// SPDX-License-Identifier: GPL-2.0 /* Driver for SGI's IOC3 based Ethernet cards as found in the PCI card. * * Copyright (C) 1999, 2000, 01, 03, 06 Ralf Baechle * Copyright (C) 1995, 1999, 2000, 2001 by Silicon Graphics, Inc. * * References: * o IOC3 ASIC specification 4.51, 1996-04-18 * o IEEE 802.3 specification, 2000 edition * o DP38840A Specification, National Semiconductor, March 1997 * * To do: * * o Use prefetching for large packets. What is a good lower limit for * prefetching? * o Use hardware checksums. * o Which PHYs might possibly be attached to the IOC3 in real live, * which workarounds are required for them? Do we ever have Lucent's? * o For the 2.5 branch kill the mii-tool ioctls. */ #define IOC3_NAME "ioc3-eth" #define IOC3_VERSION "2.6.3-4" #include <linux/delay.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/errno.h> #include <linux/module.h> #include <linux/init.h> #include <linux/crc16.h> #include <linux/crc32.h> #include <linux/mii.h> #include <linux/in.h> #include <linux/io.h> #include <linux/ip.h> #include <linux/tcp.h> #include <linux/udp.h> #include <linux/gfp.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/ethtool.h> #include <linux/skbuff.h> #include <linux/dma-mapping.h> #include <linux/platform_device.h> #include <linux/nvmem-consumer.h> #include <net/ip.h> #include <asm/sn/ioc3.h> #include <asm/pci/bridge.h> #define CRC16_INIT 0 #define CRC16_VALID 0xb001 /* Number of RX buffers. This is tunable in the range of 16 <= x < 512. * The value must be a power of two. */ #define RX_BUFFS 64 #define RX_RING_ENTRIES 512 /* fixed in hardware */ #define RX_RING_MASK (RX_RING_ENTRIES - 1) #define RX_RING_SIZE (RX_RING_ENTRIES * sizeof(u64)) /* 128 TX buffers (not tunable) */ #define TX_RING_ENTRIES 128 #define TX_RING_MASK (TX_RING_ENTRIES - 1) #define TX_RING_SIZE (TX_RING_ENTRIES * sizeof(struct ioc3_etxd)) /* IOC3 does dma transfers in 128 byte blocks */ #define IOC3_DMA_XFER_LEN 128UL /* Every RX buffer starts with 8 byte descriptor data */ #define RX_OFFSET (sizeof(struct ioc3_erxbuf) + NET_IP_ALIGN) #define RX_BUF_SIZE (13 * IOC3_DMA_XFER_LEN) #define ETCSR_FD ((21 << ETCSR_IPGR2_SHIFT) | (21 << ETCSR_IPGR1_SHIFT) | 21) #define ETCSR_HD ((17 << ETCSR_IPGR2_SHIFT) | (11 << ETCSR_IPGR1_SHIFT) | 21) /* Private per NIC data of the driver. */ struct ioc3_private { struct ioc3_ethregs *regs; struct device *dma_dev; u32 *ssram; unsigned long *rxr; /* pointer to receiver ring */ void *tx_ring; struct ioc3_etxd *txr; dma_addr_t rxr_dma; dma_addr_t txr_dma; struct sk_buff *rx_skbs[RX_RING_ENTRIES]; struct sk_buff *tx_skbs[TX_RING_ENTRIES]; int rx_ci; /* RX consumer index */ int rx_pi; /* RX producer index */ int tx_ci; /* TX consumer index */ int tx_pi; /* TX producer index */ int txqlen; u32 emcr, ehar_h, ehar_l; spinlock_t ioc3_lock; struct mii_if_info mii; /* Members used by autonegotiation */ struct timer_list ioc3_timer; }; static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); static void ioc3_set_multicast_list(struct net_device *dev); static netdev_tx_t ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev); static void ioc3_timeout(struct net_device *dev, unsigned int txqueue); static inline unsigned int ioc3_hash(const unsigned char *addr); static void ioc3_start(struct ioc3_private *ip); static inline void ioc3_stop(struct ioc3_private *ip); static void ioc3_init(struct net_device *dev); static int ioc3_alloc_rx_bufs(struct net_device *dev); static void ioc3_free_rx_bufs(struct ioc3_private *ip); static inline void ioc3_clean_tx_ring(struct ioc3_private *ip); static const struct ethtool_ops ioc3_ethtool_ops; static inline unsigned long aligned_rx_skb_addr(unsigned long addr) { return (~addr + 1) & (IOC3_DMA_XFER_LEN - 1UL); } static inline int ioc3_alloc_skb(struct ioc3_private *ip, struct sk_buff **skb, struct ioc3_erxbuf **rxb, dma_addr_t *rxb_dma) { struct sk_buff *new_skb; dma_addr_t d; int offset; new_skb = alloc_skb(RX_BUF_SIZE + IOC3_DMA_XFER_LEN - 