// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2015 - ARM Ltd * Author: Marc Zyngier <marc.zyngier@arm.com> */ #include <hyp/switch.h> #include <hyp/sysreg-sr.h> #include <linux/arm-smccc.h> #include <linux/kvm_host.h> #include <linux/types.h> #include <linux/jump_label.h> #include <uapi/linux/psci.h> #include <kvm/arm_psci.h> #include <asm/barrier.h> #include <asm/cpufeature.h> #include <asm/kprobes.h> #include <asm/kvm_asm.h> #include <asm/kvm_emulate.h> #include <asm/kvm_hyp.h> #include <asm/kvm_mmu.h> #include <asm/fpsimd.h> #include <asm/debug-monitors.h> #include <asm/processor.h> #include <nvhe/fixed_config.h> #include <nvhe/mem_protect.h> /* Non-VHE specific context */ DEFINE_PER_CPU(struct kvm_host_data, kvm_host_data); DEFINE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt); DEFINE_PER_CPU(unsigned long, kvm_hyp_vector); extern void kvm_nvhe_prepare_backtrace(unsigned long fp, unsigned long pc); static void __activate_traps(struct kvm_vcpu *vcpu) { u64 val; ___activate_traps(vcpu); __activate_traps_common(vcpu); val = vcpu->arch.cptr_el2; val |= CPTR_EL2_TAM; /* Same bit irrespective of E2H */ val |= has_hvhe() ? CPACR_EL1_TTA : CPTR_EL2_TTA; if (cpus_have_final_cap(ARM64_SME)) { if (has_hvhe()) val &= ~(CPACR_EL1_SMEN_EL1EN | CPACR_EL1_SMEN_EL0EN); else val |= CPTR_EL2_TSM; } if (!guest_owns_fp_regs(vcpu)) { if (has_hvhe()) val &= ~(CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN | CPACR_EL1_ZEN_EL0EN | CPACR_EL1_ZEN_EL1EN); else val |= CPTR_EL2_TFP | CPTR_EL2_TZ; __activate_traps_fpsimd32(vcpu); } kvm_write_cptr_el2(val); write_sysreg(__this_cpu_read(kvm_hyp_vector), vbar_el2); if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) { struct kvm_cpu_context *ctxt = &vcpu->arch.ctxt; isb(); /* * At this stage, and thanks to the above isb(), S2 is * configured and enabled. We can now restore the guest's S1 * configuration: SCTLR, and only then TCR. */ write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL1), SYS_SCTLR); isb(); write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL1), SYS_TCR); } } static void __deactivate_traps(struct kvm_vcpu *vcpu) { extern char __kvm_hyp_host_vector[]; ___deactivate_traps(vcpu); if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) { u64 val; /* * Set the TCR and SCTLR registers in the exact opposite * sequence as __activate_traps (first prevent walks, * then force the MMU on). A generous sprinkling of isb() * ensure that things happen in this exact order. */ val = read_sysreg_el1(SYS_TCR); write_sysreg_el1(val | TCR_EPD1_MASK | TCR_EPD0_MASK, SYS_TCR); isb(); val = read_sysreg_el1(SYS_SCTLR); write_sysreg_el1(val | SCTLR_ELx_M, SYS_SCTLR); isb(); } __deactivate_traps_common(vcpu); write_sysreg(this_cpu_ptr(&kvm_init_params)->hcr_el2, hcr_el2); kvm_reset_cptr_el2(vcpu); write_sysreg(__kvm_hyp_host_vector, vbar_el2); } /* Save VGICv3 state on non-VHE systems */ static void __hyp_vgic_save_state(struct kvm_vcpu *vcpu) { if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) { __vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3); __vgic_v3_deactivate_traps(&vcpu->arch.vgic_cpu.vgic_v3); } } /* Restore VGICv3 state on non-VHE systems */ static void __hyp_vgic_restore_state(struct kvm_vcpu *vcpu) { if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) { __vgic_v3_activate_traps(&vcpu->arch.vgic_cpu.vgic_v3); __vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3); } } /* * Disable host events, enable guest events */ #ifdef CONFIG_HW_PERF_EVENTS static bool __pmu_switch_to_guest(struct kvm_vcpu *vcpu) { struct kvm_pmu_events *pmu = &vcpu->arch.pmu.events; if (pmu->events_host) write_sysreg(pmu->events_host, pmcntenclr_el0); if (pmu->events_guest) write_sysreg(pmu->events_guest, pmcntenset_el0); return (pmu->events_host || pmu->events_guest); } /* * Disable guest events, enable host events */ static void __pmu_switch_to_host(struct kvm_vcpu *vcpu) { struct kvm_pmu_events *pmu = &vcpu->arch.pmu.events; if (pmu->events_guest) write_sysreg(pmu->events_guest, pmcntenclr_el0); if (pmu->events_host) write_sysreg(pmu->events_host, pmcntenset_el0); } #else #define __pmu_switch_to_guest(v) ({ false; }) #define __pmu_switch_to_host(v) do {} while (0) #endif /* * Handler for protected VM MSR, MRS or System instruction execution in AArch64. * * Returns true if the hypervisor has handled the exit, and control should go * back to the guest, or false if it hasn't. */ static bool kvm_handle_pvm_sys64(struct kvm_vcpu *vcpu, u64 *exit_code) { /* * Make sure we handle the exit for workarounds and ptrauth * before the pKVM handling, as the latter could decide to * UNDEF. */ return (kvm_hyp_handle_sysreg(vcpu, exit_code) || kvm_handle_pvm_sysreg(vcpu, exit_code)); } static const exit_handler_fn hyp_exit_handlers[] = { [0 ... ESR_ELx_EC_MAX] = NULL, [ESR_ELx_EC_CP15_32] = kvm_hyp_handle_cp15_32, [ESR_ELx_EC_SYS64] = kvm_hyp_handle_sysreg, [ESR_ELx_EC_SVE] = kvm_hyp_handle_fpsimd, [ESR_ELx_EC_FP_ASIMD] = kvm_hyp_handle_fpsimd, [ESR_ELx_EC_IABT_LOW] = kvm_hyp_handle_iabt_low, [ESR_ELx_EC_DABT_LOW] = kvm_hyp_handle_dabt_low, [ESR_ELx_EC_WATCHPT_LOW] = kvm_hyp_handle_watchpt_low, [ESR_ELx_EC_PAC] = kvm_hyp_handle_ptrauth, }; static const exit_handler_fn pvm_exit_handlers[] = { [0 ... ESR_ELx_EC_MAX] = NULL, [ESR_ELx_EC_SYS64] = kvm_handle_pvm_sys64, [ESR_ELx_EC_SVE] = kvm_handle_pvm_restricted, [ESR_ELx_EC_FP_ASIMD] = kvm_hyp_handle_fpsimd, [ESR_ELx_EC_IABT_LOW] = kvm_hyp_handle_iabt_low, [ESR_ELx_EC_DABT_LOW] = kvm_hyp_handle_dabt_low, [ESR_ELx_EC_WATCHPT_LOW] = kvm_hyp_handle_watchpt_low, [ESR_ELx_EC_PAC] = kvm_hyp_handle_ptrauth, }; static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu) { if (unlikely(kvm_vm_is_protected(kern_hyp_va(vcpu->kvm)))) return pvm_exit_handlers; return hyp_exit_handlers; } /* * Some guests (e.g., protected VMs) are not be allowed to run in AArch32. * The ARMv8 architecture does not give the hypervisor a mechanism to prevent a * guest from dropping to AArch32 EL0 if implemented by the CPU. If the * hypervisor spots a guest in such a state ensure it is handled, and don't * trust the host to spot or fix it. The check below is based on the one in * kvm_arch_vcpu_ioctl_run(). * * Returns false if the guest ran in AArch32 when it shouldn't have, and * thus should exit to the host, or true if a the guest run loop can continue. */ static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code) { struct kvm *kvm = kern_hyp_va(vcpu->kvm); if (kvm_vm_is_protected(kvm) && vcpu_mode_is_32bit(vcpu)) { /* * As we have caught the guest red-handed, decide that it isn't * fit for purpose anymore by making the vcpu invalid. The VMM * can try and fix it by re-initializing the vcpu with * KVM_ARM_VCPU_INIT, however, this is likely not possible for * protected VMs. */ vcpu_clear_flag(vcpu, VCPU_INITIALIZED); *exit_code &= BIT(ARM_EXIT_WITH_SERROR_BIT); *exit_code |= ARM_EXCEPTION_IL; } } /* Switch to the guest for legacy non-VHE systems */ int __kvm_vcpu_run(struct kvm_vcpu *vcpu) { struct kvm_cpu_context *host_ctxt; struct kvm_cpu_context *guest_ctxt; struct kvm_s2_mmu *mmu; bool pmu_switch_needed; u64 exit_code; /* * Having IRQs masked via PMR