// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2012, NVIDIA CORPORATION. All rights reserved. */ #include <linux/clkdev.h> #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/of.h> #include <linux/of_platform.h> #include <linux/clk/tegra.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/reset-controller.h> #include <linux/string_helpers.h> #include <soc/tegra/fuse.h> #include "clk.h" /* Global data of Tegra CPU CAR ops */ static struct device_node *tegra_car_np; static struct tegra_cpu_car_ops dummy_car_ops; struct tegra_cpu_car_ops *tegra_cpu_car_ops = &dummy_car_ops; int *periph_clk_enb_refcnt; static int periph_banks; static u32 *periph_state_ctx; static struct clk **clks; static int clk_num; static struct clk_onecell_data clk_data; /* Handlers for SoC-specific reset lines */ static int (*special_reset_assert)(unsigned long); static int (*special_reset_deassert)(unsigned long); static unsigned int num_special_reset; static const struct tegra_clk_periph_regs periph_regs[] = { [0] = { .enb_reg = CLK_OUT_ENB_L, .enb_set_reg = CLK_OUT_ENB_SET_L, .enb_clr_reg = CLK_OUT_ENB_CLR_L, .rst_reg = RST_DEVICES_L, .rst_set_reg = RST_DEVICES_SET_L, .rst_clr_reg = RST_DEVICES_CLR_L, }, [1] = { .enb_reg = CLK_OUT_ENB_H, .enb_set_reg = CLK_OUT_ENB_SET_H, .enb_clr_reg = CLK_OUT_ENB_CLR_H, .rst_reg = RST_DEVICES_H, .rst_set_reg = RST_DEVICES_SET_H, .rst_clr_reg = RST_DEVICES_CLR_H, }, [2] = { .enb_reg = CLK_OUT_ENB_U, .enb_set_reg = CLK_OUT_ENB_SET_U, .enb_clr_reg = CLK_OUT_ENB_CLR_U, .rst_reg = RST_DEVICES_U, .rst_set_reg = RST_DEVICES_SET_U, .rst_clr_reg = RST_DEVICES_CLR_U, }, [3] = { .enb_reg = CLK_OUT_ENB_V, .enb_set_reg = CLK_OUT_ENB_SET_V, .enb_clr_reg = CLK_OUT_ENB_CLR_V, .rst_reg = RST_DEVICES_V, .rst_set_reg = RST_DEVICES_SET_V, .rst_clr_reg = RST_DEVICES_CLR_V, }, [4] = { .enb_reg = CLK_OUT_ENB_W, .enb_set_reg = CLK_OUT_ENB_SET_W, .enb_clr_reg = CLK_OUT_ENB_CLR_W, .rst_reg = RST_DEVICES_W, .rst_set_reg = RST_DEVICES_SET_W, .rst_clr_reg = RST_DEVICES_CLR_W, }, [5] = { .enb_reg = CLK_OUT_ENB_X, .enb_set_reg = CLK_OUT_ENB_SET_X, .enb_clr_reg = CLK_OUT_ENB_CLR_X, .rst_reg = RST_DEVICES_X, .rst_set_reg = RST_DEVICES_SET_X, .rst_clr_reg = RST_DEVICES_CLR_X, }, [6] = { .enb_reg = CLK_OUT_ENB_Y, .enb_set_reg = CLK_OUT_ENB_SET_Y, .enb_clr_reg = CLK_OUT_ENB_CLR_Y, .rst_reg = RST_DEVICES_Y, .rst_set_reg = RST_DEVICES_SET_Y, .rst_clr_reg = RST_DEVICES_CLR_Y, }, }; static void __iomem *clk_base; static int tegra_clk_rst_assert(struct reset_controller_dev *rcdev, unsigned long id) { /* * If peripheral is on the APB bus then we must read the APB bus to * flush the write operation in apb bus. This will avoid peripheral * access after disabling clock. Since the reset driver has no * knowledge of which reset IDs represent which devices, simply do * this all the time. */ tegra_read_chipid(); if (id < periph_banks * 32) { writel_relaxed(BIT(id % 32), clk_base + periph_regs[id / 32].rst_set_reg); return 0; } else if (id < periph_banks * 32 + num_special_reset) { return special_reset_assert(id); } return -EINVAL; } static int tegra_clk_rst_deassert(struct reset_controller_dev *rcdev, unsigned long id) { if (id < periph_banks * 32) { writel_relaxed(BIT(id % 32), clk_base + periph_regs[id / 32].rst_clr_reg); return 0; } else if (id < periph_banks * 32 + num_special_reset) { return special_reset_deassert(id); } return -EINVAL; } static int tegra_clk_rst_reset(struct reset_controller_dev *rcdev, unsigned long id) { int err; err = tegra_clk_rst_assert(rcdev, id); if (err) return err; udelay(1); return tegra_clk_rst_deassert(rcdev, id); } const struct tegra_clk_periph_regs *get_reg_bank(int clkid) { int reg_bank = clkid / 32; if (reg_bank < periph_banks) return &periph_regs[reg_bank]; else { WARN_ON(1); return NULL; } } void tegra_clk_set_pllp_out_cpu(bool enable) { u32 val; val = readl_relaxed(clk_base + CLK_OUT_ENB_Y); if (enable) val |= CLK_ENB_PLLP_OUT_CPU; else val &= ~CLK_ENB_PLLP_OUT_CPU; writel_relaxed(val, clk_base + CLK_OUT_ENB_Y); } void tegra_clk_periph_suspend(void) { unsigned int i, idx; idx = 0; for (i = 0; i < periph_banks; i++, idx++) periph_state_ctx[idx] = readl_relaxed(clk_base + periph_regs[i].enb_reg); for (i = 0; i < periph_banks; i++, idx++) periph_state_ctx[idx] = readl_relaxed(clk_base + periph_regs[i].rst_reg); } void tegra_clk_periph_resume(void) { unsigned int i, idx; idx = 0; for (i = 0; i < periph_banks; i++, idx++) writel_relaxed(periph_state_ctx[idx], clk_base + periph_regs[i].enb_reg); /* * All non-boot peripherals will be in reset state on resume. * Wait for 5us of reset propagation delay before de-asserting * the peripherals based on the saved context. */ fence_udelay(5, clk_base); for (i = 0; i < periph_banks; i++, idx++) writel_relaxed(periph_state_ctx[idx], clk_base + periph_regs[i].rst_reg); fence_udelay(2, clk_base); } static int tegra_clk_periph_ctx_init(int banks) { periph_state_ctx = kcalloc(2 * banks, sizeof(*periph_state_ctx), GFP_KERNEL); if (!periph_state_ctx) return -ENOMEM; return 0; } struct clk ** __init tegra_clk_init(void __iomem *regs, int num, int banks) { clk_base = regs; if (WARN_ON(banks > ARRAY_SIZE(periph_regs))) return NULL; periph_clk_enb_refcnt = kcalloc(32 * banks, sizeof(*periph_clk_enb_refcnt), GFP_KERNEL); if (!periph_clk_enb_refcnt) return NULL; periph_banks = banks; clks = kcalloc(num, sizeof(struct clk *), GFP_KERNEL); if (!clks) { kfree(periph_clk_enb_refcnt); return NULL; } clk_num = num; if (IS_ENABLED(CONFIG_PM_SLEEP)) { if (tegra_clk_periph_ctx_init(banks)) { kfree(periph_clk_enb_refcnt); kfree(clks); return NULL; } } return clks; } void __init tegra_init_dup_clks(struct tegra_clk_duplicate *dup_list, struct clk *clks[], int clk_max) { struct clk *clk; for (; dup_list->clk_id < clk_max; dup_list++) { clk = clks[dup_list->clk_id]; dup_list->lookup.clk = clk; clkdev_add(&dup_list->lookup); } } void tegra_init_from_table(struct tegra_clk_init_table *tbl, struct clk *clks[], int clk_max) { struct clk *clk; for (; tbl->clk_id < clk_max; tbl++) { clk = clks[tbl->clk_id]; if (IS_ERR_OR_NULL(clk)) { pr_err("%s: invalid entry %ld in clks array for id %d\n", __func__, PTR_ERR(clk), tbl->clk_id); WARN_ON(1); continue; } if (tbl->parent_id < clk_max) { struct clk *parent = clks[tbl->parent_id]; if (clk_set_parent(clk, parent)) { pr_err("%s: Failed to set parent %s of %s\n", __func__, __clk_get_name(parent), __clk_get_name(clk)); WARN_ON(1); } } if (tbl->rate) if (clk_set_rate(clk, tbl->rate)) { pr_err("%s: Failed to set rate %lu of %s\n", __func__, tbl->rate, __clk_get_name(clk)); WARN_ON(1); } if (tbl->state) if (clk_prepare_enable(clk)) { pr_err("%s: Failed to enable %s\n", __func__, __clk_get_name(clk)); WARN_ON(1); } } } static const struct reset_control_ops rst_ops = { .assert = tegra_clk_rst_assert, .deassert = tegra_clk_rst_deassert, .reset = tegra_clk_rst_reset, }; static struct reset_controller_dev rst_ctlr = { .ops = &rst_ops, .owner = THIS_MODULE, .of_reset_n_cells = 1, }; void __init tegra_add_of_provider(struct device_node *np, void *clk_src_onecell_get) { int i; tegra_car_np = np; for (i = 0; i < clk_num; i++) { if (IS_ERR(clks[i])) { pr_err ("Tegra clk %d: register failed with %ld\n", i, PTR_ERR(clks[i])); } if (!clks[i]) clks[i] = ERR_PTR(-EINVAL); } clk_data.clks = clks; clk_data.clk_num = clk_num; of_clk_add_provider(np, clk_src_onecell_get, &clk_data); rst_ctlr.of_node = np; rst_ctlr.nr_resets = periph_banks * 32 + num_special_reset; reset_controller_register(&rst_ctlr); } void __init tegra_init_special_resets(unsigned int num, int (*assert)(unsigned long), int (*deassert)(unsigned long)) { num_special_reset = num; special_reset_assert = assert; special_reset_deassert = deassert; } void tegra_register_devclks(struct tegra_devclk *dev_clks, int num) { int i; for (i = 0; i < num; i++, dev_clks++) clk_register_clkdev(clks[dev_clks->dt_id], dev_clks->con_id, dev_clks->dev_id); for (i = 0; i < clk_num; i++) { if (!IS_ERR_OR_NULL(clks[i])) clk_register_clkdev(clks[i], __clk_get_name(clks[i]), "tegra-clk-debug"); } } struct clk ** __init tegra_lookup_dt_id(int clk_id, struct tegra_clk *tegra_clk) { if (tegra_clk[clk_id].present) return &clks[tegra_clk[clk_id].dt_id]; else return NULL; } static struct device_node *tegra_clk_get_of_node(struct clk_hw *hw) { struct device_node *np; char *node_name; node_name = kstrdup_and_replace(hw->init->name, '_', '-', GFP_KERNEL); if (!node_name) return NULL; for_each_child_of_node(tegra_car_np, np) { if (!strcmp(np->name, node_name)) break; } kfree(node_name); return np; } struct clk *tegra_clk_dev_register(struct clk_hw *hw) { struct platform_device *pdev, *parent; const char *dev_name = NULL; struct device *dev = NULL; struct device_node *np; np = tegra_clk_get_of_node(hw); if (!of_device_is_available(np)) goto put_node; dev_name = kasprintf(GFP_KERNEL, "tegra_clk_%s", hw->init->name); if (!dev_name) goto put_node; parent = of_find_device_by_node(tegra_car_np); if (parent) { pdev = of_platform_device_create(np, dev_name, &parent->dev); put_device(&parent->dev); if (!pdev) { pr_err("%s: failed to create device for %pOF\n", __func__, np); goto free_name; } dev = &pdev->dev; pm_runtime_enable(dev); } else { WARN(1, "failed to find device for %pOF\n", tegra_car_np); } free_name: kfree(dev_name); put_node: of_node_put(np); return clk_register(dev, hw); } tegra_clk_apply_init_table_func tegra_clk_apply_init_table; static int __init tegra_clocks_apply_init_table(void) { if (!tegra_clk_apply_init_table) return 0; tegra_clk_apply_init_table(); return 0; } arch_initcall(tegra_clocks_apply_init_table);