.. SPDX-License-Identifier: GPL-2.0

================================
The UDP-Lite protocol (RFC 3828)
================================


  UDP-Lite is a Standards-Track IETF transport protocol whose characteristic
  is a variable-length checksum. This has advantages for transport of multimedia
  (video, VoIP) over wireless networks, as partly damaged packets can still be
  fed into the codec instead of being discarded due to a failed checksum test.

  This file briefly describes the existing kernel support and the socket API.
  For in-depth information, you can consult:

   - The UDP-Lite Homepage:
     http://web.archive.org/web/%2E/http://www.erg.abdn.ac.uk/users/gerrit/udp-lite/

     From here you can also download some example application source code.

   - The UDP-Lite HOWTO on
     http://web.archive.org/web/%2E/http://www.erg.abdn.ac.uk/users/gerrit/udp-lite/files/UDP-Lite-HOWTO.txt

   - The Wireshark UDP-Lite WiKi (with capture files):
     https://wiki.wireshark.org/Lightweight_User_Datagram_Protocol

   - The Protocol Spec, RFC 3828, http://www.ietf.org/rfc/rfc3828.txt


1. Applications
===============

  Several applications have been ported successfully to UDP-Lite. Ethereal
  (now called wireshark) has UDP-Litev4/v6 support by default.

  Porting applications to UDP-Lite is straightforward: only socket level and
  IPPROTO need to be changed; senders additionally set the checksum coverage
  length (default = header length = 8). Details are in the next section.

2. Programming API
==================

  UDP-Lite provides a connectionless, unreliable datagram service and hence
  uses the same socket type as UDP. In fact, porting from UDP to UDP-Lite is
  very easy: simply add ``IPPROTO_UDPLITE`` as the last argument of the
  socket(2) call so that the statement looks like::

      s = socket(PF_INET, SOCK_DGRAM, IPPROTO_UDPLITE);

  or, respectively,

  ::

      s = socket(PF_INET6, SOCK_DGRAM, IPPROTO_UDPLITE);

  With just the above change you are able to run UDP-Lite services or connect
  to UDP-Lite servers. The kernel will assume that you are not interested in
  using partial checksum coverage and so emulate UDP mode (full coverage).

  To make use of the partial checksum coverage facilities requires setting a
  single socket option, which takes an integer specifying the coverage length:

    * Sender checksum coverage: UDPLITE_SEND_CSCOV

      For example::

	int val = 20;
	setsockopt(s, SOL_UDPLITE, UDPLITE_SEND_CSCOV, &val, sizeof(int));

      sets the checksum coverage length to 20 bytes (12b data + 8b header).
      Of each packet only the first 20 bytes (plus the pseudo-header) will be
      checksummed. This is useful for RTP applications which have a 12-byte
      base header.


    * Receiver checksum coverage: UDPLITE_RECV_CSCOV

      This option is the receiver-side analogue. It is truly optional, i.e. not
      required to enable traffic with partial checksum coverage. Its function is
      that of a traffic filter: when enabled, it instructs the kernel to drop
      all packets which have a coverage _less_ than this value. For example, if
      RTP and UDP headers are to be protected, a receiver can enforce that only
      packets with a minimum coverage of 20 are admitted::

	int min = 20;
	setsockopt(s, SOL_UDPLITE, UDPLITE_RECV_CSCOV, &min, sizeof(int));

  The calls to getsockopt(2) are analogous. Being an extension and not a stand-
  alone protocol, all socket options known from UDP can be used in exactly the
  same manner as before, e.g. UDP_CORK or UDP_ENCAP.

  A detailed discussion of UDP-Lite checksum coverage options is in section IV.

3. Header Files
===============

  The socket API requires support through header files in /usr/include:

    * /usr/include/netinet/in.h
      to define IPPROTO_UDPLITE

    * /usr/include/netinet/udplite.h
      for UDP-Lite header fields and protocol constants

  For testing purposes, the following can serve as a ``mini`` header file::

    #define IPPROTO_UDPLITE       136
    #define SOL_UDPLITE           136
    #define UDPLITE_SEND_CSCOV     10
    #define UDPLITE_RECV_CSCOV     11

  Ready-made header files for various distros are in the UDP-Lite tarball.

4. Kernel Behaviour with Regards to the Various Socket Options
==============================================================


  To enable debugging messages, the log level need to be set to 8, as most
  messages use the KERN_DEBUG level (7).

  1) Sender Socket Options

  If the sender specifies a value of 0 as coverage length, the module
  assumes full coverage, transmits a packet with coverage length of 0
  and according checksum.  If the sender specifies a coverage < 8 and
  different from 0, the kernel assumes 8 as default value.  Finally,
  if the specified coverage length exceeds the packet length, the packet
  length is used instead as coverage length.

  2) Receiver Socket Options

  The receiver specifies the minimum value of the coverage length it
  is willing to accept.  A value of 0 here indicates that the receiver
  always wants the whole of the packet covered. In this case, all
  partially covered packets are dropped and an error is logged.

  It is not possible to specify illegal values (<0 and <8); in these
  cases the default of 8 is assumed.

  All packets arriving with a coverage value less than the specified
  threshold are discarded, these events are also logged.

