// SPDX-License-Identifier: GPL-2.0-only /* * OMAP4 specific common source file. * * Copyright (C) 2010 Texas Instruments, Inc. * Author: * Santosh Shilimkar <santosh.shilimkar@ti.com> */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/io.h> #include <linux/irq.h> #include <linux/irqchip.h> #include <linux/memblock.h> #include <linux/of.h> #include <linux/of_irq.h> #include <linux/export.h> #include <linux/irqchip/arm-gic.h> #include <linux/of_address.h> #include <linux/reboot.h> #include <linux/genalloc.h> #include <asm/hardware/cache-l2x0.h> #include <asm/mach/map.h> #include <asm/memblock.h> #include <asm/smp_twd.h> #include "omap-wakeupgen.h" #include "soc.h" #include "iomap.h" #include "common.h" #include "prminst44xx.h" #include "prcm_mpu44xx.h" #include "omap4-sar-layout.h" #include "omap-secure.h" #include "sram.h" #ifdef CONFIG_CACHE_L2X0 static void __iomem *l2cache_base; #endif static void __iomem *sar_ram_base; static void __iomem *gic_dist_base_addr; static void __iomem *twd_base; #define IRQ_LOCALTIMER 29 #ifdef CONFIG_OMAP_INTERCONNECT_BARRIER /* Used to implement memory barrier on DRAM path */ #define OMAP4_DRAM_BARRIER_VA 0xfe600000 static void __iomem *dram_sync, *sram_sync; static phys_addr_t dram_sync_paddr; static u32 dram_sync_size; /* * The OMAP4 bus structure contains asynchronous bridges which can buffer * data writes from the MPU. These asynchronous bridges can be found on * paths between the MPU to EMIF, and the MPU to L3 interconnects. * * We need to be careful about re-ordering which can happen as a result * of different accesses being performed via different paths, and * therefore different asynchronous bridges. */ /* * OMAP4 interconnect barrier which is called for each mb() and wmb(). * This is to ensure that normal paths to DRAM (normal memory, cacheable * accesses) are properly synchronised with writes to DMA coherent memory * (normal memory, uncacheable) and device writes. * * The mb() and wmb() barriers only operate only on the MPU->MA->EMIF * path, as we need to ensure that data is visible to other system * masters prior to writes to those system masters being seen. * * Note: the SRAM path is not synchronised via mb() and wmb(). */ static void omap4_mb(void) { if (dram_sync) writel_relaxed(0, dram_sync); } /* * OMAP4 Errata i688 - asynchronous bridge corruption when entering WFI. * * If a data is stalled inside asynchronous bridge because of back * pressure, it may be accepted multiple times, creating pointer * misalignment that will corrupt next transfers on that data path until * next reset of the system. No recovery procedure once the issue is hit, * the path remains consistently broken. * * Async bridges can be found on paths between MPU to EMIF and MPU to L3 * interconnects. * * This situation can happen only when the idle is initiated by a Master * Request Disconnection (which is trigged by software when executing WFI * on the CPU). * * The work-around for this errata needs all the initiators connected * through an async bridge to ensure that data path is properly drained * before issuing WFI. This condition will be met if one Strongly ordered * access is performed to the target right before executing the WFI. * * In MPU case, L3 T2ASYNC FIFO and DDR T2ASYNC FIFO needs to be drained. * IO barrier ensure that there is no synchronisation loss on initiators * operating on both interconnect port simultaneously. * * This is a stronger version of the OMAP4 memory barrier below, and * operates on both the MPU->MA->EMIF path but also the MPU->OCP path * as well, and is necessary prior to executing a WFI. */ void omap_interconnect_sync(void) { if (dram_sync && sram_sync) { writel_relaxed(readl_relaxed(dram_sync), dram_sync); writel_relaxed(readl_relaxed(sram_sync), sram_sync); isb(); } } static int __init omap4_sram_init(void) { struct device_node *np; struct gen_pool *sram_pool; if (!soc_is_omap44xx() && !soc_is_omap54xx()) return 0; np = of_find_compatible_node(NULL, NULL, "ti,omap4-mpu"); if (!np) pr_warn("%s:Unable to allocate sram needed to handle errata I688\n", __func__); sram_pool = of_gen_pool_get(np, "sram", 0); if (!sram_pool) pr_warn("%s:Unable to get sram pool needed to handle