1, GFP_ATOMIC); if (!new_skb) return -ENOMEM; /* ensure buffer is aligned to IOC3_DMA_XFER_LEN */ offset = aligned_rx_skb_addr((unsigned long)new_skb->data); if (offset) skb_reserve(new_skb, offset); d = dma_map_single(ip->dma_dev, new_skb->data, RX_BUF_SIZE, DMA_FROM_DEVICE); if (dma_mapping_error(ip->dma_dev, d)) { dev_kfree_skb_any(new_skb); return -ENOMEM; } *rxb_dma = d; *rxb = (struct ioc3_erxbuf *)new_skb->data; skb_reserve(new_skb, RX_OFFSET); *skb = new_skb; return 0; } #ifdef CONFIG_PCI_XTALK_BRIDGE static inline unsigned long ioc3_map(dma_addr_t addr, unsigned long attr) { return (addr & ~PCI64_ATTR_BAR) | attr; } #define ERBAR_VAL (ERBAR_BARRIER_BIT << ERBAR_RXBARR_SHIFT) #else static inline unsigned long ioc3_map(dma_addr_t addr, unsigned long attr) { return addr; } #define ERBAR_VAL 0 #endif static int ioc3eth_nvmem_match(struct device *dev, const void *data) { const char *name = dev_name(dev); const char *prefix = data; int prefix_len; prefix_len = strlen(prefix); if (strlen(name) < (prefix_len + 3)) return 0; if (memcmp(prefix, name, prefix_len) != 0) return 0; /* found nvmem device which is attached to our ioc3 * now check for one wire family code 09, 89 and 91 */ if (memcmp(name + prefix_len, "09-", 3) == 0) return 1; if (memcmp(name + prefix_len, "89-", 3) == 0) return 1; if (memcmp(name + prefix_len, "91-", 3) == 0) return 1; return 0; } static int ioc3eth_get_mac_addr(struct resource *res, u8 mac_addr[6]) { struct nvmem_device *nvmem; char prefix[24]; u8 prom[16]; int ret; int i; snprintf(prefix, sizeof(prefix), "ioc3-%012llx-", res->start & ~0xffff); nvmem = nvmem_device_find(prefix, ioc3eth_nvmem_match); if (IS_ERR(nvmem)) return PTR_ERR(nvmem); ret = nvmem_device_read(nvmem, 0, 16, prom); nvmem_device_put(nvmem); if (ret < 0) return ret; /* check, if content is valid */ if (prom[0] != 0x0a || crc16(CRC16_INIT, prom, 13) != CRC16_VALID) return -EINVAL; for (i = 0; i < 6; i++) mac_addr[i] = prom[10 - i]; return 0; } static void __ioc3_set_mac_address(struct net_device *dev) { struct ioc3_private *ip = netdev_priv(dev); writel((dev->dev_addr[5] << 8) | dev->dev_addr[4], &ip->regs->emar_h); writel((dev->dev_addr[3] << 24) | (dev->dev_addr[2] << 16) | (dev->dev_addr[1] << 8) | dev->dev_addr[0], &ip->regs->emar_l); } static int ioc3_set_mac_address(struct net_device *dev, void *addr) { struct ioc3_private *ip = netdev_priv(dev); struct sockaddr *sa = addr; eth_hw_addr_set(dev, sa->sa_data); spin_lock_irq(&ip->ioc3_lock); __ioc3_set_mac_address(dev); spin_unlock_irq(&ip->ioc3_lock); return 0; } /* Caller must hold the ioc3_lock ever for MII readers. This is also * used to protect the transmitter side but it's low contention. */ static int ioc3_mdio_read(struct net_device *dev, int phy, int reg) { struct ioc3_private *ip = netdev_priv(dev); struct ioc3_ethregs *regs = ip->regs; while (readl(®s->micr) & MICR_BUSY) ; writel((phy << MICR_PHYADDR_SHIFT) | reg | MICR_READTRIG, ®s->micr); while (readl(®s->micr) & MICR_BUSY) ; return readl(®s->midr_r) & MIDR_DATA_MASK; } static void ioc3_mdio_write(struct net_device *dev, int phy, int reg, int data) { struct ioc3_private *ip = netdev_priv(dev); struct ioc3_ethregs *regs = ip->regs; while (readl(®s->micr) & MICR_BUSY) ; writel(data, ®s->midr_w); writel((phy << MICR_PHYADDR_SHIFT) | reg, ®s->micr); while (readl(®s->micr) & MICR_BUSY) ; } static int ioc3_mii_init(struct ioc3_private *ip); static struct net_device_stats *ioc3_get_stats(struct net_device *dev) { struct ioc3_private *ip = netdev_priv(dev); struct ioc3_ethregs *regs = ip->regs; dev->stats.collisions += readl(®s->etcdc) & ETCDC_COLLCNT_MASK; return &dev->stats; } static void ioc3_tcpudp_checksum(struct sk_buff *skb, u32 hwsum, int len) { struct ethhdr *eh = eth_hdr(skb); unsigned int proto; unsigned char *cp; struct iphdr *ih; u32 csum, ehsum; u16 *ew; /* Did hardware handle the checksum at all? The cases we can handle * are: * * - TCP and UDP checksums of IPv4 only. * - IPv6 would be