// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) STMicroelectronics 2018 - All Rights Reserved * Author: Olivier Bideau <olivier.bideau@st.com> for STMicroelectronics. * Author: Gabriel Fernandez <gabriel.fernandez@st.com> for STMicroelectronics. */ #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/platform_device.h> #include <linux/reset-controller.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <dt-bindings/clock/stm32mp1-clks.h> static DEFINE_SPINLOCK(rlock); #define RCC_OCENSETR 0x0C #define RCC_HSICFGR 0x18 #define RCC_RDLSICR 0x144 #define RCC_PLL1CR 0x80 #define RCC_PLL1CFGR1 0x84 #define RCC_PLL1CFGR2 0x88 #define RCC_PLL2CR 0x94 #define RCC_PLL2CFGR1 0x98 #define RCC_PLL2CFGR2 0x9C #define RCC_PLL3CR 0x880 #define RCC_PLL3CFGR1 0x884 #define RCC_PLL3CFGR2 0x888 #define RCC_PLL4CR 0x894 #define RCC_PLL4CFGR1 0x898 #define RCC_PLL4CFGR2 0x89C #define RCC_APB1ENSETR 0xA00 #define RCC_APB2ENSETR 0xA08 #define RCC_APB3ENSETR 0xA10 #define RCC_APB4ENSETR 0x200 #define RCC_APB5ENSETR 0x208 #define RCC_AHB2ENSETR 0xA18 #define RCC_AHB3ENSETR 0xA20 #define RCC_AHB4ENSETR 0xA28 #define RCC_AHB5ENSETR 0x210 #define RCC_AHB6ENSETR 0x218 #define RCC_AHB6LPENSETR 0x318 #define RCC_RCK12SELR 0x28 #define RCC_RCK3SELR 0x820 #define RCC_RCK4SELR 0x824 #define RCC_MPCKSELR 0x20 #define RCC_ASSCKSELR 0x24 #define RCC_MSSCKSELR 0x48 #define RCC_SPI6CKSELR 0xC4 #define RCC_SDMMC12CKSELR 0x8F4 #define RCC_SDMMC3CKSELR 0x8F8 #define RCC_FMCCKSELR 0x904 #define RCC_I2C46CKSELR 0xC0 #define RCC_I2C12CKSELR 0x8C0 #define RCC_I2C35CKSELR 0x8C4 #define RCC_UART1CKSELR 0xC8 #define RCC_QSPICKSELR 0x900 #define RCC_ETHCKSELR 0x8FC #define RCC_RNG1CKSELR 0xCC #define RCC_RNG2CKSELR 0x920 #define RCC_GPUCKSELR 0x938 #define RCC_USBCKSELR 0x91C #define RCC_STGENCKSELR 0xD4 #define RCC_SPDIFCKSELR 0x914 #define RCC_SPI2S1CKSELR 0x8D8 #define RCC_SPI2S23CKSELR 0x8DC #define RCC_SPI2S45CKSELR 0x8E0 #define RCC_CECCKSELR 0x918 #define RCC_LPTIM1CKSELR 0x934 #define RCC_LPTIM23CKSELR 0x930 #define RCC_LPTIM45CKSELR 0x92C #define RCC_UART24CKSELR 0x8E8 #define RCC_UART35CKSELR 0x8EC #define RCC_UART6CKSELR 0x8E4 #define RCC_UART78CKSELR 0x8F0 #define RCC_FDCANCKSELR 0x90C #define RCC_SAI1CKSELR 0x8C8 #define RCC_SAI2CKSELR 0x8CC #define RCC_SAI3CKSELR 0x8D0 #define RCC_SAI4CKSELR 0x8D4 #define RCC_ADCCKSELR 0x928 #define RCC_MPCKDIVR 0x2C #define RCC_DSICKSELR 0x924 #define RCC_CPERCKSELR 0xD0 #define RCC_MCO1CFGR 0x800 #define RCC_MCO2CFGR 0x804 #define RCC_BDCR 0x140 #define RCC_AXIDIVR 0x30 #define RCC_MCUDIVR 0x830 #define RCC_APB1DIVR 0x834 #define RCC_APB2DIVR 0x838 #define RCC_APB3DIVR 0x83C #define RCC_APB4DIVR 0x3C #define RCC_APB5DIVR 0x40 #define RCC_TIMG1PRER 0x828 #define RCC_TIMG2PRER 0x82C #define RCC_RTCDIVR 0x44 #define RCC_DBGCFGR 0x80C #define RCC_CLR 0x4 static const char * const ref12_parents[] = { "ck_hsi", "ck_hse" }; static const char * const ref3_parents[] = { "ck_hsi", "ck_hse", "ck_csi" }; static const char * const ref4_parents[] = { "ck_hsi", "ck_hse", "ck_csi" }; static const char * const cpu_src[] = { "ck_hsi", "ck_hse", "pll1_p" }; static const char * const axi_src[] = { "ck_hsi", "ck_hse", "pll2_p" }; static const char * const per_src[] = { "ck_hsi", "ck_csi", "ck_hse" }; static const char * const mcu_src[] = { "ck_hsi", "ck_hse", "ck_csi", "pll3_p" }; static const char * const sdmmc12_src[] = { "ck_axi", "pll3_r", "pll4_p", "ck_hsi" }; static const char * const sdmmc3_src[] = { "ck_mcu", "pll3_r", "pll4_p", "ck_hsi" }; static const char * const fmc_src[] = { "ck_axi", "pll3_r", "pll4_p", "ck_per" }; static const char * const qspi_src[] = { "ck_axi", "pll3_r", "pll4_p", "ck_per" }; static const char * const eth_src[] = { "pll4_p", "pll3_q" }; static const struct clk_parent_data ethrx_src[] = { { .name = "ethck_k", .fw_name = "ETH_RX_CLK/ETH_REF_CLK" }, }; static const char * const rng_src[] = { "ck_csi", "pll4_r", "ck_lse", "ck_lsi" }; static const char * const usbphy_src[] = { "ck_hse", "pll4_r", "clk-hse-div2" }; static const char * const usbo_src[] = { "pll4_r", "ck_usbo_48m" }; static const char * const stgen_src[] = { "ck_hsi", "ck_hse" }; static const char * const spdif_src[] = { "pll4_p", "pll3_q", "ck_hsi" }; static const char * const spi123_src[] = { "pll4_p", "pll3_q", "i2s_ckin", "ck_per", "pll3_r" }; static const char * const spi45_src[] = { "pclk2", "pll4_q", "ck_hsi", "ck_csi", "ck_hse" }; static const char * const spi6_src[] = { "pclk5", "pll4_q", "ck_hsi", "ck_csi", "ck_hse", "pll3_q" }; static const char * const cec_src[] = { "ck_lse", "ck_lsi", "ck_csi" }; static const char * const i2c12_src[] = { "pclk1", "pll4_r", "ck_hsi", "ck_csi" }; static const char * const i2c35_src[] = { "pclk1", "pll4_r", "ck_hsi", "ck_csi" }; static const char * const i2c46_src[] = { "pclk5", "pll3_q", "ck_hsi", "ck_csi" }; static const char * const lptim1_src[] = { "pclk1", "pll4_p", "pll3_q", "ck_lse", "ck_lsi", "ck_per" }; static const char * const lptim23_src[] = { "pclk3", "pll4_q", "ck_per", "ck_lse", "ck_lsi" }; static const char * const lptim45_src[] = { "pclk3", "pll4_p", "pll3_q", "ck_lse", "ck_lsi", "ck_per" }; static const char * const usart1_src[] = { "pclk5", "pll3_q", "ck_hsi", "ck_csi", "pll4_q", "ck_hse" }; static const char * const usart234578_src[] = { "pclk1", "pll4_q", "ck_hsi", "ck_csi", "ck_hse" }; static const char * const usart6_src[] = { "pclk2", "pll4_q", "ck_hsi", "ck_csi", "ck_hse" }; static const char * const fdcan_src[] = { "ck_hse", "pll3_q", "pll4_q", "pll4_r" }; static const char * const sai_src[] = { "pll4_q", "pll3_q", "i2s_ckin", "ck_per", "pll3_r" }; static const char * const sai2_src[] = { "pll4_q", "pll3_q", "i2s_ckin", "ck_per", "spdif_ck_symb", "pll3_r" }; static const char * const adc12_src[] = { "pll4_r", "ck_per", "pll3_q" }; static const char * const dsi_src[] = { "ck_dsi_phy", "pll4_p" }; static const char * const rtc_src[] = { "off", "ck_lse", "ck_lsi", "ck_hse" }; static const char * const mco1_src[] = { "ck_hsi", "ck_hse", "ck_csi", "ck_lsi", "ck_lse" }; static const char * const mco2_src[] = { "ck_mpu", "ck_axi", "ck_mcu", "pll4_p", "ck_hse", "ck_hsi" }; static const char * const ck_trace_src[] = { "ck_axi" }; static const struct clk_div_table axi_div_table[] = { { 0, 1 }, { 1, 2 }, { 2, 3 }, { 3, 4 }, { 4, 4 }, { 5, 4 }, { 6, 4 }, { 7, 4 }, { 0 }, }; static const struct clk_div_table mcu_div_table[] = { { 0, 1 }, { 1, 2 }, { 2, 4 }, { 3, 8 }, { 4, 16 }, { 5, 32 }, { 6, 64 }, { 7, 128 }, { 8, 256 }, { 9, 512 }, { 10, 512}, { 11, 512 }, { 12, 512 }, { 13, 512 }, { 14, 512}, { 15, 512 }, { 0 }, }; static const struct clk_div_table apb_div_table[] = { { 0, 1 }, { 1, 2 }, { 2, 4 }, { 3, 8 }, { 4, 16 }, { 5, 16 }, { 6, 16 }, { 7, 16 }, { 0 }, }; static const struct clk_div_table ck_trace_div_table[] = { { 0, 1 }, { 1, 2 }, { 2, 4 }, { 3, 8 }, { 4, 16 }, { 5, 16 }, { 6, 16 }, { 7, 16 }, { 0 }, }; #define MAX_MUX_CLK 2 struct stm32_mmux { u8 nbr_clk; struct clk_hw *hws[MAX_MUX_CLK]; }; struct stm32_clk_mmux { struct clk_mux mux; struct stm32_mmux *mmux; }; struct stm32_mgate { u8 nbr_clk; u32 flag; }; struct stm32_clk_mgate { struct clk_gate gate; struct stm32_mgate *mgate; u32 mask; }; struct clock_config { u32 id; const char *name; const char *parent_name; const char * const *parent_names; const struct clk_parent_data *parent_data; int num_parents; unsigned long flags; void *cfg; struct clk_hw * (*func)(struct device *dev, struct clk_hw_onecell_data *clk_data, void __iomem *base, spinlock_t *lock, const struct clock_config *cfg); }; #define NO_ID ~0 struct gate_cfg { u32 reg_off; u8 bit_idx; u8 gate_flags; }; struct fixed_factor_cfg { unsigned int mult; unsigned int div; }; struct div_cfg { u32 reg_off; u8 shift; u8 width; u8 div_flags; const struct clk_div_table *table; }; struct mux_cfg { u32 reg_off; u8 shift; u8 width; u8 mux_flags; u32 *table; }; struct stm32_gate_cfg { struct gate_cfg *gate; struct stm32_mgate *mgate; const struct clk_ops *ops; }; struct stm32_div_cfg { struct div_cfg *div; const struct clk_ops *ops; }; struct stm32_mux_cfg { struct mux_cfg *mux; struct stm32_mmux *mmux; const struct clk_ops *ops; }; /* STM32 Composite clock */ struct stm32_composite_cfg { const struct stm32_gate_cfg *gate; const struct stm32_div_cfg *div; const struct stm32_mux_cfg *mux; }; static struct clk_hw * _clk_hw_register_gate(struct device *dev, struct clk_hw_onecell_data *clk_data, void __iomem *base, spinlock_t *lock, const struct clock_config *cfg) { struct gate_cfg *gate_cfg = cfg->cfg; return clk_hw_register_gate(dev, cfg->name, cfg->parent_name, cfg->flags, gate_cfg->reg_off + base, gate_cfg->bit_idx, gate_cfg->gate_flags, lock); } static struct clk_hw * _clk_hw_register_fixed_factor(struct device *dev, struct clk_hw_onecell_data *clk_data, void __iomem *base, spinlock_t *lock, const struct clock_config *cfg) { struct fixed_factor_cfg *ff_cfg = cfg->cfg; return clk_hw_register_fixed_factor(dev, cfg->name, cfg->parent_name, cfg->flags, ff_cfg->mult, ff_cfg->div); } static struct clk_hw * _clk_hw_register_divider_table(struct device *dev, struct clk_hw_onecell_data *clk_data, void __iomem *base, spinlock_t *lock, const struct clock_config *cfg) { struct div_cfg *div_cfg = cfg->cfg; return clk_hw_register_divider_table(dev, cfg->name, cfg->parent_name, cfg->flags, div_cfg->reg_off + base, div_cfg->shift, div_cfg->width, div_cfg->div_flags, div_cfg->table, lock); } static struct clk_hw * _clk_hw_register_mux(struct device *dev, struct clk_hw_onecell_data *clk_data, void __iomem *base, spinlock_t *lock, const struct clock_config *cfg) { struct mux_cfg *mux_cfg = cfg->cfg; return clk_hw_register_mux(dev, cfg->name, cfg->parent_names, cfg->num_parents, cfg->flags, mux_cfg->reg_off + base, mux_cfg->shift, mux_cfg->width, mux_cfg->mux_flags, lock); } /* MP1 Gate clock with set & clear registers */ static int mp1_gate_clk_enable(struct clk_hw *hw) { if (!clk_gate_ops.is_enabled(hw)) clk_gate_ops.enable(hw); return 0; } static void mp1_gate_clk_disable(struct clk_hw *hw) { struct clk_gate *gate = to_clk_gate(hw); unsigned long flags = 0; if (clk_gate_ops.is_enabled(hw)) { spin_lock_irqsave(gate->lock, flags); writel_relaxed(BIT(gate->bit_idx), gate->reg + RCC_CLR); spin_unlock_irqrestore(gate->lock, flags); } } static const struct clk_ops mp1_gate_clk_ops = { .enable = mp1_gate_clk_enable, .disable = mp1_gate_clk_disable, .is_enabled = clk_gate_is_enabled, }; static struct clk_hw *_get_stm32_mux(struct device *dev, void __iomem *base, const struct stm32_mux_cfg *cfg, spinlock_t *lock) { struct stm32_clk_mmux *mmux; struct clk_mux *mux; struct clk_hw *mux_hw; if (cfg->mmux) { mmux = devm_kzalloc(dev, sizeof(*mmux), GFP_KERNEL); if (!mmux) return ERR_PTR(-ENOMEM); mmux->mux.reg = cfg->mux->reg_off + base; mmux->mux.shift = cfg->mux->shift; mmux->mux.mask = (1 << cfg->mux->width) - 1; mmux->mux.flags = cfg->mux->mux_flags; mmux->mux.table = cfg->mux->table; mmux->mux.lock = lock; mmux->mmux = cfg->mmux; mux_hw = &mmux->mux.hw; cfg->mmux->hws[cfg->mmux->nbr_clk++] = mux_hw; } else { mux = devm_kzalloc(dev, sizeof(*mux), GFP_KERNEL); if (!mux) return ERR_PTR(-ENOMEM); mux->reg = cfg->mux->reg_off + base; mux->shift = cfg->mux->shift; mux->mask = (1 << cfg->mux->width) - 1; mux->flags = cfg->mux->mux_flags; mux->table = cfg->mux->table; mux->lock = lock; mux_hw = &mux->hw; } return mux_hw; } static struct clk_hw *_get_stm32_div(struct device *dev, void __iomem *base, const struct stm32_div_cfg *cfg, spinlock_t *lock) { struct clk_divider *div; div = devm_kzalloc(dev, sizeof(*div), GFP_KERNEL); if (!div) return ERR_PTR(-ENOMEM); div->reg = cfg->div->reg_off + base; div->shift = cfg->div->shift; div->width = cfg->div->width; div->flags = cfg->div->div_flags; div->table = cfg->div->table; div->lock = lock; return &div->hw; } static struct clk_hw *_get_stm32_gate(struct device *dev, void __iomem *base, const struct stm32_gate_cfg *cfg, spinlock_t *lock) { struct stm32_clk_mgate *mgate; struct clk_gate *gate; struct clk_hw *gate_hw; if (cfg->mgate) { mgate = devm_kzalloc(dev, sizeof(*mgate), GFP_KERNEL); if (!mgate) return ERR_PTR(-ENOMEM); mgate->gate.reg = cfg->gate->reg_off + base; mgate->gate.bit_idx = cfg->gate->bit_idx; mgate->gate.flags = cfg->gate->gate_flags; mgate->gate.lock = lock; mgate->mask = BIT(cfg->mgate->nbr_clk++); mgate->mgate = cfg->mgate; gate_hw = &mgate->gate.hw; } else { gate = devm_kzalloc(dev, sizeof(*gate), GFP_KERNEL); if (!gate) return ERR_PTR(-ENOMEM); gate->reg = cfg->gate->reg_off + base; gate->bit_idx = cfg->gate->bit_idx; gate->flags = cfg->gate->gate_flags; gate->lock = lock; gate_hw = &gate->hw; } return gate_hw; } static struct clk_hw * clk_stm32_register_gate_ops(struct device *dev, const char *name, const char *parent_name, const struct clk_parent_data *parent_data, unsigned long flags, void __iomem *base, const struct stm32_gate_cfg *cfg, spinlock_t *lock) { struct clk_init_data init = { NULL }; struct clk_hw *hw; int ret; init.name = name; if (parent_name) init.parent_names = &parent_name; if (parent_data) init.parent_data = parent_data; init.num_parents = 1; init.flags = flags; init.ops = &clk_gate_ops; if (cfg->ops) init.ops = cfg->ops; hw = _get_stm32_gate(dev, base, cfg, lock); if (IS_ERR(hw)) return ERR_PTR(-ENOMEM); hw->init = &init; ret = clk_hw_register(dev, hw); if (ret) hw = ERR_PTR(ret); return hw; } static struct clk_hw * clk_stm32_register_composite(struct device *dev, const char *name, const char * const *parent_names, const struct clk_parent_data *parent_data, int num_parents, void __iomem *base, const struct stm32_composite_cfg *cfg, unsigned long flags, spinlock_t *lock) { const struct clk_ops *mux_ops, *div_ops, *gate_ops; struct clk_hw *mux_hw, *div_hw, *gate_hw; mux_hw = NULL; div_hw = NULL; gate_hw = NULL; mux_ops = NULL; div_ops = NULL; gate_ops = NULL; if (cfg->mux) { mux_hw = _get_stm32_mux(dev, base, cfg->mux, lock); if (!IS_ERR(mux_hw)) { mux_ops = &clk_mux_ops; if (cfg->mux->ops) mux_ops = cfg->mux->ops; } } if (cfg->div) { div_hw = _get_stm32_div(dev, base, cfg->div, lock); if (!IS_ERR(div_hw)) { div_ops = &clk_divider_ops; if (cfg->div->ops) div_ops = cfg->div->ops; } } if (cfg->gate) { gate_hw = _get_stm32_gate(dev, base, cfg->gate, lock); if (!IS_ERR(gate_hw)) { gate_ops = &clk_gate_ops; if (cfg->gate->ops) gate_ops = cfg->gate->ops; } } return clk_hw_register_composite(dev, name, parent_names, num_parents, mux_hw, mux_ops, div_hw, div_ops, gate_hw, gate_ops, flags); } #define to_clk_mgate(_gate) container_of(_gate, struct stm32_clk_mgate, gate) static int mp1_mgate_clk_enable(struct clk_hw *hw) { struct clk_gate *gate = to_clk_gate(hw); struct stm32_clk_mgate *clk_mgate = to_clk_mgate(gate); clk_mgate->mgate->flag |= clk_mgate->mask; mp1_gate_clk_enable(hw); return 0; } static void mp1_mgate_clk_disable(struct clk_hw *hw) { struct clk_gate *gate = to_clk_gate(hw); struct stm32_clk_mgate *clk_mgate = to_clk_mgate(gate); clk_mgate->mgate->flag &= ~clk_mgate->mask; if (clk_mgate->mgate->flag == 0) mp1_gate_clk_disable(hw); } static const struct clk_ops mp1_mgate_clk_ops = { .enable = mp1_mgate_clk_enable, .disable = mp1_mgate_clk_disable, .is_enabled = clk_gate_is_enabled, }; #define to_clk_mmux(_mux) container_of(_mux, struct stm32_clk_mmux, mux) static u8 clk_mmux_get_parent(struct clk_hw *hw) { return clk_mux_ops.get_parent(hw); } static int clk_mmux_set_parent(struct clk_hw *hw, u8 index) { struct clk_mux *mux = to_clk_mux(hw); struct stm32_clk_mmux *clk_mmux = to_clk_mmux(mux); struct clk_hw *hwp; int ret, n; ret = clk_mux_ops.set_parent(hw, index); if (ret) return ret; hwp = clk_hw_get_parent(hw); for (n = 0; n < clk_mmux->mmux->nbr_clk; n++) if (clk_mmux->mmux->hws[n] != hw) clk_hw_reparent(clk_mmux->mmux->hws[n], hwp); return 0; } static const struct clk_ops clk_mmux_ops = { .get_parent = clk_mmux_get_parent, .set_parent = clk_mmux_set_parent, .determine_rate = __clk_mux_determine_rate, }; /* STM32 PLL */ struct stm32_pll_obj { /* lock pll enable/disable registers */ spinlock_t *lock; void __iomem *reg; struct clk_hw hw; struct clk_mux mux; }; #define to_pll(_hw) container_of(_hw, struct stm32_pll_obj, hw) #define PLL_ON BIT(0) #define PLL_RDY BIT(1) #define DIVN_MASK 0x1FF #define DIVM_MASK 0x3F #define DIVM_SHIFT 16 #define DIVN_SHIFT 0 #define FRAC_OFFSET 0xC #define FRAC_MASK 0x1FFF #define FRAC_SHIFT 3 #define FRACLE BIT(16) #define PLL_MUX_SHIFT 0 #define PLL_MUX_MASK 3 static int __pll_is_enabled(struct clk_hw *hw) { struct stm32_pll_obj *clk_elem = to_pll(hw); return readl_relaxed(clk_elem->reg) & PLL_ON; } #define TIMEOUT 5 static int pll_enable(struct clk_hw *hw) { struct stm32_pll_obj *clk_elem = to_pll(hw); u32 reg; unsigned long flags = 0; unsigned int timeout = TIMEOUT; int bit_status = 0; spin_lock_irqsave(clk_elem->lock, flags); if (__pll_is_enabled(hw)) goto unlock; reg = readl_relaxed(clk_elem->reg); reg |= PLL_ON; writel_relaxed(reg, clk_elem->reg); /* We can't use readl_poll_timeout() because we can be blocked if * someone enables this clock before clocksource changes. * Only jiffies counter is available. Jiffies are incremented by * interruptions and enable op does not allow to be interrupted. */ do { bit_status = !(readl_relaxed(clk_elem->reg) & PLL_RDY); if (bit_status) udelay(120); } while (bit_status && --timeout); unlock: spin_unlock_irqrestore(clk_elem->lock, flags); return bit_status; } static void pll_disable(struct clk_hw *hw) { struct stm32_pll_obj *clk_elem = to_pll(hw); u32 reg; unsigned long flags = 0; spin_lock_irqsave(clk_elem->lock, flags); reg = readl_relaxed(clk_elem->reg); reg &= ~PLL_ON; writel_relaxed(reg, clk_elem->reg); spin_unlock_irqrestore(clk_elem->lock, flags); } static u32 pll_frac_val(struct clk_hw *hw) { struct stm32_pll_obj *clk_elem = to_pll(hw); u32 reg, frac = 0; reg = readl_relaxed(clk_elem->reg + FRAC_OFFSET); if (reg & FRACLE) frac = (reg >> FRAC_SHIFT) & FRAC_MASK; return frac; } static unsigned long pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct stm32_pll_obj *clk_elem = to_pll(hw); u32 reg; u32 frac, divm, divn; u64 rate, rate_frac = 0; reg = readl_relaxed(clk_elem->reg + 4); divm = ((reg >> DIVM_SHIFT) & DIVM_MASK) + 1; divn = ((reg >> DIVN_SHIFT) & DIVN_MASK) + 1; rate = (u64)parent_rate * divn; do_div(rate, divm); frac = pll_frac_val(hw); if (frac) { rate_frac = (u64)parent_rate * (u64)frac; do_div(rate_frac, (divm * 8192)); } return rate + rate_frac; } static int pll_is_enabled(struct clk_hw *hw) { struct stm32_pll_obj *clk_elem = to_pll(hw); unsigned long flags = 0; int ret; spin_lock_irqsave(clk_elem->lock, flags); ret = __pll_is_enabled(hw); spin_unlock_irqrestore(clk_elem->lock, flags); return ret; } static u8 pll_get_parent(struct clk_hw *hw) { struct stm32_pll_obj *clk_elem = to_pll(hw); struct clk_hw *mux_hw = &clk_elem->mux.hw; __clk_hw_set_clk(mux_hw, hw); return clk_mux_ops.get_parent(mux_hw); } static const struct clk_ops pll_ops = { .enable = pll_enable, .disable = pll_disable, .recalc_rate = pll_recalc_rate, .is_enabled = pll_is_enabled, .get_parent = pll_get_parent, }; static struct clk_hw *clk_register_pll(struct device *dev, const char *name, const char * const *parent_names, int num_parents, void __iomem *reg, void __iomem *mux_reg, unsigned long flags, spinlock_t *lock) { struct stm32_pll_obj *element; struct clk_init_data init; struct clk_hw *hw; int err; element = devm_kzalloc(dev, sizeof(*element), GFP_KERNEL); if (!element) return ERR_PTR(-ENOMEM); init.name = name; init.ops = &pll_ops; init.flags = flags; init.parent_names = parent_names; init.num_parents = num_parents; element->mux.lock = lock; element->mux.reg = mux_reg; element->mux.shift = PLL_MUX_SHIFT; element->mux.mask = PLL_MUX_MASK; element->mux.flags = CLK_MUX_READ_ONLY; element->mux.reg = mux_reg; element->hw.init = &init; element->reg = reg; element->lock = lock; hw = &element->hw; err = clk_hw_register(dev, hw); if (err) return ERR_PTR(err); return hw; } /* Kernel Timer */ struct timer_cker { /* lock the kernel output divider register */ spinlock_t *lock; void __iomem *apbdiv; void __iomem *timpre; struct clk_hw hw; }; #define to_timer_cker(_hw) container_of(_hw, struct timer_cker, hw) #define APB_DIV_MASK 0x07 #define TIM_PRE_MASK 0x01 static unsigned long __bestmult(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct timer_cker *tim_ker = to_timer_cker(hw); u32 prescaler; unsigned int mult = 0; prescaler = readl_relaxed(tim_ker->apbdiv) & APB_DIV_MASK; if (prescaler < 2) return 1; mult = 2; if (rate / parent_rate >= 4) mult = 4; return mult; } static long timer_ker_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { unsigned long factor = __bestmult(hw, rate, *parent_rate); return *parent_rate * factor; } static int timer_ker_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct timer_cker *tim_ker = to_timer_cker(hw); unsigned long flags = 0; unsigned long factor = __bestmult(hw, rate, parent_rate); int ret = 0; spin_lock_irqsave(tim_ker->lock, flags); switch (factor) { case 1: break; case 2: writel_relaxed(0, tim_ker->timpre); break; case 4: writel_relaxed(1, tim_ker->timpre); break; default: ret = -EINVAL; } spin_unlock_irqrestore(tim_ker->lock, flags); return ret; } static unsigned long timer_ker_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct timer_cker *tim_ker = to_timer_cker(hw); u32 prescaler, timpre; u32 mul; prescaler = readl_relaxed(tim_ker->apbdiv) & APB_DIV_MASK; timpre = readl_relaxed(tim_ker->timpre) & TIM_PRE_MASK; if (!prescaler) return parent_rate; mul = (timpre + 1) * 2; return parent_rate * mul; } static const struct clk_ops timer_ker_ops = { .recalc_rate = timer_ker_recalc_rate, .round_rate = timer_ker_round_rate, .set_rate = timer_ker_set_rate, }; static struct clk_hw *clk_register_cktim(struct device *dev, const char *name, const char *parent_name, unsigned long flags, void __iomem *apbdiv, void __iomem *timpre, spinlock_t *lock) { struct timer_cker *tim_ker; struct clk_init_data init; struct clk_hw *hw; int err; tim_ker = devm_kzalloc(dev, sizeof(*tim_ker), GFP_KERNEL); if (!tim_ker) return ERR_PTR(-ENOMEM); init.name = name; init.ops = &timer_ker_ops; init.flags = flags; init.parent_names = &parent_name; init.num_parents = 1; tim_ker->hw.init = &init; tim_ker->lock = lock; tim_ker->apbdiv = apbdiv; tim_ker->timpre = timpre; hw = &tim_ker->hw; err = clk_hw_register(dev, hw); if (err) return ERR_PTR(err); return