errata I688\n", __func__); else sram_sync = (void __iomem *)gen_pool_alloc(sram_pool, PAGE_SIZE); of_node_put(np); return 0; } omap_arch_initcall(omap4_sram_init); /* Steal one page physical memory for barrier implementation */ void __init omap_barrier_reserve_memblock(void) { dram_sync_size = ALIGN(PAGE_SIZE, SZ_1M); dram_sync_paddr = arm_memblock_steal(dram_sync_size, SZ_1M); } void __init omap_barriers_init(void) { struct map_desc dram_io_desc[1]; dram_io_desc[0].virtual = OMAP4_DRAM_BARRIER_VA; dram_io_desc[0].pfn = __phys_to_pfn(dram_sync_paddr); dram_io_desc[0].length = dram_sync_size; dram_io_desc[0].type = MT_MEMORY_RW_SO; iotable_init(dram_io_desc, ARRAY_SIZE(dram_io_desc)); dram_sync = (void __iomem *) dram_io_desc[0].virtual; pr_info("OMAP4: Map %pa to %p for dram barrier\n", &dram_sync_paddr, dram_sync); soc_mb = omap4_mb; } #endif void gic_dist_disable(void) { if (gic_dist_base_addr) writel_relaxed(0x0, gic_dist_base_addr + GIC_DIST_CTRL); } void gic_dist_enable(void) { if (gic_dist_base_addr) writel_relaxed(0x1, gic_dist_base_addr + GIC_DIST_CTRL); } bool gic_dist_disabled(void) { return !(readl_relaxed(gic_dist_base_addr + GIC_DIST_CTRL) & 0x1); } void gic_timer_retrigger(void) { u32 twd_int = readl_relaxed(twd_base + TWD_TIMER_INTSTAT); u32 gic_int = readl_relaxed(gic_dist_base_addr + GIC_DIST_PENDING_SET); u32 twd_ctrl = readl_relaxed(twd_base + TWD_TIMER_CONTROL); if (twd_int && !(gic_int & BIT(IRQ_LOCALTIMER))) { /* * The local timer interrupt got lost while the distributor was * disabled. Ack the pending interrupt, and retrigger it. */ pr_warn("%s: lost localtimer interrupt\n", __func__); writel_relaxed(1, twd_base + TWD_TIMER_INTSTAT); if (!(twd_ctrl & TWD_TIMER_CONTROL_PERIODIC)) { writel_relaxed(1, twd_base + TWD_TIMER_COUNTER); twd_ctrl |= TWD_TIMER_CONTROL_ENABLE; writel_relaxed(twd_ctrl, twd_base + TWD_TIMER_CONTROL); } } } #ifdef CONFIG_CACHE_L2X0 void __iomem *omap4_get_l2cache_base(void) { return l2cache_base; } void omap4_l2c310_write_sec(unsigned long val, unsigned reg) { unsigned smc_op; switch (reg) { case L2X0_CTRL: smc_op = OMAP4_MON_L2X0_CTRL_INDEX; break; case L2X0_AUX_CTRL: smc_op = OMAP4_MON_L2X0_AUXCTRL_INDEX; break; case L2X0_DEBUG_CTRL: smc_op = OMAP4_MON_L2X0_DBG_CTRL_INDEX; break; case L310_PREFETCH_CTRL: smc_op = OMAP4_MON_L2X0_PREFETCH_INDEX; break; case L310_POWER_CTRL: pr_info_once("OMAP L2C310: ROM does not support power control setting\n"); return; default: WARN_ONCE(1, "OMAP L2C310: ignoring write to reg 0x%x\n", reg); return; } omap_smc1(smc_op, val); } int __init omap_l2_cache_init(void) { /* Static mapping, never released */ l2cache_base = ioremap(OMAP44XX_L2CACHE_BASE, SZ_4K); if (WARN_ON(!l2cache_base)) return -ENOMEM; return 0; } #endif void __iomem *omap4_get_sar_ram_base(void) { return sar_ram_base; } /* * SAR RAM used to save and restore the HW context in low power modes. * Note that we need to initialize this very early for kexec. See * omap4_mpuss_early_init(). */ void __init omap4_sar_ram_init(void) { unsigned long sar_base; /* * To avoid code running on other OMAPs in * multi-omap builds */ if (cpu_is_omap44xx()) sar_base = OMAP44XX_SAR_RAM_BASE; else if (soc_is_omap54xx()) sar_base = OMAP54XX_SAR_RAM_BASE; else return; /* Static mapping, never released */ sar_ram_base = ioremap(sar_base, SZ_16K); if (WARN_ON(!sar_ram_base)) return; } static const struct of_device_id intc_match[] = { { .compatible = "ti,omap4-wugen-mpu", }, { .compatible = "ti,omap5-wugen-mpu", }, { }, }; static struct device_node *intc_node; void __init omap_gic_of_init(void) { struct device_node *np; intc_node = of_find_matching_node(NULL, intc_match); if (WARN_ON(!intc_node)) { pr_err("No WUGEN found in DT, system will misbehave.\n"); pr_err("UPDATE YOUR DEVICE TREE!\n"); } /* Extract GIC distributor and TWD bases for OMAP4460 ROM Errata WA */ if (!cpu_is_omap446x()) goto skip_errata_init; np = of_find_compatible_node(NULL, NULL, "arm,cortex-a9-gic"); gic_dist_base_addr = of_iomap(np, 0); of_node_put(np); WARN_ON(!gic_dist_base_addr); np = of_find_compatible_node(NULL, NULL, "arm,cortex-a9-twd-timer"); twd_base = of_iomap(np, 0); of_node_put(np); WARN_ON(!twd_base); skip_errata_init: irqchip_init(); }