doable but we keep that for later ... * - Only unfragmented packets. Did somebody already tell you * fragmentation is evil? * - don't care about packet size. Worst case when processing a * malformed packet we'll try to access the packet at ip header + * 64 bytes which is still inside the skb. Even in the unlikely * case where the checksum is right the higher layers will still * drop the packet as appropriate. */ if (eh->h_proto != htons(ETH_P_IP)) return; ih = (struct iphdr *)((char *)eh + ETH_HLEN); if (ip_is_fragment(ih)) return; proto = ih->protocol; if (proto != IPPROTO_TCP && proto != IPPROTO_UDP) return; /* Same as tx - compute csum of pseudo header */ csum = hwsum + (ih->tot_len - (ih->ihl << 2)) + htons((u16)ih->protocol) + (ih->saddr >> 16) + (ih->saddr & 0xffff) + (ih->daddr >> 16) + (ih->daddr & 0xffff); /* Sum up ethernet dest addr, src addr and protocol */ ew = (u16 *)eh; ehsum = ew[0] + ew[1] + ew[2] + ew[3] + ew[4] + ew[5] + ew[6]; ehsum = (ehsum & 0xffff) + (ehsum >> 16); ehsum = (ehsum & 0xffff) + (ehsum >> 16); csum += 0xffff ^ ehsum; /* In the next step we also subtract the 1's complement * checksum of the trailing ethernet CRC. */ cp = (char *)eh + len; /* points at trailing CRC */ if (len & 1) { csum += 0xffff ^ (u16)((cp[1] << 8) | cp[0]); csum += 0xffff ^ (u16)((cp[3] << 8) | cp[2]); } else { csum += 0xffff ^ (u16)((cp[0] << 8) | cp[1]); csum += 0xffff ^ (u16)((cp[2] << 8) | cp[3]); } csum = (csum & 0xffff) + (csum >> 16); csum = (csum & 0xffff) + (csum >> 16); if (csum == 0xffff) skb->ip_summed = CHECKSUM_UNNECESSARY; } static inline void ioc3_rx(struct net_device *dev) { struct ioc3_private *ip = netdev_priv(dev); struct sk_buff *skb, *new_skb; int rx_entry, n_entry, len; struct ioc3_erxbuf *rxb; unsigned long *rxr; dma_addr_t d; u32 w0, err; rxr = ip->rxr; /* Ring base */ rx_entry = ip->rx_ci; /* RX consume index */ n_entry = ip->rx_pi; skb = ip->rx_skbs[rx_entry]; rxb = (struct ioc3_erxbuf *)(skb->data - RX_OFFSET); w0 = be32_to_cpu(rxb->w0); while (w0 & ERXBUF_V) { err = be32_to_cpu(rxb->err); /* It's valid ... */ if (err & ERXBUF_GOODPKT) { len = ((w0 >> ERXBUF_BYTECNT_SHIFT) & 0x7ff) - 4; skb_put(skb, len); skb->protocol = eth_type_trans(skb, dev); if (ioc3_alloc_skb(ip, &new_skb, &rxb, &d)) { /* Ouch, drop packet and just recycle packet * to keep the ring filled. */ dev->stats.rx_dropped++; new_skb = skb; d = rxr[rx_entry]; goto next; } if (likely(dev->features & NETIF_F_RXCSUM)) ioc3_tcpudp_checksum(skb, w0 & ERXBUF_IPCKSUM_MASK, len); dma_unmap_single(ip->dma_dev, rxr[rx_entry], RX_BUF_SIZE, DMA_FROM_DEVICE); netif_rx(skb); ip->rx_skbs[rx_entry] = NULL; /* Poison */ dev->stats.rx_packets++; /* Statistics */ dev->stats.rx_bytes += len; } else { /* The frame is invalid and the skb never * reached the network layer so we can just * recycle it. */ new_skb = skb; d = rxr[rx_entry]; dev->stats.rx_errors++; } if (err & ERXBUF_CRCERR) /* Statistics */ dev->stats.rx_crc_errors++; if (err & ERXBUF_FRAMERR) dev->stats.rx_frame_errors++; next: ip->rx_skbs[n_entry] = new_skb; rxr[n_entry] = cpu_to_be64(ioc3_map(d, PCI64_ATTR_BAR)); rxb->w0 = 0; /* Clear valid flag */ n_entry = (n_entry + 1) & RX_RING_MASK; /* Update erpir */ /* Now go on to the next ring entry. */ rx_entry = (rx_entry + 1) & RX_RING_MASK; skb = ip->rx_skbs[rx_entry]; rxb = (struct ioc3_erxbuf *)(skb->data - RX_OFFSET); w0 = be32_to_cpu(rxb->w0); } writel((n_entry << 3) | ERPIR_ARM, &ip->regs->erpir); ip->rx_pi = n_entry; ip->rx_ci = rx_entry; } static inline void ioc3_tx(struct net_device *dev) { struct ioc3_private *ip = netdev_priv(dev); struct ioc3_ethregs *regs = ip->regs; unsigned long packets, bytes; int tx_entry, o_entry; struct sk_buff *skb; u32 etcir; spin_lock(&ip->ioc3_lock); etcir = readl(®s->etcir); tx_entry = (etcir >> 7) & TX_RING_MASK; o_entry = ip->tx_ci; packets = 0; bytes = 0; while (o_entry != tx_entry) { packets++; skb = ip->tx_skbs[o_entry]; bytes += skb->len; dev_consume_skb_irq(skb); ip->tx_skbs[o_entry] = NULL; o_entry = (o_entry + 1) & TX_RING_MASK; /* Next */ etcir = readl(®s->etcir); /* More pkts sent? */ tx_entry = (etcir >> 7) & TX_RING_MASK; } dev->stats.tx_packets += packets; dev->stats.tx_bytes += bytes; ip->txqlen -= packets; if (netif_queue_stopped(dev) && ip->txqlen < TX_RING_ENTRIES) netif_wake_queue(dev); ip->tx_ci = o_entry; spin_unlock(&ip->ioc3_lock); } /* Deal with fatal IOC3 errors. This condition might be caused by a hard or * software problems, so we should try to recover * more gracefully if this ever happens. In theory we might be flooded * with such error interrupts if something really goes wrong, so we might * also consider to take the interface down. */ static void ioc3_error(struct net_device *dev, u32 eisr) { struct ioc3_private *ip = netdev_priv(dev); spin_lock(&ip->ioc3_lock); if (eisr & EISR_RXOFLO) net_err_ratelimited("%s: RX overflow.\n", dev->name); if (eisr & EISR_RXBUFOFLO) net_err_ratelimited("%s: RX buffer overflow.\n", dev->name); if (eisr & EISR_RXMEMERR) net_err_ratelimited("%s: RX PCI error.\n", dev->name); if (eisr & EISR_RXPARERR) net_err_ratelimited("%s: RX SSRAM parity error.\n", dev->name); if (eisr & EISR_TXBUFUFLO) net_err_ratelimited("%s: TX buffer underflow.\n", dev->name); if (eisr & EISR_TXMEMERR) net_err_ratelimited("%s: TX PCI error.\n", dev->name); ioc3_stop(ip); ioc3_free_rx_bufs(ip); ioc3_clean_tx_ring(ip); ioc3_init(dev); if (ioc3_alloc_rx_bufs(dev)) { netdev_err(dev, "%s: rx buffer allocation failed\n", __func__); spin_unlock(&ip->ioc3_lock); return; } ioc3_start(ip); ioc3_mii_init(ip); netif_wake_queue(dev); spin_unlock(&ip->ioc3_lock); } /* The interrupt handler does all of the Rx thread work and cleans up * after the Tx thread. */ static irqreturn_t ioc3_interrupt(int irq, void *dev_id) { struct ioc3_private *ip = netdev_priv(dev_id); struct ioc3_ethregs *regs = ip->regs; u32 eisr; eisr = readl(®s->eisr); writel(eisr, ®s->eisr); readl(®s->eisr); /* Flush */ if (eisr & (EISR_RXOFLO | EISR_RXBUFOFLO | EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO | EISR_TXMEMERR)) ioc3_error(dev_id, eisr); if (eisr & EISR_RXTIMERINT) ioc3_rx(dev_id); if (eisr & EISR_TXEXPLICIT) ioc3_tx(dev_id); return IRQ_HANDLED; } static inline void ioc3_setup_duplex(struct ioc3_private *ip) { struct ioc3_ethregs *regs = ip->regs; spin_lock_irq(&ip->ioc3_lock); if (ip->mii.full_duplex) { writel(ETCSR_FD, ®s->etcsr); ip->emcr |= EMCR_DUPLEX; } else { writel(ETCSR_HD, ®s->etcsr); ip->emcr &= ~EMCR_DUPLEX; } writel(ip->emcr, ®s->emcr); spin_unlock_irq(&ip->ioc3_lock); } static void ioc3_timer(struct timer_list *t) { struct ioc3_private *ip = from_timer(ip, t, ioc3_timer); /* Print the link status if it has changed */ mii_check_media(&ip->mii, 1, 0); ioc3_setup_duplex(ip); ip->ioc3_timer.expires = jiffies + ((12 * HZ) / 10); /* 1.2s */ add_timer(&ip->ioc3_timer); } /* Try to find a PHY. There is no apparent relation between the MII addresses * in the SGI documentation and what we find in reality, so we simply probe * for the PHY. */ static int ioc3_mii_init(struct ioc3_private *ip) { u16 word; int i; for (i = 0; i < 32; i++) { word = ioc3_mdio_read(ip->mii.dev, i, MII_PHYSID1); if (word != 0xffff && word != 0x0000) { ip->mii.phy_id = i; return 0; } } ip->mii.phy_id = -1; return -ENODEV; } static void ioc3_mii_start(struct ioc3_private *ip) { ip->ioc3_timer.expires = jiffies + (12 * HZ) / 10; /* 1.2 sec. */ add_timer(&ip->ioc3_timer); } static inline void ioc3_tx_unmap(struct ioc3_private *ip, int entry) { struct ioc3_etxd *desc; u32 cmd, bufcnt, len; desc = &ip->txr[entry]; cmd = be32_to_cpu(desc->cmd); bufcnt = be32_to_cpu(desc->bufcnt); if (cmd & ETXD_B1V) { len = (bufcnt & ETXD_B1CNT_MASK) >> ETXD_B1CNT_SHIFT; dma_unmap_single(ip->dma_dev, be64_to_cpu(desc->p1), len, DMA_TO_DEVICE); } if (cmd & ETXD_B2V) { len = (bufcnt & ETXD_B2CNT_MASK) >> ETXD_B2CNT_SHIFT; dma_unmap_single(ip->dma_dev, be64_to_cpu(desc->p2), len, DMA_TO_DEVICE); } } static inline void