hw; } /* The divider of RTC clock concerns only ck_hse clock */ #define HSE_RTC 3 static unsigned long clk_divider_rtc_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { if (clk_hw_get_parent(hw) == clk_hw_get_parent_by_index(hw, HSE_RTC)) return clk_divider_ops.recalc_rate(hw, parent_rate); return parent_rate; } static int clk_divider_rtc_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { if (clk_hw_get_parent(hw) == clk_hw_get_parent_by_index(hw, HSE_RTC)) return clk_divider_ops.set_rate(hw, rate, parent_rate); return parent_rate; } static int clk_divider_rtc_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { if (req->best_parent_hw == clk_hw_get_parent_by_index(hw, HSE_RTC)) return clk_divider_ops.determine_rate(hw, req); req->rate = req->best_parent_rate; return 0; } static const struct clk_ops rtc_div_clk_ops = { .recalc_rate = clk_divider_rtc_recalc_rate, .set_rate = clk_divider_rtc_set_rate, .determine_rate = clk_divider_rtc_determine_rate }; struct stm32_pll_cfg { u32 offset; u32 muxoff; }; static struct clk_hw *_clk_register_pll(struct device *dev, struct clk_hw_onecell_data *clk_data, void __iomem *base, spinlock_t *lock, const struct clock_config *cfg) { struct stm32_pll_cfg *stm_pll_cfg = cfg->cfg; return clk_register_pll(dev, cfg->name, cfg->parent_names, cfg->num_parents, base + stm_pll_cfg->offset, base + stm_pll_cfg->muxoff, cfg->flags, lock); } struct stm32_cktim_cfg { u32 offset_apbdiv; u32 offset_timpre; }; static struct clk_hw *_clk_register_cktim(struct device *dev, struct clk_hw_onecell_data *clk_data, void __iomem *base, spinlock_t *lock, const struct clock_config *cfg) { struct stm32_cktim_cfg *cktim_cfg = cfg->cfg; return clk_register_cktim(dev, cfg->name, cfg->parent_name, cfg->flags, cktim_cfg->offset_apbdiv + base, cktim_cfg->offset_timpre + base, lock); } static struct clk_hw * _clk_stm32_register_gate(struct device *dev, struct clk_hw_onecell_data *clk_data, void __iomem *base, spinlock_t *lock, const struct clock_config *cfg) { return clk_stm32_register_gate_ops(dev, cfg->name, cfg->parent_name, cfg->parent_data, cfg->flags, base, cfg->cfg, lock); } static struct clk_hw * _clk_stm32_register_composite(struct device *dev, struct clk_hw_onecell_data *clk_data, void __iomem *base, spinlock_t *lock, const struct clock_config *cfg) { return clk_stm32_register_composite(dev, cfg->name, cfg->parent_names, cfg->parent_data, cfg->num_parents, base, cfg->cfg, cfg->flags, lock); } #define GATE(_id, _name, _parent, _flags, _offset, _bit_idx, _gate_flags)\ {\ .id = _id,\ .name = _name,\ .parent_name = _parent,\ .flags = _flags,\ .cfg = &(struct gate_cfg) {\ .reg_off = _offset,\ .bit_idx = _bit_idx,\ .gate_flags = _gate_flags,\ },\ .func = _clk_hw_register_gate,\ } #define FIXED_FACTOR(_id, _name, _parent, _flags, _mult, _div)\ {\ .id = _id,\ .name = _name,\ .parent_name = _parent,\ .flags = _flags,\ .cfg = &(struct fixed_factor_cfg) {\ .mult = _mult,\ .div = _div,\ },\ .func = _clk_hw_register_fixed_factor,\ } #define DIV_TABLE(_id, _name, _parent, _flags, _offset, _shift, _width,\ _div_flags, _div_table)\ {\ .id = _id,\ .name = _name,\ .parent_name = _parent,\ .flags = _flags,\ .cfg = &(struct div_cfg) {\ .reg_off = _offset,\ .shift = _shift,\ .width = _width,\ .div_flags = _div_flags,\ .table = _div_table,\ },\ .func = _clk_hw_register_divider_table,\ } #define DIV(_id, _name, _parent, _flags, _offset, _shift, _width, _div_flags)\ DIV_TABLE(_id, _name, _parent, _flags, _offset, _shift, _width,\ _div_flags, NULL) #define MUX(_id, _name, _parents, _flags, _offset, _shift, _width, _mux_flags)\ {\ .id = _id,\ .name = _name,\ .parent_names = _parents,\ .num_parents = ARRAY_SIZE(_parents),\ .flags = _flags,\ .cfg = &(struct mux_cfg) {\ .reg_off = _offset,\ .shift = _shift,\ .width = _width,\ .mux_flags = _mux_flags,\ },\ .func = _clk_hw_register_mux,\ } #define PLL(_id, _name, _parents, _flags, _offset_p, _offset_mux)\ {\ .id = _id,\ .name = _name,\ .parent_names = _parents,\ .num_parents = ARRAY_SIZE(_parents),\ .flags = CLK_IGNORE_UNUSED | (_flags),\ .cfg = &(struct stm32_pll_cfg) {\ .offset = _offset_p,\ .muxoff = _offset_mux,\ },\ .func = _clk_register_pll,\ } #define STM32_CKTIM(_name, _parent, _flags, _offset_apbdiv, _offset_timpre)\ {\ .id = NO_ID,\ .name = _name,\ .parent_name = _parent,\ .flags = _flags,\ .cfg = &(struct stm32_cktim_cfg) {\ .offset_apbdiv = _offset_apbdiv,\ .offset_timpre = _offset_timpre,\ },\ .func = _clk_register_cktim,\ } #define STM32_TIM(_id, _name, _parent, _offset_set, _bit_idx)\ GATE_MP1(_id, _name, _parent, CLK_SET_RATE_PARENT,\ _offset_set, _bit_idx, 0) /* STM32 GATE */ #define STM32_GATE(_id, _name, _parent, _flags, _gate)\ {\ .id = _id,\ .name = _name,\ .parent_name = _parent,\ .flags = _flags,\ .cfg = (struct stm32_gate_cfg *) {_gate},\ .func = _clk_stm32_register_gate,\ } #define STM32_GATE_PDATA(_id, _name, _parent, _flags, _gate)\ {\ .id = _id,\ .name = _name,\ .parent_data = _parent,\ .flags = _flags,\ .cfg = (struct stm32_gate_cfg *) {_gate},\ .func = _clk_stm32_register_gate,\ } #define _STM32_GATE(_gate_offset, _gate_bit_idx, _gate_flags, _mgate, _ops)\ (&(struct stm32_gate_cfg) {\ &(struct gate_cfg) {\ .reg_off = _gate_offset,\ .bit_idx = _gate_bit_idx,\ .gate_flags = _gate_flags,\ },\ .mgate = _mgate,\ .ops = _ops,\ }) #define _STM32_MGATE(_mgate)\ (&per_gate_cfg[_mgate]) #define _GATE(_gate_offset, _gate_bit_idx, _gate_flags)\ _STM32_GATE(_gate_offset, _gate_bit_idx, _gate_flags,\ NULL, NULL)\ #define _GATE_MP1(_gate_offset, _gate_bit_idx, _gate_flags)\ _STM32_GATE(_gate_offset, _gate_bit_idx, _gate_flags,\ NULL, &mp1_gate_clk_ops)\ #define _MGATE_MP1(_mgate)\ .gate = &per_gate_cfg[_mgate] #define GATE_MP1(_id, _name, _parent, _flags, _offset, _bit_idx, _gate_flags)\ STM32_GATE(_id, _name, _parent, _flags,\ _GATE_MP1(_offset, _bit_idx, _gate_flags)) #define MGATE_MP1(_id, _name, _parent, _flags, _mgate)\ STM32_GATE(_id, _name, _parent, _flags,\ _STM32_MGATE(_mgate)) #define MGATE_MP1_PDATA(_id, _name, _parent, _flags, _mgate)\ STM32_GATE_PDATA(_id, _name, _parent, _flags,\ _STM32_MGATE(_mgate)) #define _STM32_DIV(_div_offset, _div_shift, _div_width,\ _div_flags, _div_table, _ops)\ .div = &(struct stm32_div_cfg) {\ &(struct div_cfg) {\ .reg_off = _div_offset,\ .shift = _div_shift,\ .width = _div_width,\ .div_flags = _div_flags,\ .table = _div_table,\ },\ .ops = _ops,\ } #define _DIV(_div_offset, _div_shift, _div_width, _div_flags, _div_table)\ _STM32_DIV(_div_offset, _div_shift, _div_width,\ _div_flags, _div_table, NULL)\ #define _DIV_RTC(_div_offset, _div_shift, _div_width, _div_flags, _div_table)\ _STM32_DIV(_div_offset, _div_shift, _div_width,\ _div_flags, _div_table, &rtc_div_clk_ops) #define _STM32_MUX(_offset, _shift, _width, _mux_flags, _mmux, _ops)\ .mux = &(struct stm32_mux_cfg) {\ &(struct mux_cfg) {\ .reg_off = _offset,\ .shift = _shift,\ .width = _width,\ .mux_flags = _mux_flags,\ .table = NULL,\ },\ .mmux = _mmux,\ .ops = _ops,\ } #define _MUX(_offset, _shift, _width, _mux_flags)\ _STM32_MUX(_offset, _shift, _width, _mux_flags, NULL, NULL)\ #define _MMUX(_mmux) .mux = &ker_mux_cfg[_mmux] #define PARENT(_parent) ((const char *[]) { _parent}) #define _NO_MUX .mux = NULL #define _NO_DIV .div = NULL #define _NO_GATE .gate = NULL #define COMPOSITE(_id, _name, _parents, _flags, _gate, _mux, _div)\ {\ .id = _id,\ .name = _name,\ .parent_names = _parents,\ .num_parents = ARRAY_SIZE(_parents),\ .flags = _flags,\ .cfg = &(struct stm32_composite_cfg) {\ _gate,\ _mux,\ _div,\ },\ .func = _clk_stm32_register_composite,\ } #define PCLK(_id, _name, _parent, _flags, _mgate)\ MGATE_MP1(_id, _name, _parent, _flags, _mgate) #define PCLK_PDATA(_id, _name, _parent, _flags, _mgate)\ MGATE_MP1_PDATA(_id, _name, _parent, _flags, _mgate) #define KCLK(_id, _name, _parents, _flags, _mgate, _mmux)\ COMPOSITE(_id, _name, _parents, CLK_OPS_PARENT_ENABLE |\ CLK_SET_RATE_NO_REPARENT | _flags,\ _MGATE_MP1(_mgate),\ _MMUX(_mmux),\ _NO_DIV) enum { G_SAI1, G_SAI2, G_SAI3, G_SAI4, G_SPI1, G_SPI2, G_SPI3, G_SPI4, G_SPI5, G_SPI6, G_SPDIF, G_I2C1, G_I2C2, G_I2C3, G_I2C4, G_I2C5, G_I2C6, G_USART2, G_UART4, G_USART3, G_UART5, G_USART1, G_USART6, G_UART7, G_UART8, G_LPTIM1, G_LPTIM2, G_LPTIM3, G_LPTIM4, G_LPTIM5, G_LTDC, G_DSI, G_QSPI, G_FMC, G_SDMMC1, G_SDMMC2, G_SDMMC3, G_USBO, G_USBPHY, G_RNG1, G_RNG2, G_FDCAN, G_DAC12, G_CEC, G_ADC12, G_GPU, G_STGEN, G_DFSDM, G_ADFSDM, G_TIM2, G_TIM3, G_TIM4, G_TIM5, G_TIM6, G_TIM7, G_TIM12, G_TIM13, G_TIM14, G_MDIO, G_TIM1, G_TIM8, G_TIM15, G_TIM16, G_TIM17, G_SYSCFG, G_VREF, G_TMPSENS, G_PMBCTRL, G_HDP, G_IWDG2, G_STGENRO, G_DMA1, G_DMA2, G_DMAMUX, G_DCMI, G_CRYP2, G_HASH2, G_CRC2, G_HSEM, G_IPCC, G_GPIOA, G_GPIOB, G_GPIOC, G_GPIOD, G_GPIOE, G_GPIOF, G_GPIOG, G_GPIOH, G_GPIOI, G_GPIOJ, G_GPIOK, G_MDMA, G_ETHCK, G_ETHTX, G_ETHRX, G_ETHMAC, G_CRC1, G_USBH, G_ETHSTP, G_RTCAPB, G_TZC1, G_TZC2, G_TZPC, G_IWDG1, G_BSEC, G_GPIOZ, G_CRYP1, G_HASH1, G_BKPSRAM, G_DDRPERFM, G_LAST }; static struct stm32_mgate mp1_mgate[G_LAST]; #define _K_GATE(_id, _gate_offset, _gate_bit_idx, _gate_flags,\ _mgate, _ops)\ [_id] = {\ &(struct gate_cfg) {\ .reg_off = _gate_offset,\ .bit_idx = _gate_bit_idx,\ .gate_flags = _gate_flags,\ },\ .mgate = _mgate,\ .ops = _ops,\ } #define K_GATE(_id, _gate_offset, _gate_bit_idx, _gate_flags)\ _K_GATE(_id, _gate_offset, _gate_bit_idx, _gate_flags,\ NULL, &mp1_gate_clk_ops) #define K_MGATE(_id, _gate_offset, _gate_bit_idx, _gate_flags)\ _K_GATE(_id, _gate_offset, _gate_bit_idx, _gate_flags,\ &mp1_mgate[_id], &mp1_mgate_clk_ops) /* Peripheral gates */ static struct stm32_gate_cfg per_gate_cfg[G_LAST] = { /* Multi gates */ K_GATE(G_MDIO, RCC_APB1ENSETR, 31, 0), K_MGATE(G_DAC12, RCC_APB1ENSETR, 29, 0), K_MGATE(G_CEC, RCC_APB1ENSETR, 27, 0), K_MGATE(G_SPDIF, RCC_APB1ENSETR, 26, 0), K_MGATE(G_I2C5, RCC_APB1ENSETR, 24, 0), K_MGATE(G_I2C3, RCC_APB1ENSETR, 23, 0), K_MGATE(G_I2C2, RCC_APB1ENSETR, 22, 0), K_MGATE(G_I2C1, RCC_APB1ENSETR, 21, 0), K_MGATE(G_UART8, RCC_APB1ENSETR, 19, 0), K_MGATE(G_UART7, RCC_APB1ENSETR, 18, 0), K_MGATE(G_UART5, RCC_APB1ENSETR, 17, 0), K_MGATE(G_UART4, RCC_APB1ENSETR, 16, 0), K_MGATE(G_USART3, RCC_APB1ENSETR, 15, 0), K_MGATE(G_USART2, RCC_APB1ENSETR, 14, 0), K_MGATE(G_SPI3, RCC_APB1ENSETR, 12, 0), K_MGATE(G_SPI2, RCC_APB1ENSETR, 11, 0), K_MGATE(G_LPTIM1, RCC_APB1ENSETR, 9, 0), K_GATE(G_TIM14, RCC_APB1ENSETR, 8, 0), K_GATE(G_TIM13, RCC_APB1ENSETR, 7, 0), K_GATE(G_TIM12, RCC_APB1ENSETR, 6, 0), K_GATE(G_TIM7, RCC_APB1ENSETR, 5, 0), K_GATE(G_TIM6, RCC_APB1ENSETR, 4, 0), K_GATE(G_TIM5, RCC_APB1ENSETR, 3, 0), K_GATE(G_TIM4, RCC_APB1ENSETR, 2, 0), K_GATE(G_TIM3, RCC_APB1ENSETR, 1, 0), K_GATE(G_TIM2, RCC_APB1ENSETR, 0, 0), K_MGATE(G_FDCAN, RCC_APB2ENSETR, 24, 0), K_GATE(G_ADFSDM, RCC_APB2ENSETR, 21, 0), K_GATE(G_DFSDM, RCC_APB2ENSETR, 20, 0), K_MGATE(G_SAI3, RCC_APB2ENSETR, 18, 0), K_MGATE(G_SAI2, RCC_APB2ENSETR, 17, 0), K_MGATE(G_SAI1, RCC_APB2ENSETR, 16, 0), K_MGATE(G_USART6, RCC_APB2ENSETR, 13, 0), K_MGATE(G_SPI5, RCC_APB2ENSETR, 10, 0), K_MGATE(G_SPI4, RCC_APB2ENSETR, 9, 0), K_MGATE(G_SPI1, RCC_APB2ENSETR, 8, 0), K_GATE(G_TIM17, RCC_APB2ENSETR, 4, 0), K_GATE(G_TIM16, RCC_APB2ENSETR, 3, 0), K_GATE(G_TIM15, RCC_APB2ENSETR, 2, 0), K_GATE(G_TIM8, RCC_APB2ENSETR, 1, 0), K_GATE(G_TIM1, RCC_APB2ENSETR, 0, 0), K_GATE(G_HDP, RCC_APB3ENSETR, 20, 0), K_GATE(G_PMBCTRL, RCC_APB3ENSETR, 17, 0), K_GATE(G_TMPSENS, RCC_APB3ENSETR, 16, 0), K_GATE(G_VREF, RCC_APB3ENSETR, 13, 0), K_GATE(G_SYSCFG, RCC_APB3ENSETR, 11, 0), K_MGATE(G_SAI4, RCC_APB3ENSETR, 8, 0), K_MGATE(G_LPTIM5, RCC_APB3ENSETR, 3, 0), K_MGATE(G_LPTIM4, RCC_APB3ENSETR, 2, 0), K_MGATE(G_LPTIM3, RCC_APB3ENSETR, 1, 0), K_MGATE(G_LPTIM2, RCC_APB3ENSETR, 0, 0), K_GATE(G_STGENRO, RCC_APB4ENSETR, 20, 0), K_MGATE(G_USBPHY, RCC_APB4ENSETR, 16, 0), K_GATE(G_IWDG2, RCC_APB4ENSETR, 15, 0), K_GATE(G_DDRPERFM, RCC_APB4ENSETR, 8, 0), K_MGATE(G_DSI, RCC_APB4ENSETR, 4, 0), K_MGATE(G_LTDC, RCC_APB4ENSETR, 0, 0), K_GATE(G_STGEN, RCC_APB5ENSETR, 20, 0), K_GATE(G_BSEC, RCC_APB5ENSETR, 16, 0), K_GATE(G_IWDG1, RCC_APB5ENSETR, 15, 0), K_GATE(G_TZPC, RCC_APB5ENSETR, 13, 0), K_GATE(G_TZC2, RCC_APB5ENSETR, 12, 0), K_GATE(G_TZC1, RCC_APB5ENSETR, 11, 0), K_GATE(G_RTCAPB, RCC_APB5ENSETR, 8, 0), K_MGATE(G_USART1, RCC_APB5ENSETR, 4, 0), K_MGATE(G_I2C6, RCC_APB5ENSETR, 3, 0), K_MGATE(G_I2C4, RCC_APB5ENSETR, 2, 0), K_MGATE(G_SPI6, RCC_APB5ENSETR, 0, 0), K_MGATE(G_SDMMC3, RCC_AHB2ENSETR, 16, 0), K_MGATE(G_USBO, RCC_AHB2ENSETR, 8, 0), K_MGATE(G_ADC12, RCC_AHB2ENSETR, 5, 0), K_GATE(G_DMAMUX, RCC_AHB2ENSETR, 2, 0), K_GATE(G_DMA2, RCC_AHB2ENSETR, 1, 0), K_GATE(G_DMA1, RCC_AHB2ENSETR, 0, 0), K_GATE(G_IPCC, RCC_AHB3ENSETR, 12, 0), K_GATE(G_HSEM, RCC_AHB3ENSETR, 11, 0), K_GATE(G_CRC2, RCC_AHB3ENSETR, 7, 0), K_MGATE(G_RNG2, RCC_AHB3ENSETR, 6, 0), K_GATE(G_HASH2, RCC_AHB3ENSETR, 5, 0), K_GATE(G_CRYP2, RCC_AHB3ENSETR, 4, 0), K_GATE(G_DCMI, RCC_AHB3ENSETR, 0, 0), K_GATE(G_GPIOK, RCC_AHB4ENSETR, 10, 0), K_GATE(G_GPIOJ, RCC_AHB4ENSETR, 9, 0), K_GATE(G_GPIOI, RCC_AHB4ENSETR, 8, 0), K_GATE(G_GPIOH, RCC_AHB4ENSETR, 7, 0), K_GATE(G_GPIOG, RCC_AHB4ENSETR, 6, 0), K_GATE(G_GPIOF, RCC_AHB4ENSETR, 5, 0), K_GATE(G_GPIOE, RCC_AHB4ENSETR, 4, 0), K_GATE(G_GPIOD, RCC_AHB4ENSETR, 3, 0), K_GATE(G_GPIOC, RCC_AHB4ENSETR, 2, 0), K_GATE(G_GPIOB, RCC_AHB4ENSETR, 1, 0), K_GATE(G_GPIOA, RCC_AHB4ENSETR, 0, 0), K_GATE(G_BKPSRAM, RCC_AHB5ENSETR, 8, 0), K_MGATE(G_RNG1, RCC_AHB5ENSETR, 6, 0), K_GATE(G_HASH1, RCC_AHB5ENSETR, 5, 0), K_GATE(G_CRYP1, RCC_AHB5ENSETR, 4, 0), K_GATE(G_GPIOZ, RCC_AHB5ENSETR, 0, 0), K_GATE(G_USBH, RCC_AHB6ENSETR, 24, 0), K_GATE(G_CRC1, RCC_AHB6ENSETR, 20, 0), K_MGATE(G_SDMMC2, RCC_AHB6ENSETR, 17, 0), K_MGATE(G_SDMMC1, RCC_AHB6ENSETR, 16, 0), K_MGATE(G_QSPI, RCC_AHB6ENSETR, 14, 0), K_MGATE(G_FMC, RCC_AHB6ENSETR, 12, 0), K_GATE(G_ETHMAC, RCC_AHB6ENSETR, 10, 0), K_GATE(G_ETHRX, RCC_AHB6ENSETR, 9, 0), K_GATE(G_ETHTX, RCC_AHB6ENSETR, 8, 0), K_GATE(G_ETHCK, RCC_AHB6ENSETR, 7, 0), K_MGATE(G_GPU, RCC_AHB6ENSETR, 5, 0), K_GATE(G_MDMA, RCC_AHB6ENSETR, 0, 0), K_GATE(G_ETHSTP, RCC_AHB6LPENSETR, 11, 0), }; enum { M_SDMMC12, M_SDMMC3, M_FMC, M_QSPI, M_RNG1, M_RNG2, M_USBPHY, M_USBO, M_STGEN, M_SPDIF, M_SPI1, M_SPI23, M_SPI45, M_SPI6, M_CEC, M_I2C12, M_I2C35, M_I2C46, M_LPTIM1, M_LPTIM23, M_LPTIM45, M_USART1, M_UART24, M_UART35, M_USART6, M_UART78, M_SAI1, M_SAI2, M_SAI3, M_SAI4, M_DSI, M_FDCAN, M_ADC12, M_ETHCK, M_CKPER, M_LAST }; static struct stm32_mmux ker_mux[M_LAST]; #define _K_MUX(_id, _offset, _shift, _width, _mux_flags, _mmux, _ops)\ [_id] = {\ &(struct mux_cfg) {\ .reg_off = _offset,\ .shift = _shift,\ .width = _width,\ .mux_flags = _mux_flags,\ .table = NULL,\ },\ .mmux = _mmux,\ .ops = _ops,\ } #define K_MUX(_id, _offset, _shift, _width, _mux_flags)\ _K_MUX(_id, _offset, _shift, _width, _mux_flags,\ NULL, NULL) #define K_MMUX(_id, _offset, _shift, _width, _mux_flags)\ _K_MUX(_id, _offset, _shift, _width, _mux_flags,\ &ker_mux[_id], &clk_mmux_ops) static const struct stm32_mux_cfg ker_mux_cfg[M_LAST] = { /* Kernel multi mux */ K_MMUX(M_SDMMC12, RCC_SDMMC12CKSELR, 0, 3, 0), K_MMUX(M_SPI23, RCC_SPI2S23CKSELR, 0, 3, 0), K_MMUX(M_SPI45, RCC_SPI2S45CKSELR, 0, 3, 0), K_MMUX(M_I2C12, RCC_I2C12CKSELR, 0, 3, 0), K_MMUX(M_I2C35, RCC_I2C35CKSELR, 0, 3, 0), K_MMUX(M_LPTIM23, RCC_LPTIM23CKSELR, 0, 3, 0), K_MMUX(M_LPTIM45, RCC_LPTIM45CKSELR, 0, 3, 0), K_MMUX(M_UART24, RCC_UART24CKSELR, 0, 3, 0), K_MMUX(M_UART35, RCC_UART35CKSELR, 0, 3, 0), K_MMUX(M_UART78, RCC_UART78CKSELR, 0, 3, 0), K_MMUX(M_SAI1, RCC_SAI1CKSELR, 0, 3, 0), K_MMUX(M_ETHCK, RCC_ETHCKSELR, 0, 2, 0), K_MMUX(M_I2C46, RCC_I2C46CKSELR, 0, 3, 0), /* Kernel simple mux */ K_MUX(M_RNG2, RCC_RNG2CKSELR, 0, 2, 0), K_MUX(M_SDMMC3, RCC_SDMMC3CKSELR, 0, 3, 0), K_MUX(M_FMC, RCC_FMCCKSELR, 0, 2, 0), K_MUX(M_QSPI, RCC_QSPICKSELR, 0, 2, 0), K_MUX(M_USBPHY, RCC_USBCKSELR, 0, 2, 0), K_MUX(M_USBO, RCC_USBCKSELR, 4, 1, 0), K_MUX(M_SPDIF, RCC_SPDIFCKSELR, 0, 2, 0), K_MUX(M_SPI1, RCC_SPI2S1CKSELR, 0, 3, 0), K_MUX(M_CEC, RCC_CECCKSELR, 0, 2, 0), K_MUX(M_LPTIM1, RCC_LPTIM1CKSELR, 0, 3, 0), K_MUX(M_USART6, RCC_UART6CKSELR, 0, 3, 0), K_MUX(M_FDCAN, RCC_FDCANCKSELR, 0, 2, 0), K_MUX(M_SAI2, RCC_SAI2CKSELR, 0, 3, 0), K_MUX(M_SAI3, RCC_SAI3CKSELR, 0, 3, 0), K_MUX(M_SAI4, RCC_SAI4CKSELR, 0, 3, 0), K_MUX(M_ADC12, RCC_ADCCKSELR, 0, 2, 0), K_MUX(M_DSI, RCC_DSICKSELR, 0, 1, 0), K_MUX(M_CKPER, RCC_CPERCKSELR, 0, 2, 0), K_MUX(M_RNG1, RCC_RNG1CKSELR, 0, 2, 0), K_MUX(M_STGEN, RCC_STGENCKSELR, 0, 2, 0), K_MUX(M_USART1, RCC_UART1CKSELR, 0, 3, 0), K_MUX(M_SPI6, RCC_SPI6CKSELR, 0, 3, 0), }; static const struct clock_config stm32mp1_clock_cfg[] = { /* External / Internal Oscillators */ GATE_MP1(CK_HSE, "ck_hse", "clk-hse", 0, RCC_OCENSETR, 8, 0), /* ck_csi is used by IO compensation and should be critical */ GATE_MP1(CK_CSI, "ck_csi", "clk-csi", CLK_IS_CRITICAL, RCC_OCENSETR, 4, 0), COMPOSITE(CK_HSI, "ck_hsi", PARENT("clk-hsi"), 0, _GATE_MP1(RCC_OCENSETR, 0, 0), _NO_MUX, _DIV(RCC_HSICFGR, 0, 2, CLK_DIVIDER_POWER_OF_TWO | CLK_DIVIDER_READ_ONLY, NULL)), GATE(CK_LSI, "ck_lsi", "clk-lsi", 0, RCC_RDLSICR, 0, 0), GATE(CK_LSE, "ck_lse", "clk-lse", 0, RCC_BDCR, 0, 0), FIXED_FACTOR(CK_HSE_DIV2, "clk-hse-div2", "ck_hse", 0, 1, 2), /* PLLs */ PLL(PLL1, "pll1", ref12_parents, 0, RCC_PLL1CR, RCC_RCK12SELR), PLL(PLL2, "pll2", ref12_parents, 0, RCC_PLL2CR, RCC_RCK12SELR), PLL(PLL3, "pll3", ref3_parents, 0, RCC_PLL3CR, RCC_RCK3SELR), PLL(PLL4, "pll4", ref4_parents, 0, RCC_PLL4CR, RCC_RCK4SELR), /* ODF */ COMPOSITE(PLL1_P, "pll1_p", PARENT("pll1"), 0, _GATE(RCC_PLL1CR, 4, 0), _NO_MUX, _DIV(RCC_PLL1CFGR2, 0, 7, 0, NULL)), COMPOSITE(PLL2_P, "pll2_p", PARENT("pll2"), 0, _GATE(RCC_PLL2CR, 4, 0), _NO_MUX, _DIV(RCC_PLL2CFGR2, 0, 7, 0, NULL)), COMPOSITE(PLL2_Q, "pll2_q", PARENT("pll2"), 0, _GATE(RCC_PLL2CR, 5, 0), _NO_MUX, _DIV(RCC_PLL2CFGR2, 8, 7, 0, NULL)), COMPOSITE(PLL2_R, "pll2_r", PARENT("pll2"), CLK_IS_CRITICAL, _GATE(RCC_PLL2CR, 6, 0), _NO_MUX, _DIV(RCC_PLL2CFGR2, 16, 7, 0, NULL)), COMPOSITE(PLL3_P, "pll3_p", PARENT("pll3"), 0, _GATE(RCC_PLL3CR, 4, 0), _NO_MUX, _DIV(RCC_PLL3CFGR2, 0, 7, 0, NULL)), COMPOSITE(PLL3_Q, "pll3_q", PARENT("pll3"), 0, _GATE(RCC_PLL3CR, 5, 0), _NO_MUX, _DIV(RCC_PLL3CFGR2, 8, 7, 0, NULL)), COMPOSITE(PLL3_R, "pll3_r", PARENT("pll3"), 0, _GATE(RCC_PLL3CR, 6, 0), _NO_MUX, _DIV(RCC_PLL3CFGR2, 16, 7, 0, NULL)), COMPOSITE(PLL4_P, "pll4_p", PARENT("pll4"), 0, _GATE(RCC_PLL4CR, 4, 0), _NO_MUX, _DIV(RCC_PLL4CFGR2, 0, 7, 0, NULL)), COMPOSITE(PLL4_Q, "pll4_q", PARENT("pll4"), 0, _GATE(RCC_PLL4CR, 5, 0), _NO_MUX, _DIV(RCC_PLL4CFGR2, 8, 7, 0, NULL)), COMPOSITE(PLL4_R, "pll4_r", PARENT("pll4"), 0, _GATE(RCC_PLL4CR, 6, 0), _NO_MUX, _DIV(RCC_PLL4CFGR2, 16, 7, 0, NULL)), /* MUX system clocks */ MUX(CK_PER, "ck_per", per_src, CLK_OPS_PARENT_ENABLE, RCC_CPERCKSELR, 0, 2, 0), MUX(CK_MPU, "ck_mpu", cpu_src, CLK_OPS_PARENT_ENABLE | CLK_IS_CRITICAL, RCC_MPCKSELR, 0, 2, 0), COMPOSITE(CK_AXI, "ck_axi", axi_src, CLK_IS_CRITICAL | CLK_OPS_PARENT_ENABLE, _NO_GATE, _MUX(RCC_ASSCKSELR, 0, 2, 0), _DIV(RCC_AXIDIVR, 0, 3, 0, axi_div_table)), COMPOSITE(CK_MCU, "ck_mcu", mcu_src, CLK_IS_CRITICAL | CLK_OPS_PARENT_ENABLE, _NO_GATE, _MUX(RCC_MSSCKSELR, 0, 2, 0), _DIV(RCC_MCUDIVR, 0, 4, 0, mcu_div_table)), DIV_TABLE(NO_ID, "pclk1", "ck_mcu", CLK_IGNORE_UNUSED, RCC_APB1DIVR, 0, 3, CLK_DIVIDER_READ_ONLY, apb_div_table), DIV_TABLE(NO_ID, "pclk2", "ck_mcu", CLK_IGNORE_UNUSED, RCC_APB2DIVR, 0, 3, CLK_DIVIDER_READ_ONLY, apb_div_table), DIV_TABLE(NO_ID, "pclk3", "ck_mcu", CLK_IGNORE_UNUSED, RCC_APB3DIVR, 0, 3, CLK_DIVIDER_READ_ONLY, apb_div_table), DIV_TABLE(NO_ID, "pclk4", "ck_axi", CLK_IGNORE_UNUSED, RCC_APB4DIVR, 0, 3, CLK_DIVIDER_READ_ONLY, apb_div_table), DIV_TABLE(NO_ID, "pclk5", "ck_axi", CLK_IGNORE_UNUSED, RCC_APB5DIVR, 0, 3, CLK_DIVIDER_READ_ONLY, apb_div_table), /* Kernel Timers */ STM32_CKTIM("ck1_tim", "pclk1", 0, RCC_APB1DIVR, RCC_TIMG1PRER), STM32_CKTIM("ck2_tim", "pclk2", 0, RCC_APB2DIVR, RCC_TIMG2PRER), STM32_TIM(TIM2_K, "tim2_k", "ck1_tim", RCC_APB1ENSETR, 0), STM32_TIM(TIM3_K, "tim3_k", "ck1_tim", RCC_APB1ENSETR, 1), STM32_TIM(TIM4_K, "tim4_k", "ck1_tim", RCC_APB1ENSETR, 2), STM32_TIM(TIM5_K, "tim5_k", "ck1_tim", RCC_APB1ENSETR, 3), STM32_TIM(TIM6_K, "tim6_k", "ck1_tim", RCC_APB1ENSETR, 4), STM32_TIM(TIM7_K, "tim7_k", "ck1_tim", RCC_APB1ENSETR, 5), STM32_TIM(TIM12_K, "tim12_k", "ck1_tim", RCC_APB1ENSETR, 6), STM32_TIM(TIM13_K, "tim13_k", "ck1_tim", RCC_APB1ENSETR, 7), STM32_TIM(TIM14_K, "tim14_k", "ck1_tim", RCC_APB1ENSETR, 8), STM32_TIM(TIM1_K, "tim1_k", "ck2_tim", RCC_APB2ENSETR, 0), STM32_TIM(TIM8_K, "tim8_k", "ck2_tim", RCC_APB2ENSETR, 1), STM32_TIM(TIM15_K, "tim15_k", "ck2_tim", RCC_APB2ENSETR, 2), STM32_TIM(TIM16_K, "tim16_k", "ck2_tim", RCC_APB2ENSETR, 3), STM32_TIM(TIM17_K, "tim17_k", "ck2_tim", RCC_APB2ENSETR, 4), /* Peripheral clocks */ PCLK(TIM2, "tim2", "pclk1", CLK_IGNORE_UNUSED, G_TIM2), PCLK(TIM3, "tim3", "pclk1", CLK_IGNORE_UNUSED, G_TIM3), PCLK(TIM4, "tim4", "pclk1", CLK_IGNORE_UNUSED, G_TIM4), PCLK(TIM5, "tim5", "pclk1", CLK_IGNORE_UNUSED, G_TIM5), PCLK(TIM6, "tim6", "pclk1", CLK_IGNORE_UNUSED, G_TIM6), PCLK(TIM7, "tim7", "pclk1", CLK_IGNORE_UNUSED, G_TIM7), PCLK(TIM12, "tim12", "pclk1", CLK_IGNORE_UNUSED, G_TIM12), PCLK(TIM13, "tim13", "pclk1", CLK_IGNORE_UNUSED, G_TIM13), PCLK(TIM14, "tim14", "pclk1", CLK_IGNORE_UNUSED, G_TIM14), PCLK(LPTIM1, "lptim1", "pclk1", 0, G_LPTIM1), PCLK(SPI2, "spi2", "pclk1", 0, G_SPI2), PCLK(SPI3, "spi3", "pclk1", 0, G_SPI3), PCLK(USART2, "usart2", "pclk1", 0, G_USART2), PCLK(USART3, "usart3", "pclk1", 0, G_USART3), PCLK(UART4, "uart4", "pclk1", 0, G_UART4), PCLK(UART5, "uart5", "pclk1", 0, G_UART5), PCLK(UART7, "uart7", "pclk1", 0, G_UART7), PCLK(UART8, "uart8", "pclk1", 0, G_UART8), PCLK(I2C1, "i2c1", "pclk1", 0, G_I2C1), PCLK(I2C2, "i2c2", "pclk1", 0, G_I2C2), PCLK(I2C3, "i2c3", "pclk1", 0, G_I2C3), PCLK(I2C5, "i2c5", "pclk1", 0, G_I2C5), PCLK(SPDIF, "spdif", "pclk1", 0, G_SPDIF), PCLK(CEC, "cec", "pclk1", 0, G_CEC), PCLK(DAC12, "dac12", "pclk1", 0, G_DAC12), PCLK(MDIO, "mdio", "pclk1", 0, G_MDIO), PCLK(TIM1, "tim1", "pclk2", CLK_IGNORE_UNUSED, G_TIM1), PCLK(TIM8, "tim8", "pclk2", CLK_IGNORE_UNUSED, G_TIM8), PCLK(TIM15, "tim15", "pclk2", CLK_IGNORE_UNUSED, G_TIM15), PCLK(TIM16, "tim16", "pclk2", CLK_IGNORE_UNUSED, G_TIM16), PCLK(TIM17, "tim17", "pclk2", CLK_IGNORE_UNUSED, G_TIM17), PCLK(SPI1, "spi1", "pclk2", 0, G_SPI1), PCLK(SPI4, "spi4", "pclk2", 0, G_SPI4), PCLK(SPI5, "spi5", "pclk2", 0, G_SPI5), PCLK(USART6, "usart6", "pclk2", 0, G_USART6), PCLK(SAI1, "sai1", "pclk2", 0, G_SAI1), PCLK(SAI2, "sai2", "pclk2", 