when entering the guest means the GIC * will not signal the CPU of interrupts of lower priority, and the * only way to get out will be via guest exceptions. * Naturally, we want to avoid this. */ if (system_uses_irq_prio_masking()) { gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET); pmr_sync(); } host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt; host_ctxt->__hyp_running_vcpu = vcpu; guest_ctxt = &vcpu->arch.ctxt; pmu_switch_needed = __pmu_switch_to_guest(vcpu); __sysreg_save_state_nvhe(host_ctxt); /* * We must flush and disable the SPE buffer for nVHE, as * the translation regime(EL1&0) is going to be loaded with * that of the guest. And we must do this before we change the * translation regime to EL2 (via MDCR_EL2_E2PB == 0) and * before we load guest Stage1. */ __debug_save_host_buffers_nvhe(vcpu); /* * We're about to restore some new MMU state. Make sure * ongoing page-table walks that have started before we * trapped to EL2 have completed. This also synchronises the * above disabling of SPE and TRBE. * * See DDI0487I.a D8.1.5 "Out-of-context translation regimes", * rule R_LFHQG and subsequent information statements. */ dsb(nsh); __kvm_adjust_pc(vcpu); /* * We must restore the 32-bit state before the sysregs, thanks * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72). * * Also, and in order to be able to deal with erratum #1319537 (A57) * and #1319367 (A72), we must ensure that all VM-related sysreg are * restored before we enable S2 translation. */ __sysreg32_restore_state(vcpu); __sysreg_restore_state_nvhe(guest_ctxt); mmu = kern_hyp_va(vcpu->arch.hw_mmu); __load_stage2(mmu, kern_hyp_va(mmu->arch)); __activate_traps(vcpu); __hyp_vgic_restore_state(vcpu); __timer_enable_traps(vcpu); __debug_switch_to_guest(vcpu); do { /* Jump in the fire! */ exit_code = __guest_enter(vcpu); /* And we're baaack! */ } while (fixup_guest_exit(vcpu, &exit_code)); __sysreg_save_state_nvhe(guest_ctxt); __sysreg32_save_state(vcpu); __timer_disable_traps(vcpu); __hyp_vgic_save_state(vcpu); /* * Same thing as before the guest run: we're about to switch * the MMU context, so let's make sure we don't have any * ongoing EL1&0 translations. */ dsb(nsh); __deactivate_traps(vcpu); __load_host_stage2(); __sysreg_restore_state_nvhe(host_ctxt); if (vcpu->arch.fp_state == FP_STATE_GUEST_OWNED) __fpsimd_save_fpexc32(vcpu); __debug_switch_to_host(vcpu); /* * This must come after restoring the host sysregs, since a non-VHE * system may enable SPE here and make use of the TTBRs. */ __debug_restore_host_buffers_nvhe(vcpu); if (pmu_switch_needed) __pmu_switch_to_host(vcpu); /* Returning to host will clear PSR.I, remask PMR if needed */ if (system_uses_irq_prio_masking()) gic_write_pmr(GIC_PRIO_IRQOFF); host_ctxt->__hyp_running_vcpu = NULL; return exit_code; } asmlinkage void __noreturn hyp_panic(void) { u64 spsr = read_sysreg_el2(SYS_SPSR); u64 elr = read_sysreg_el2(SYS_ELR); u64 par = read_sysreg_par(); struct kvm_cpu_context *host_ctxt; struct kvm_vcpu *vcpu; host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt; vcpu = host_ctxt->__hyp_running_vcpu; if (vcpu) { __timer_disable_traps(vcpu); __deactivate_traps(vcpu); __load_host_stage2(); __sysreg_restore_state_nvhe(host_ctxt); } /* Prepare to dump kvm nvhe hyp stacktrace */ kvm_nvhe_prepare_backtrace((unsigned long)__builtin_frame_address(0), _THIS_IP_); __hyp_do_panic(host_ctxt, spsr, elr, par); unreachable(); } asmlinkage void __noreturn hyp_panic_bad_stack(void) { hyp_panic(); } asmlinkage void kvm_unexpected_el2_exception(void) { __kvm_unexpected_el2_exception(); }