ioc3_clean_tx_ring(struct ioc3_private *ip) { struct sk_buff *skb; int i; for (i = 0; i < TX_RING_ENTRIES; i++) { skb = ip->tx_skbs[i]; if (skb) { ioc3_tx_unmap(ip, i); ip->tx_skbs[i] = NULL; dev_kfree_skb_any(skb); } ip->txr[i].cmd = 0; } ip->tx_pi = 0; ip->tx_ci = 0; } static void ioc3_free_rx_bufs(struct ioc3_private *ip) { int rx_entry, n_entry; struct sk_buff *skb; n_entry = ip->rx_ci; rx_entry = ip->rx_pi; while (n_entry != rx_entry) { skb = ip->rx_skbs[n_entry]; if (skb) { dma_unmap_single(ip->dma_dev, be64_to_cpu(ip->rxr[n_entry]), RX_BUF_SIZE, DMA_FROM_DEVICE); dev_kfree_skb_any(skb); } n_entry = (n_entry + 1) & RX_RING_MASK; } } static int ioc3_alloc_rx_bufs(struct net_device *dev) { struct ioc3_private *ip = netdev_priv(dev); struct ioc3_erxbuf *rxb; dma_addr_t d; int i; /* Now the rx buffers. The RX ring may be larger but * we only allocate 16 buffers for now. Need to tune * this for performance and memory later. */ for (i = 0; i < RX_BUFFS; i++) { if (ioc3_alloc_skb(ip, &ip->rx_skbs[i], &rxb, &d)) return -ENOMEM; rxb->w0 = 0; /* Clear valid flag */ ip->rxr[i] = cpu_to_be64(ioc3_map(d, PCI64_ATTR_BAR)); } ip->rx_ci = 0; ip->rx_pi = RX_BUFFS; return 0; } static inline void ioc3_ssram_disc(struct ioc3_private *ip) { struct ioc3_ethregs *regs = ip->regs; u32 *ssram0 = &ip->ssram[0x0000]; u32 *ssram1 = &ip->ssram[0x4000]; u32 pattern = 0x5555; /* Assume the larger size SSRAM and enable parity checking */ writel(readl(®s->emcr) | (EMCR_BUFSIZ | EMCR_RAMPAR), ®s->emcr); readl(®s->emcr); /* Flush */ writel(pattern, ssram0); writel(~pattern & IOC3_SSRAM_DM, ssram1); if ((readl(ssram0) & IOC3_SSRAM_DM) != pattern || (readl(ssram1) & IOC3_SSRAM_DM) != (~pattern & IOC3_SSRAM_DM)) { /* set ssram size to 64 KB */ ip->emcr |= EMCR_RAMPAR; writel(readl(®s->emcr) & ~EMCR_BUFSIZ, ®s->emcr); } else { ip->emcr |= EMCR_BUFSIZ | EMCR_RAMPAR; } } static void ioc3_init(struct net_device *dev) { struct ioc3_private *ip = netdev_priv(dev); struct ioc3_ethregs *regs = ip->regs; del_timer_sync(&ip->ioc3_timer); /* Kill if running */ writel(EMCR_RST, ®s->emcr); /* Reset */ readl(®s->emcr); /* Flush WB */ udelay(4); /* Give it time ... */ writel(0, ®s->emcr); readl(®s->emcr); /* Misc registers */ writel(ERBAR_VAL, ®s->erbar); readl(®s->etcdc); /* Clear on read */ writel(15, ®s->ercsr); /* RX low watermark */ writel(0, ®s->ertr); /* Interrupt immediately */ __ioc3_set_mac_address(dev); writel(ip->ehar_h, ®s->ehar_h); writel(ip->ehar_l, ®s->ehar_l); writel(42, ®s->ersr); /* XXX should be random */ } static void ioc3_start(struct ioc3_private *ip) { struct ioc3_ethregs *regs = ip->regs; unsigned long ring; /* Now the rx ring base, consume & produce registers. */ ring = ioc3_map(ip->rxr_dma, PCI64_ATTR_PREC); writel(ring >> 32, ®s->erbr_h); writel(ring & 0xffffffff, ®s->erbr_l); writel(ip->rx_ci << 3, ®s->ercir); writel((ip->rx_pi << 3) | ERPIR_ARM, ®s->erpir); ring = ioc3_map(ip->txr_dma, PCI64_ATTR_PREC); ip->txqlen = 0; /* nothing queued */ /* Now the tx ring base, consume & produce registers. */ writel(ring >> 32, ®s->etbr_h); writel(ring & 0xffffffff, ®s->etbr_l); writel(ip->tx_pi << 7, ®s->etpir); writel(ip->tx_ci << 7, ®s->etcir); readl(®s->etcir); /* Flush */ ip->emcr |= ((RX_OFFSET / 2) << EMCR_RXOFF_SHIFT) | EMCR_TXDMAEN | EMCR_TXEN | EMCR_RXDMAEN | EMCR_RXEN | EMCR_PADEN; writel(ip->emcr, ®s->emcr); writel(EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO | EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO | EISR_TXEXPLICIT | EISR_TXMEMERR, ®s->eier); readl(®s->eier); } static inline void ioc3_stop(struct ioc3_private *ip) { struct ioc3_ethregs *regs = ip->regs; writel(0, ®s->emcr); /* Shutup */ writel(0, ®s->eier); /* Disable interrupts */ readl(®s->eier); /* Flush */ } static int ioc3_open(struct net_device *dev) { struct ioc3_private *ip = netdev_priv(dev); ip->ehar_h = 0; ip->ehar_l = 0; ioc3_init(dev); if (ioc3_alloc_rx_bufs(dev)) { netdev_err(dev, "%s: rx buffer allocation failed\n", __func__); return -ENOMEM; } ioc3_start(ip); ioc3_mii_start(ip); netif_start_queue(dev); return 0; } static int ioc3_close(struct net_device *dev) { struct ioc3_private *ip = netdev_priv(dev); del_timer_sync(&ip->ioc3_timer); netif_stop_queue(dev); ioc3_stop(ip); ioc3_free_rx_bufs(ip); ioc3_clean_tx_ring(ip); return 0; } static const struct net_device_ops ioc3_netdev_ops = { .ndo_open = ioc3_open, .ndo_stop = ioc3_close, .ndo_start_xmit = ioc3_start_xmit, .ndo_tx_timeout = ioc3_timeout, .ndo_get_stats = ioc3_get_stats, .ndo_set_rx_mode = ioc3_set_multicast_list, .ndo_eth_ioctl = ioc3_ioctl, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = ioc3_set_mac_address, }; static int ioc3eth_probe(struct platform_device *pdev) { u32 sw_physid1, sw_physid2, vendor, model, rev; struct ioc3_private *ip; struct net_device *dev; struct resource *regs; u8 mac_addr[6]; int err; regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!regs) { dev_err(&pdev->dev, "Invalid resource\n"); return -EINVAL; } /* get mac addr from one wire prom */ if (ioc3eth_get_mac_addr(regs, mac_addr)) return -EPROBE_DEFER; /* not available yet */ dev = alloc_etherdev(sizeof(struct ioc3_private)); if (!dev) return -ENOMEM; SET_NETDEV_DEV(dev, &pdev->dev); ip = netdev_priv(dev); ip->dma_dev = pdev->dev.parent; ip->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(ip->regs)) { err = PTR_ERR(ip->regs); goto out_free; } ip->ssram = devm_platform_ioremap_resource(pdev, 1); if (IS_ERR(ip->ssram)) { err = PTR_ERR(ip->ssram); goto out_free; } dev->irq = platform_get_irq(pdev, 0); if (dev->irq < 0) { err = dev->irq; goto out_free; } if (devm_request_irq(&pdev->dev, dev->irq, ioc3_interrupt, IRQF_SHARED, "ioc3-eth", dev)) { dev_err(&pdev->dev, "Can't get irq %d\n", dev->irq); err = -ENODEV; goto out_free; } spin_lock_init(&ip->ioc3_lock); timer_setup(&ip->ioc3_timer, ioc3_timer, 0); ioc3_stop(ip); /* Allocate rx ring. 4kb = 512 entries, must be 4kb aligned */ ip->rxr = dma_alloc_coherent(ip->dma_dev, RX_RING_SIZE, &ip->rxr_dma, GFP_KERNEL); if (!ip->rxr) { pr_err("ioc3-eth: rx ring allocation failed\n"); err = -ENOMEM; goto out_stop; } /* Allocate tx rings. 16kb = 128 bufs, must be 16kb aligned */ ip->tx_ring = dma_alloc_coherent(ip->dma_dev, TX_RING_SIZE + SZ_16K - 1, &ip->txr_dma, GFP_KERNEL); if (!ip->tx_ring) { pr_err("ioc3-eth: tx ring allocation failed\n"); err = -ENOMEM; goto out_stop; } /* Align TX ring */ ip->txr = PTR_ALIGN(ip->tx_ring, SZ_16K); ip->txr_dma = ALIGN(ip->txr_dma, SZ_16K); ioc3_init(dev); ip->mii.phy_id_mask = 0x1f; ip->mii.reg_num_mask = 0x1f; ip->mii.dev = dev; ip->mii.mdio_read = ioc3_mdio_read; ip->mii.mdio_write = ioc3_mdio_write; ioc3_mii_init(ip); if (ip->mii.phy_id == -1) { netdev_err(dev, "Didn't find a PHY, goodbye.\n"); err = -ENODEV; goto out_stop; } ioc3_mii_start(ip); ioc3_ssram_disc(ip); eth_hw_addr_set(dev, mac_addr); /* The IOC3-specific entries in the device structure. */ dev->watchdog_timeo = 5 * HZ; dev->netdev_ops = &ioc3_netdev_ops; dev->ethtool_ops = &ioc3_ethtool_ops; dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_RXCSUM; dev->features = NETIF_F_IP_CSUM | NETIF_F_HIGHDMA; sw_physid1 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID1); sw_physid2 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID2); err = register_netdev(dev); if (err) goto out_stop; mii_check_media(&ip->mii, 1, 1); ioc3_setup_duplex(ip); vendor = (sw_physid1 << 12) | (sw_physid2 >> 4); model = (sw_physid2 >> 4) & 0x3f; rev = sw_physid2 & 0xf; netdev_info(dev, "Using PHY %d, vendor 0x%x, model %d, rev %d.\n", ip->mii.phy_id, vendor, model, rev); netdev_info(dev, "IOC3 SSRAM has %d kbyte.\n", ip->emcr & EMCR_BUFSIZ ? 