0, G_SAI2), PCLK(SAI3, "sai3", "pclk2", 0, G_SAI3), PCLK(DFSDM, "dfsdm", "pclk2", 0, G_DFSDM), PCLK(FDCAN, "fdcan", "pclk2", 0, G_FDCAN), PCLK(LPTIM2, "lptim2", "pclk3", 0, G_LPTIM2), PCLK(LPTIM3, "lptim3", "pclk3", 0, G_LPTIM3), PCLK(LPTIM4, "lptim4", "pclk3", 0, G_LPTIM4), PCLK(LPTIM5, "lptim5", "pclk3", 0, G_LPTIM5), PCLK(SAI4, "sai4", "pclk3", 0, G_SAI4), PCLK(SYSCFG, "syscfg", "pclk3", 0, G_SYSCFG), PCLK(VREF, "vref", "pclk3", 13, G_VREF), PCLK(TMPSENS, "tmpsens", "pclk3", 0, G_TMPSENS), PCLK(PMBCTRL, "pmbctrl", "pclk3", 0, G_PMBCTRL), PCLK(HDP, "hdp", "pclk3", 0, G_HDP), PCLK(LTDC, "ltdc", "pclk4", 0, G_LTDC), PCLK(DSI, "dsi", "pclk4", 0, G_DSI), PCLK(IWDG2, "iwdg2", "pclk4", 0, G_IWDG2), PCLK(USBPHY, "usbphy", "pclk4", 0, G_USBPHY), PCLK(STGENRO, "stgenro", "pclk4", 0, G_STGENRO), PCLK(SPI6, "spi6", "pclk5", 0, G_SPI6), PCLK(I2C4, "i2c4", "pclk5", 0, G_I2C4), PCLK(I2C6, "i2c6", "pclk5", 0, G_I2C6), PCLK(USART1, "usart1", "pclk5", 0, G_USART1), PCLK(RTCAPB, "rtcapb", "pclk5", CLK_IGNORE_UNUSED | CLK_IS_CRITICAL, G_RTCAPB), PCLK(TZC1, "tzc1", "ck_axi", CLK_IGNORE_UNUSED, G_TZC1), PCLK(TZC2, "tzc2", "ck_axi", CLK_IGNORE_UNUSED, G_TZC2), PCLK(TZPC, "tzpc", "pclk5", CLK_IGNORE_UNUSED, G_TZPC), PCLK(IWDG1, "iwdg1", "pclk5", 0, G_IWDG1), PCLK(BSEC, "bsec", "pclk5", CLK_IGNORE_UNUSED, G_BSEC), PCLK(STGEN, "stgen", "pclk5", CLK_IGNORE_UNUSED, G_STGEN), PCLK(DMA1, "dma1", "ck_mcu", 0, G_DMA1), PCLK(DMA2, "dma2", "ck_mcu", 0, G_DMA2), PCLK(DMAMUX, "dmamux", "ck_mcu", 0, G_DMAMUX), PCLK(ADC12, "adc12", "ck_mcu", 0, G_ADC12), PCLK(USBO, "usbo", "ck_mcu", 0, G_USBO), PCLK(SDMMC3, "sdmmc3", "ck_mcu", 0, G_SDMMC3), PCLK(DCMI, "dcmi", "ck_mcu", 0, G_DCMI), PCLK(CRYP2, "cryp2", "ck_mcu", 0, G_CRYP2), PCLK(HASH2, "hash2", "ck_mcu", 0, G_HASH2), PCLK(RNG2, "rng2", "ck_mcu", 0, G_RNG2), PCLK(CRC2, "crc2", "ck_mcu", 0, G_CRC2), PCLK(HSEM, "hsem", "ck_mcu", 0, G_HSEM), PCLK(IPCC, "ipcc", "ck_mcu", 0, G_IPCC), PCLK(GPIOA, "gpioa", "ck_mcu", 0, G_GPIOA), PCLK(GPIOB, "gpiob", "ck_mcu", 0, G_GPIOB), PCLK(GPIOC, "gpioc", "ck_mcu", 0, G_GPIOC), PCLK(GPIOD, "gpiod", "ck_mcu", 0, G_GPIOD), PCLK(GPIOE, "gpioe", "ck_mcu", 0, G_GPIOE), PCLK(GPIOF, "gpiof", "ck_mcu", 0, G_GPIOF), PCLK(GPIOG, "gpiog", "ck_mcu", 0, G_GPIOG), PCLK(GPIOH, "gpioh", "ck_mcu", 0, G_GPIOH), PCLK(GPIOI, "gpioi", "ck_mcu", 0, G_GPIOI), PCLK(GPIOJ, "gpioj", "ck_mcu", 0, G_GPIOJ), PCLK(GPIOK, "gpiok", "ck_mcu", 0, G_GPIOK), PCLK(GPIOZ, "gpioz", "ck_axi", CLK_IGNORE_UNUSED, G_GPIOZ), PCLK(CRYP1, "cryp1", "ck_axi", CLK_IGNORE_UNUSED, G_CRYP1), PCLK(HASH1, "hash1", "ck_axi", CLK_IGNORE_UNUSED, G_HASH1), PCLK(RNG1, "rng1", "ck_axi", 0, G_RNG1), PCLK(BKPSRAM, "bkpsram", "ck_axi", CLK_IGNORE_UNUSED, G_BKPSRAM), PCLK(MDMA, "mdma", "ck_axi", 0, G_MDMA), PCLK(GPU, "gpu", "ck_axi", 0, G_GPU), PCLK(ETHTX, "ethtx", "ck_axi", 0, G_ETHTX), PCLK_PDATA(ETHRX, "ethrx", ethrx_src, 0, G_ETHRX), PCLK(ETHMAC, "ethmac", "ck_axi", 0, G_ETHMAC), PCLK(FMC, "fmc", "ck_axi", CLK_IGNORE_UNUSED, G_FMC), PCLK(QSPI, "qspi", "ck_axi", CLK_IGNORE_UNUSED, G_QSPI), PCLK(SDMMC1, "sdmmc1", "ck_axi", 0, G_SDMMC1), PCLK(SDMMC2, "sdmmc2", "ck_axi", 0, G_SDMMC2), PCLK(CRC1, "crc1", "ck_axi", 0, G_CRC1), PCLK(USBH, "usbh", "ck_axi", 0, G_USBH), PCLK(ETHSTP, "ethstp", "ck_axi", 0, G_ETHSTP), PCLK(DDRPERFM, "ddrperfm", "pclk4", 0, G_DDRPERFM), /* Kernel clocks */ KCLK(SDMMC1_K, "sdmmc1_k", sdmmc12_src, 0, G_SDMMC1, M_SDMMC12), KCLK(SDMMC2_K, "sdmmc2_k", sdmmc12_src, 0, G_SDMMC2, M_SDMMC12), KCLK(SDMMC3_K, "sdmmc3_k", sdmmc3_src, 0, G_SDMMC3, M_SDMMC3), KCLK(FMC_K, "fmc_k", fmc_src, 0, G_FMC, M_FMC), KCLK(QSPI_K, "qspi_k", qspi_src, 0, G_QSPI, M_QSPI), KCLK(RNG1_K, "rng1_k", rng_src, 0, G_RNG1, M_RNG1), KCLK(RNG2_K, "rng2_k", rng_src, 0, G_RNG2, M_RNG2), KCLK(USBPHY_K, "usbphy_k", usbphy_src, 0, G_USBPHY, M_USBPHY), KCLK(STGEN_K, "stgen_k", stgen_src, CLK_IS_CRITICAL, G_STGEN, M_STGEN), KCLK(SPDIF_K, "spdif_k", spdif_src, 0, G_SPDIF, M_SPDIF), KCLK(SPI1_K, "spi1_k", spi123_src, 0, G_SPI1, M_SPI1), KCLK(SPI2_K, "spi2_k", spi123_src, 0, G_SPI2, M_SPI23), KCLK(SPI3_K, "spi3_k", spi123_src, 0, G_SPI3, M_SPI23), KCLK(SPI4_K, "spi4_k", spi45_src, 0, G_SPI4, M_SPI45), KCLK(SPI5_K, "spi5_k", spi45_src, 0, G_SPI5, M_SPI45), KCLK(SPI6_K, "spi6_k", spi6_src, 0, G_SPI6, M_SPI6), KCLK(CEC_K, "cec_k", cec_src, 0, G_CEC, M_CEC), KCLK(I2C1_K, "i2c1_k", i2c12_src, 0, G_I2C1, M_I2C12), KCLK(I2C2_K, "i2c2_k", i2c12_src, 0, G_I2C2, M_I2C12), KCLK(I2C3_K, "i2c3_k", i2c35_src, 0, G_I2C3, M_I2C35), KCLK(I2C5_K, "i2c5_k", i2c35_src, 0, G_I2C5, M_I2C35), KCLK(I2C4_K, "i2c4_k", i2c46_src, 0, G_I2C4, M_I2C46), KCLK(I2C6_K, "i2c6_k", i2c46_src, 0, G_I2C6, M_I2C46), KCLK(LPTIM1_K, "lptim1_k", lptim1_src, 0, G_LPTIM1, M_LPTIM1), KCLK(LPTIM2_K, "lptim2_k", lptim23_src, 0, G_LPTIM2, M_LPTIM23), KCLK(LPTIM3_K, "lptim3_k", lptim23_src, 0, G_LPTIM3, M_LPTIM23), KCLK(LPTIM4_K, "lptim4_k", lptim45_src, 0, G_LPTIM4, M_LPTIM45), KCLK(LPTIM5_K, "lptim5_k", lptim45_src, 0, G_LPTIM5, M_LPTIM45), KCLK(USART1_K, "usart1_k", usart1_src, 0, G_USART1, M_USART1), KCLK(USART2_K, "usart2_k", usart234578_src, 0, G_USART2, M_UART24), KCLK(USART3_K, "usart3_k", usart234578_src, 0, G_USART3, M_UART35), KCLK(UART4_K, "uart4_k", usart234578_src, 0, G_UART4, M_UART24), KCLK(UART5_K, "uart5_k", usart234578_src, 0, G_UART5, M_UART35), KCLK(USART6_K, "uart6_k", usart6_src, 0, G_USART6, M_USART6), KCLK(UART7_K, "uart7_k", usart234578_src, 0, G_UART7, M_UART78), KCLK(UART8_K, "uart8_k", usart234578_src, 0, G_UART8, M_UART78), KCLK(FDCAN_K, "fdcan_k", fdcan_src, 0, G_FDCAN, M_FDCAN), KCLK(SAI1_K, "sai1_k", sai_src, 0, G_SAI1, M_SAI1), KCLK(SAI2_K, "sai2_k", sai2_src, 0, G_SAI2, M_SAI2), KCLK(SAI3_K, "sai3_k", sai_src, 0, G_SAI3, M_SAI3), KCLK(SAI4_K, "sai4_k", sai_src, 0, G_SAI4, M_SAI4), KCLK(ADC12_K, "adc12_k", adc12_src, 0, G_ADC12, M_ADC12), KCLK(DSI_K, "dsi_k", dsi_src, 0, G_DSI, M_DSI), KCLK(ADFSDM_K, "adfsdm_k", sai_src, 0, G_ADFSDM, M_SAI1), KCLK(USBO_K, "usbo_k", usbo_src, 0, G_USBO, M_USBO), /* Particulary Kernel Clocks (no mux or no gate) */ MGATE_MP1(DFSDM_K, "dfsdm_k", "ck_mcu", 0, G_DFSDM), MGATE_MP1(DSI_PX, "dsi_px", "pll4_q", CLK_SET_RATE_PARENT, G_DSI), MGATE_MP1(LTDC_PX, "ltdc_px", "pll4_q", CLK_SET_RATE_PARENT, G_LTDC), MGATE_MP1(GPU_K, "gpu_k", "pll2_q", 0, G_GPU), MGATE_MP1(DAC12_K, "dac12_k", "ck_lsi", 0, G_DAC12), COMPOSITE(NO_ID, "ck_ker_eth", eth_src, CLK_OPS_PARENT_ENABLE | CLK_SET_RATE_NO_REPARENT, _NO_GATE, _MMUX(M_ETHCK), _NO_DIV), MGATE_MP1(ETHCK_K, "ethck_k", "ck_ker_eth", 0, G_ETHCK), DIV(ETHPTP_K, "ethptp_k", "ck_ker_eth", CLK_OPS_PARENT_ENABLE | CLK_SET_RATE_NO_REPARENT, RCC_ETHCKSELR, 4, 4, 0), /* RTC clock */ COMPOSITE(RTC, "ck_rtc", rtc_src, CLK_OPS_PARENT_ENABLE, _GATE(RCC_BDCR, 20, 0), _MUX(RCC_BDCR, 16, 2, 0), _DIV_RTC(RCC_RTCDIVR, 0, 6, 0, NULL)), /* MCO clocks */ COMPOSITE(CK_MCO1, "ck_mco1", mco1_src, CLK_OPS_PARENT_ENABLE | CLK_SET_RATE_NO_REPARENT, _GATE(RCC_MCO1CFGR, 12, 0), _MUX(RCC_MCO1CFGR, 0, 3, 0), _DIV(RCC_MCO1CFGR, 4, 4, 0, NULL)), COMPOSITE(CK_MCO2, "ck_mco2", mco2_src, CLK_OPS_PARENT_ENABLE | CLK_SET_RATE_NO_REPARENT, _GATE(RCC_MCO2CFGR, 12, 0), _MUX(RCC_MCO2CFGR, 0, 3, 0), _DIV(RCC_MCO2CFGR, 4, 4, 0, NULL)), /* Debug clocks */ GATE(CK_DBG, "ck_sys_dbg", "ck_axi", CLK_IGNORE_UNUSED, RCC_DBGCFGR, 8, 0), COMPOSITE(CK_TRACE, "ck_trace", ck_trace_src, CLK_OPS_PARENT_ENABLE, _GATE(RCC_DBGCFGR, 9, 0), _NO_MUX, _DIV(RCC_DBGCFGR, 0, 3, 0, ck_trace_div_table)), }; static const u32 