h> #include <asm/mmu_context.h> #include <asm/io.h> #include <asm/cacheflush.h> #include <asm/sh_bios.h> #include <asm/reboot.h> typedef void (*relocate_new_kernel_t)(unsigned long indirection_page, unsigned long reboot_code_buffer, unsigned long start_address); extern const unsigned char relocate_new_kernel[]; extern const unsigned int relocate_new_kernel_size; extern void *vbr_base; void native_machine_crash_shutdown(struct pt_regs *regs) { /* Nothing to do for UP, but definitely broken for SMP.. */ } /* * Do what every setup is needed on image and the * reboot code buffer to allow us to avoid allocations * later. */ int machine_kexec_prepare(struct kimage *image) { return 0; } void machine_kexec_cleanup(struct kimage *image) { } static void kexec_info(struct kimage *image) { int i; printk("kexec information\n"); for (i = 0; i < image->nr_segments; i++) { printk(" segment[%d]: 0x%08x - 0x%08x (0x%08x)\n", i, (unsigned int)image->segment[i].mem, (unsigned int)image->segment[i].mem + image->segment[i].memsz, (unsigned int)image->segment[i].memsz); } printk(" start : 0x%08x\n\n", (unsigned int)image->start); } /* * Do not allocate memory (or fail in any way) in machine_kexec(). * We are past the point of no return, committed to rebooting now. */ void machine_kexec(struct kimage *image) { unsigned long page_list; unsigned long reboot_code_buffer; relocate_new_kernel_t rnk; unsigned long entry; unsigned long *ptr; int save_ftrace_enabled; /* * Nicked from the mips version of machine_kexec(): * The generic kexec code builds a page list with physical * addresses. Use phys_to_virt() to convert them to virtual. */ for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); ptr = (entry & IND_INDIRECTION) ? phys_to_virt(entry & PAGE_MASK) : ptr + 1) { if (*ptr & IND_SOURCE || *ptr & IND_INDIRECTION || *ptr & IND_DESTINATION) *ptr = (unsigned long) phys_to_virt(*ptr); } #ifdef CONFIG_KEXEC_JUMP if (image->preserve_context) save_processor_state(); #endif save_ftrace_enabled = __ftrace_enabled_save(); /* Interrupts aren't acceptable while we reboot */ local_irq_disable(); page_list = image->head; /* we need both effective and real address here */ reboot_code_buffer = (unsigned long)page_address(image->control_code_page); /* copy our kernel relocation code to the control code page */ memcpy((void *)reboot_code_buffer, relocate_new_kernel, relocate_new_kernel_size); kexec_info(image); flush_cache_all(); sh_bios_vbr_reload(); /* now call it */ rnk = (relocate_new_kernel_t) reboot_code_buffer; (*rnk)(page_list, reboot_code_buffer, (unsigned long)phys_to_virt(image->start)); #ifdef CONFIG_KEXEC_JUMP asm volatile("ldc %0, vbr" : : "r" (&vbr_base) : "memory"); if (image->preserve_context) restore_processor_state(); /* Convert page list back to physical addresses, what a mess. */ for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); ptr = (*ptr & IND_INDIRECTION) ? phys_to_virt(*ptr & PAGE_MASK) : ptr + 1) { if (*ptr & IND_SOURCE || *ptr & IND_INDIRECTION || *ptr & IND_DESTINATION) *ptr = virt_to_phys(*ptr); } #endif __ftrace_enabled_restore(save_ftrace_enabled); } void arch_crash_save_vmcoreinfo(void) { #ifdef CONFIG_NUMA VMCOREINFO_SYMBOL(node_data); VMCOREINFO_LENGTH(node_data, MAX_NUMNODES); #endif #ifdef CONFIG_X2TLB VMCOREINFO_CONFIG(X2TLB); #endif } void __init reserve_crashkernel(void) { unsigned long long crash_size, crash_base; int ret; ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(), &crash_size, &crash_base); if (ret == 0 && crash_size > 0) { crashk_res.start = crash_base; crashk_res.end = crash_base + crash_size - 1; } if (crashk_res.end == crashk_res.start) goto disable; crash_size = PAGE_ALIGN(resource_size(&crashk_res)); if (!crashk_res.start) { unsigned long max = memblock_end_of_DRAM() - memory_limit; crashk_res.start = memblock_phys_alloc_range(crash_size, PAGE_SIZE, 0, max); if (!crashk_res.start) { pr_err("crashkernel allocation failed\n"); goto disable; } } else { ret = memblock_reserve(crashk_res.start, crash_size); if (unlikely(ret < 0)) { pr_err("crashkernel reservation failed - " "memory is in use\n"); goto disable; } } crashk_res.end = crashk_res.start + crash_size - 1; /* * Crash kernel trumps memory limit */ if ((memblock_end_of_DRAM() - memory_limit) <= crashk_res.end) { memory_limit = 0; pr_info("Disabled memory limit for crashkernel\n"); } pr_info("Reserving %ldMB of memory at 0x%08lx " "for crashkernel (System RAM: %ldMB)\n", (unsigned long)(crash_size >> 20), (unsigned long)(crashk_res.start), (unsigned long)(memblock_phys_mem_size() >> 20)); return; disable: crashk_res.start = crashk_res.end = 0; }