  3) Disabling the Checksum Computation

  On both sender and receiver, checksumming will always be performed
  and cannot be disabled using SO_NO_CHECK. Thus::

	setsockopt(sockfd, SOL_SOCKET, SO_NO_CHECK,  ... );

  will always will be ignored, while the value of::

	getsockopt(sockfd, SOL_SOCKET, SO_NO_CHECK, &value, ...);

  is meaningless (as in TCP). Packets with a zero checksum field are
  illegal (cf. RFC 3828, sec. 3.1) and will be silently discarded.

  4) Fragmentation

  The checksum computation respects both buffersize and MTU. The size
  of UDP-Lite packets is determined by the size of the send buffer. The
  minimum size of the send buffer is 2048 (defined as SOCK_MIN_SNDBUF
  in include/net/sock.h), the default value is configurable as
  net.core.wmem_default or via setting the SO_SNDBUF socket(7)
  option. The maximum upper bound for the send buffer is determined
  by net.core.wmem_max.

  Given a payload size larger than the send buffer size, UDP-Lite will
  split the payload into several individual packets, filling up the
  send buffer size in each case.

  The precise value also depends on the interface MTU. The interface MTU,
  in turn, may trigger IP fragmentation. In this case, the generated
  UDP-Lite packet is split into several IP packets, of which only the
  first one contains the L4 header.

  The send buffer size has implications on the checksum coverage length.
  Consider the following example::

    Payload: 1536 bytes          Send Buffer:     1024 bytes
    MTU:     1500 bytes          Coverage Length:  856 bytes

  UDP-Lite will ship the 1536 bytes in two separate packets::

    Packet 1: 1024 payload + 8 byte header + 20 byte IP header = 1052 bytes
    Packet 2:  512 payload + 8 byte header + 20 byte IP header =  540 bytes

  The coverage packet covers the UDP-Lite header and 848 bytes of the
  payload in the first packet, the second packet is fully covered. Note
  that for the second packet, the coverage length exceeds the packet
  length. The kernel always re-adjusts the coverage length to the packet
  length in such cases.

  As an example of what happens when one UDP-Lite packet is split into
  several tiny fragments, consider the following example::

    Payload: 1024 bytes            Send buffer size: 1024 bytes
    MTU:      300 bytes            Coverage length:   575 bytes

    +-+-----------+--------------+--------------+--------------+
    |8|    272    |      280     |     280      |     280      |
    +-+-----------+--------------+--------------+--------------+
		280            560            840           1032
					^
    *****checksum coverage*************

  The UDP-Lite module generates one 1032 byte packet (1024 + 8 byte
  header). According to the interface MTU, these are split into 4 IP
  packets (280 byte IP payload + 20 byte IP header). The kernel module
  sums the contents of the entire first two packets, plus 15 bytes of
  the last packet before releasing the fragments to the IP module.

  To see the analogous case for IPv6 fragmentation, consider a link
  MTU of 1280 bytes and a write buffer of 3356 bytes. If the checksum
  coverage is less than 1232 bytes (MTU minus IPv6/fragment header
  lengths), only the first fragment needs to be considered. When using
  larger checksum coverage lengths, each eligible fragment needs to be
  checksummed. Suppose we have a checksum coverage of 3062. The buffer
  of 3356 bytes will be split into the following fragments::

    Fragment 1: 1280 bytes carrying  1232 bytes of UDP-Lite data
    Fragment 2: 1280 bytes carrying  1232 bytes of UDP-Lite data
    Fragment 3:  948 bytes carrying   900 bytes of UDP-Lite data

  The first two fragments have to be checksummed in full, of the last
  fragment only 598 (= 3062 - 2*1232) bytes are checksummed.

  While it is important that such cases are dealt with correctly, they
  are (annoyingly) rare: UDP-Lite is designed for optimising multimedia
  performance over wireless (or generally noisy) links and thus smaller
  coverage lengths are likely to be expected.

5. UDP-Lite Runtime Statistics and their Meaning
================================================

  Exceptional and error conditions are logged to syslog at the KERN_DEBUG
  level.  Live statistics about UDP-Lite are available in /proc/net/snmp
  and can (with newer versions of netstat) be viewed using::

			    netstat -svu

  This displays UDP-Lite statistics variables, whose meaning is as follows.

   ============     =====================================================
   InDatagrams      The total number of datagrams delivered to users.

   NoPorts          Number of packets received to an unknown port.
		    These cases are counted separately (not as InErrors).

   InErrors         Number of erroneous UDP-Lite packets. Errors include:

		      * internal socket queue receive errors
		      * packet too short (less than 8 bytes or stated
			coverage length exceeds received length)
		      * xfrm4_policy_check() returned with error
		      * application has specified larger min. coverage
			length than that of incoming packet
		      * checksum coverage violated
		      * bad checksum

   OutDatagrams     Total number of sent datagrams.
   ============     =====================================================

   These statistics derive from the UDP MIB (RFC 2013).

6. IPtables
===========

  There is packet match support for UDP-Lite as well as support for the LOG target.
  If you copy and paste the following line into /etc/protocols::

    udplite 136     UDP-Lite        # UDP-Lite [RFC 3828]

  then::

	      iptables -A INPUT -p udplite -j LOG

  will produce logging output to syslog. Dropping and rejecting packets also works.

7. Maintainer Address
=====================

  The UDP-Lite patch was developed at

		    University of Aberdeen
		    Electronics Research Group
		    Department of Engineering
		    Fraser Noble Building
		    Aberdeen AB24 3UE; UK

  The current maintainer is Gerrit Renker, <gerrit@erg.abdn.ac.uk>. Initial
  code was developed by William  Stanislaus, <william@erg.abdn.ac.uk>.