stm32mp1_clock_secured[] = { CK_HSE, CK_HSI, CK_CSI, CK_LSI, CK_LSE, PLL1, PLL2, PLL1_P, PLL2_P, PLL2_Q, PLL2_R, CK_MPU, CK_AXI, SPI6, I2C4, I2C6, USART1, RTCAPB, TZC1, TZC2, TZPC, IWDG1, BSEC, STGEN, GPIOZ, CRYP1, HASH1, RNG1, BKPSRAM, RNG1_K, STGEN_K, SPI6_K, I2C4_K, I2C6_K, USART1_K, RTC, }; static bool stm32_check_security(const struct clock_config *cfg) { int i; for (i = 0; i < ARRAY_SIZE(stm32mp1_clock_secured); i++) if (cfg->id == stm32mp1_clock_secured[i]) return true; return false; } struct stm32_rcc_match_data { const struct clock_config *cfg; unsigned int num; unsigned int maxbinding; u32 clear_offset; bool (*check_security)(const struct clock_config *cfg); }; static struct stm32_rcc_match_data stm32mp1_data = { .cfg = stm32mp1_clock_cfg, .num = ARRAY_SIZE(stm32mp1_clock_cfg), .maxbinding = STM32MP1_LAST_CLK, .clear_offset = RCC_CLR, }; static struct stm32_rcc_match_data stm32mp1_data_secure = { .cfg = stm32mp1_clock_cfg, .num = ARRAY_SIZE(stm32mp1_clock_cfg), .maxbinding = STM32MP1_LAST_CLK, .clear_offset = RCC_CLR, .check_security = &stm32_check_security }; static const struct of_device_id stm32mp1_match_data[] = { { .compatible = "st,stm32mp1-rcc", .data = &stm32mp1_data, }, { .compatible = "st,stm32mp1-rcc-secure", .data = &stm32mp1_data_secure, }, { } }; MODULE_DEVICE_TABLE(of, stm32mp1_match_data); static int stm32_register_hw_clk(struct device *dev, struct clk_hw_onecell_data *clk_data, void __iomem *base, spinlock_t *lock, const struct clock_config *cfg) { struct clk_hw **hws; struct clk_hw *hw = ERR_PTR(-ENOENT); hws = clk_data->hws; if (cfg->func) hw = (*cfg->func)(dev, clk_data, base, lock, cfg); if (IS_ERR(hw)) { pr_err("Unable to register %s\n", cfg->name); return PTR_ERR(hw); } if (cfg->id != NO_ID) hws[cfg->id] = hw; return 0; } #define STM32_RESET_ID_MASK GENMASK(15, 0) struct stm32_reset_data { /* reset lock */ spinlock_t lock; struct reset_controller_dev rcdev; void __iomem *membase; u32 clear_offset; }; static inline struct stm32_reset_data * to_stm32_reset_data(struct reset_controller_dev *rcdev) { return container_of(rcdev, struct stm32_reset_data, rcdev); } static int stm32_reset_update(struct reset_controller_dev *rcdev, unsigned long id, bool assert) { struct stm32_reset_data *data = to_stm32_reset_data(rcdev); int reg_width = sizeof(u32); int bank = id / (reg_width * BITS_PER_BYTE); int offset = id % (reg_width * BITS_PER_BYTE); if (data->clear_offset) { void __iomem *addr; addr = data->membase + (bank * reg_width); if (!assert) addr += data->clear_offset; writel(BIT(offset), addr); } else { unsigned long flags; u32 reg; spin_lock_irqsave(&data->lock, flags); reg = readl(data->membase + (bank * reg_width)); if (assert) reg |= BIT(offset); else reg &= ~BIT(offset); writel(reg, data->membase + (bank * reg_width)); spin_unlock_irqrestore(&data->lock, flags); } return 0; } static int stm32_reset_assert(struct reset_controller_dev *rcdev, unsigned long id) { return stm32_reset_update(rcdev, id, true); } static int stm32_reset_deassert(struct reset_controller_dev *rcdev, unsigned long id) { return stm32_reset_update(rcdev, id, false); } static int stm32_reset_status(struct reset_controller_dev *rcdev, unsigned long id) { struct stm32_reset_data *data = to_stm32_reset_data(rcdev); int reg_width = sizeof(u32); int bank = id / (reg_width * BITS_PER_BYTE); int offset = id % (reg_width * BITS_PER_BYTE); u32 reg; reg = readl(data->membase + (bank * reg_width)); return !!(reg & BIT(offset)); } static const struct reset_control_ops stm32_reset_ops = { .assert = stm32_reset_assert, .deassert = stm32_reset_deassert, .status = stm32_reset_status, }; static int stm32_rcc_reset_init(struct device *dev, void __iomem *base, const struct of_device_id *match) { const struct stm32_rcc_match_data *data = match->data; struct stm32_reset_data *reset_data = NULL; reset_data = kzalloc(sizeof(*reset_data), GFP_KERNEL); if (!reset_data) return -ENOMEM; spin_lock_init(&reset_data->lock); reset_data->membase = base; reset_data->rcdev.owner = THIS_MODULE; reset_data->rcdev.ops = &stm32_reset_ops; reset_data->rcdev.of_node = dev_of_node(dev); reset_data->rcdev.nr_resets = STM32_RESET_ID_MASK; reset_data->clear_offset = data->clear_offset; return reset_controller_register(&reset_data->rcdev); } static int stm32_rcc_clock_init(struct device *dev, void __iomem *base, const struct of_device_id *match) { const struct stm32_rcc_match_data *data = match->data; struct clk_hw_onecell_data *clk_data; struct clk_hw **hws; int err, n, max_binding; max_binding = data->maxbinding; clk_data = devm_kzalloc(dev, struct_size(clk_data, hws, max_binding), GFP_KERNEL); if (!clk_data) return -ENOMEM; clk_data->num = max_binding; hws = clk_data->hws; for (n = 0; n < max_binding; n++) hws[n] = ERR_PTR(-ENOENT); for (n = 0; n < data->num; n++) { if (data->check_security && data->check_security(&data->cfg[n])) continue; err = stm32_register_hw_clk(dev, clk_data, base, &rlock, &data->cfg[n]); if (err) { dev_err(dev, "Can't register clk %s: %d\n", data->cfg[n].name, err); return err; } } return of_clk_add_hw_provider(dev_of_node(dev), of_clk_hw_onecell_get, clk_data); } static int stm32_rcc_init(struct device *dev, void __iomem *base, const struct of_device_id *match_data) { const struct of_device_id *match; int err; match = of_match_node(match_data, dev_of_node(dev)); if (!match) { dev_err(dev, "match data not found\n"); return -ENODEV; } /* RCC Reset Configuration */ err = stm32_rcc_reset_init(dev, base, match); if (err) { pr_err("stm32mp1 reset failed to initialize\n"); return err; } /* RCC Clock Configuration */ err = stm32_rcc_clock_init(dev, base, match); if (err) { pr_err("stm32mp1 clock failed to initialize\n"); return err; } return 0; } static int stm32mp1_rcc_init(struct device *dev) { void __iomem *base; int ret; base = of_iomap(dev_of_node(dev), 0); if (!base) { pr_err("%pOFn: unable to map resource", dev_of_node(dev)); ret = -ENOMEM; goto out; } ret = stm32_rcc_init(dev, base, stm32mp1_match_data); out: if (ret) { if (base) iounmap(base); of_node_put(dev_of_node(dev)); } return ret; } static int get_clock_deps(struct device *dev) { static const char * const clock_deps_name[] = { "hsi", "hse", "csi", "lsi", "lse", }; size_t deps_size = sizeof(struct clk *) * ARRAY_SIZE(clock_deps_name); struct clk **clk_deps; int i; clk_deps = devm_kzalloc(dev, deps_size, GFP_KERNEL); if (!clk_deps) return -ENOMEM; for (i = 0; i < ARRAY_SIZE(clock_deps_name); i++) { struct clk *clk = of_clk_get_by_name(dev_of_node(dev), clock_deps_name[i]); if (IS_ERR(clk)) { if (PTR_ERR(clk) != -EINVAL && PTR_ERR(clk) != -ENOENT) return PTR_ERR(clk); } else { /* Device gets a reference count on the clock */ clk_deps[i] = devm_clk_get(dev, __clk_get_name(clk)); clk_put(clk); } } return 0; } static int stm32mp1_rcc_clocks_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; int ret = get_clock_deps(dev); if (!ret) ret = stm32mp1_rcc_init(dev); return ret; } static void stm32mp1_rcc_clocks_remove(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *child, *np = dev_of_node(dev); for_each_available_child_of_node(np, child) of_clk_del_provider(child); } static struct platform_driver stm32mp1_rcc_clocks_driver = { .driver = { .name = "stm32mp1_rcc", .of_match_table = stm32mp1_match_data, }, .probe = stm32mp1_rcc_clocks_probe, .remove_new = stm32mp1_rcc_clocks_remove, }; static int __init stm32mp1_clocks_init(void) { return platform_driver_register(&stm32mp1_rcc_clocks_driver); } core_initcall(stm32mp1_clocks_init);