128 : 64); return 0; out_stop: del_timer_sync(&ip->ioc3_timer); if (ip->rxr) dma_free_coherent(ip->dma_dev, RX_RING_SIZE, ip->rxr, ip->rxr_dma); if (ip->tx_ring) dma_free_coherent(ip->dma_dev, TX_RING_SIZE + SZ_16K - 1, ip->tx_ring, ip->txr_dma); out_free: free_netdev(dev); return err; } static int ioc3eth_remove(struct platform_device *pdev) { struct net_device *dev = platform_get_drvdata(pdev); struct ioc3_private *ip = netdev_priv(dev); dma_free_coherent(ip->dma_dev, RX_RING_SIZE, ip->rxr, ip->rxr_dma); dma_free_coherent(ip->dma_dev, TX_RING_SIZE + SZ_16K - 1, ip->tx_ring, ip->txr_dma); unregister_netdev(dev); del_timer_sync(&ip->ioc3_timer); free_netdev(dev); return 0; } static netdev_tx_t ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct ioc3_private *ip = netdev_priv(dev); struct ioc3_etxd *desc; unsigned long data; unsigned int len; int produce; u32 w0 = 0; /* IOC3 has a fairly simple minded checksumming hardware which simply * adds up the 1's complement checksum for the entire packet and * inserts it at an offset which can be specified in the descriptor * into the transmit packet. This means we have to compensate for the * MAC header which should not be summed and the TCP/UDP pseudo headers * manually. */ if (skb->ip_summed == CHECKSUM_PARTIAL) { const struct iphdr *ih = ip_hdr(skb); const int proto = ntohs(ih->protocol); unsigned int csoff; u32 csum, ehsum; u16 *eh; /* The MAC header. skb->mac seem the logic approach * to find the MAC header - except it's a NULL pointer ... */ eh = (u16 *)skb->data; /* Sum up dest addr, src addr and protocol */ ehsum = eh[0] + eh[1] + eh[2] + eh[3] + eh[4] + eh[5] + eh[6]; /* Skip IP header; it's sum is always zero and was * already filled in by ip_output.c */ csum = csum_tcpudp_nofold(ih->saddr, ih->daddr, ih->tot_len - (ih->ihl << 2), proto, csum_fold(ehsum)); csum = (csum & 0xffff) + (csum >> 16); /* Fold again */ csum = (csum & 0xffff) + (csum >> 16); csoff = ETH_HLEN + (ih->ihl << 2); if (proto == IPPROTO_UDP) { csoff += offsetof(struct udphdr, check); udp_hdr(skb)->check = csum; } if (proto == IPPROTO_TCP) { csoff += offsetof(struct tcphdr, check); tcp_hdr(skb)->check = csum; } w0 = ETXD_DOCHECKSUM | (csoff << ETXD_CHKOFF_SHIFT); } spin_lock_irq(&ip->ioc3_lock); data = (unsigned long)skb->data; len = skb->len; produce = ip->tx_pi; desc = &ip->txr[produce]; if (len <= 104) { /* Short packet, let's copy it directly into the ring. */ skb_copy_from_linear_data(skb, desc->data, skb->len); if (len < ETH_ZLEN) { /* Very short packet, pad with zeros at the end. */ memset(desc->data + len, 0, ETH_ZLEN - len); len = ETH_ZLEN; } desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_D0V | w0); desc->bufcnt = cpu_to_be32(len); } else if ((data ^ (data + len - 1)) & 0x4000) { unsigned long b2 = (data | 0x3fffUL) + 1UL; unsigned long s1 = b2 - data; unsigned long s2 = data + len - b2; dma_addr_t d1, d2; desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_B1V | ETXD_B2V | w0); desc->bufcnt = cpu_to_be32((s1 << ETXD_B1CNT_SHIFT) | (s2 << ETXD_B2CNT_SHIFT)); d1 = dma_map_single(ip->dma_dev, skb->data, s1, DMA_TO_DEVICE); if (dma_mapping_error(ip->dma_dev, d1)) goto drop_packet; d2 = dma_map_single(ip->dma_dev, (void *)b2, s1, DMA_TO_DEVICE); if (dma_mapping_error(ip->dma_dev, d2)) { dma_unmap_single(ip->dma_dev, d1, len, DMA_TO_DEVICE); goto drop_packet; } desc->p1 = cpu_to_be64(ioc3_map(d1, PCI64_ATTR_PREF)); desc->p2 = cpu_to_be64(ioc3_map(d2, PCI64_ATTR_PREF)); } else { dma_addr_t d; /* Normal sized packet that doesn't cross a page boundary. */ desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_B1V | w0); desc->bufcnt = cpu_to_be32(len << ETXD_B1CNT_SHIFT); d = dma_map_single(ip->dma_dev, skb->data, len, DMA_TO_DEVICE); if (dma_mapping_error(ip->dma_dev, d)) goto drop_packet; desc->p1 = cpu_to_be64(ioc3_map(d, PCI64_ATTR_PREF)); } mb(); /* make sure all descriptor changes are visible */ ip->tx_skbs[produce] = skb; /* Remember skb */ produce = (produce + 1) & TX_RING_MASK; ip->tx_pi = produce; writel(produce << 7, &ip->regs->etpir); /* Fire ... */ ip->txqlen++; if (ip->txqlen >= (TX_RING_ENTRIES - 1)) netif_stop_queue(dev); spin_unlock_irq(&ip->ioc3_lock); return NETDEV_TX_OK; drop_packet: dev_kfree_skb_any(skb); dev->stats.tx_dropped++; spin_unlock_irq(&ip->ioc3_lock); return NETDEV_TX_OK; } static void ioc3_timeout(struct net_device *dev, unsigned int txqueue) { struct ioc3_private *ip = netdev_priv(dev); netdev_err(dev, "transmit timed out, resetting\n"); spin_lock_irq(&ip->ioc3_lock); ioc3_stop(ip); ioc3_free_rx_bufs(ip); ioc3_clean_tx_ring(ip); ioc3_init(dev); if (ioc3_alloc_rx_bufs(dev)) { netdev_err(dev, "%s: rx buffer allocation failed\n", __func__); spin_unlock_irq(&ip->ioc3_lock); return; } ioc3_start(ip); ioc3_mii_init(ip); ioc3_mii_start(ip); spin_unlock_irq(&ip->ioc3_lock); netif_wake_queue(dev); } /* Given a multicast ethernet address, this routine calculates the * address's bit index in the logical address filter mask */ static inline unsigned int ioc3_hash(const unsigned char *addr) { unsigned int temp = 0; int bits; u32 crc; crc = ether_crc_le(ETH_ALEN, addr); crc &= 0x3f; /* bit reverse lowest 6 bits for hash index */ for (bits = 6; --bits >= 0; ) { temp <<= 1; temp |= (crc & 0x1); crc >>= 1; } return temp; } static void ioc3_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { strscpy(info->driver, IOC3_NAME, sizeof(info->driver)); strscpy(info->version, IOC3_VERSION, sizeof(info->version)); strscpy(info->bus_info, pci_name(to_pci_dev(dev->dev.parent)), sizeof(info->bus_info)); } static int ioc3_get_link_ksettings(struct net_device *dev, struct ethtool_link_ksettings *cmd) { struct ioc3_private *ip = netdev_priv(dev); spin_lock_irq(&ip->ioc3_lock); mii_ethtool_get_link_ksettings(&ip->mii, cmd); spin_unlock_irq(&ip->ioc3_lock); return 0; } static int ioc3_set_link_ksettings(struct net_device *dev, const struct ethtool_link_ksettings *cmd) { struct ioc3_private *ip = netdev_priv(dev); int rc; spin_lock_irq(&ip->ioc3_lock); rc = mii_ethtool_set_link_ksettings(&ip->mii, cmd); spin_unlock_irq(&ip->ioc3_lock); return rc; } static int ioc3_nway_reset(struct net_device *dev) { struct ioc3_private *ip = netdev_priv(dev); int rc; spin_lock_irq(&ip->ioc3_lock); rc = mii_nway_restart(&ip->mii); spin_unlock_irq(&ip->ioc3_lock); return rc; } static u32 ioc3_get_link(struct net_device *dev) { struct ioc3_private *ip = netdev_priv(dev); int rc; spin_lock_irq(&ip->ioc3_lock); rc = mii_link_ok(&ip->mii); spin_unlock_irq(&ip->ioc3_lock); return rc; } static const struct ethtool_ops ioc3_ethtool_ops = { .get_drvinfo = ioc3_get_drvinfo, .nway_reset = ioc3_nway_reset, .get_link = ioc3_get_link, .get_link_ksettings = ioc3_get_link_ksettings, .set_link_ksettings = ioc3_set_link_ksettings, }; static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { struct ioc3_private *ip = netdev_priv(dev); int rc; spin_lock_irq(&ip->ioc3_lock); rc = generic_mii_ioctl(&ip->mii, if_mii(rq), cmd, NULL); spin_unlock_irq(&ip->ioc3_lock); return rc; } static void ioc3_set_multicast_list(struct net_device *dev) { struct ioc3_private *ip = netdev_priv(dev); struct ioc3_ethregs *regs = ip->regs; struct netdev_hw_addr *ha; u64 ehar = 0; spin_lock_irq(&ip->ioc3_lock); if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ ip->emcr |= EMCR_PROMISC; writel(ip->emcr, ®s->emcr); readl(®s->emcr); } else { ip->emcr &= ~EMCR_PROMISC; writel(ip->emcr, ®s->emcr); /* Clear promiscuous. */ readl(®s->emcr); if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) { /* Too many for hashing to make sense or we want all * multicast packets anyway, so skip computing all the * hashes and just accept all packets. */ ip->ehar_h = 0xffffffff; ip->ehar_l = 0xffffffff; } else { netdev_for_each_mc_addr(ha, dev) { ehar |= (1UL << ioc3_hash(ha->addr)); } ip->ehar_h = ehar >> 32; ip->ehar_l = ehar & 0xffffffff; } writel(ip->ehar_h, ®s->ehar_h); writel(ip->ehar_l, ®s->ehar_l); } spin_unlock_irq(&ip->ioc3_lock); } static struct platform_driver ioc3eth_driver = { .probe = ioc3eth_probe, .remove = ioc3eth_remove, .driver = { .name = "ioc3-eth", } }; module_platform_driver(ioc3eth_driver); MODULE_AUTHOR("Ralf Baechle <ralf@linux-mips.org>"); MODULE_DESCRIPTION("SGI IOC3 Ethernet driver"); MODULE_LICENSE("GPL");