// SPDX-License-Identifier: GPL-2.0 /* * linux/arch/m68k/kernel/sys_m68k.c * * This file contains various random system calls that * have a non-standard calling sequence on the Linux/m68k * platform. */ #include <linux/capability.h> #include <linux/errno.h> #include <linux/sched.h> #include <linux/mm.h> #include <linux/fs.h> #include <linux/smp.h> #include <linux/sem.h> #include <linux/msg.h> #include <linux/shm.h> #include <linux/stat.h> #include <linux/syscalls.h> #include <linux/mman.h> #include <linux/file.h> #include <linux/ipc.h> #include <asm/setup.h> #include <linux/uaccess.h> #include <asm/cachectl.h> #include <asm/traps.h> #include <asm/page.h> #include <asm/unistd.h> #include <asm/cacheflush.h> #ifdef CONFIG_MMU #include <asm/tlb.h> asmlinkage int do_page_fault(struct pt_regs *regs, unsigned long address, unsigned long error_code); asmlinkage long sys_mmap2(unsigned long addr, unsigned long len, unsigned long prot, unsigned long flags, unsigned long fd, unsigned long pgoff) { /* * This is wrong for sun3 - there PAGE_SIZE is 8Kb, * so we need to shift the argument down by 1; m68k mmap64(3) * (in libc) expects the last argument of mmap2 in 4Kb units. */ return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); } /* Convert virtual (user) address VADDR to physical address PADDR */ #define virt_to_phys_040(vaddr) \ ({ \ unsigned long _mmusr, _paddr; \ \ __asm__ __volatile__ (".chip 68040\n\t" \ "ptestr (%1)\n\t" \ "movec %%mmusr,%0\n\t" \ ".chip 68k" \ : "=r" (_mmusr) \ : "a" (vaddr)); \ _paddr = (_mmusr & MMU_R_040) ? (_mmusr & PAGE_MASK) : 0; \ _paddr; \ }) static inline int cache_flush_040 (unsigned long addr, int scope, int cache, unsigned long len) { unsigned long paddr, i; switch (scope) { case FLUSH_SCOPE_ALL: switch (cache) { case FLUSH_CACHE_DATA: /* This nop is needed for some broken versions of the 68040. */ __asm__ __volatile__ ("nop\n\t" ".chip 68040\n\t" "cpusha %dc\n\t" ".chip 68k"); break; case FLUSH_CACHE_INSN: __asm__ __volatile__ ("nop\n\t" ".chip 68040\n\t" "cpusha %ic\n\t" ".chip 68k"); break; default: case FLUSH_CACHE_BOTH: __asm__ __volatile__ ("nop\n\t" ".chip 68040\n\t" "cpusha %bc\n\t" ".chip 68k"); break; } break; case FLUSH_SCOPE_LINE: /* Find the physical address of the first mapped page in the address range. */ if ((paddr = virt_to_phys_040(addr))) { paddr += addr & ~(PAGE_MASK | 15); len = (len + (addr & 15) + 15) >> 4; } else { unsigned long tmp = PAGE_SIZE - (addr & ~PAGE_MASK); if (len <= tmp) return 0; addr += tmp; len -= tmp; tmp = PAGE_SIZE; for (;;) { if ((paddr = virt_to_phys_040(addr))) break; if (len <= tmp) return 0; addr += tmp; len -= tmp; } len = (len + 15) >> 4; } i = (PAGE_SIZE - (paddr & ~PAGE_MASK)) >> 4; while (len--) { switch (cache) { case FLUSH_CACHE_DATA: __asm__ __volatile__ ("nop\n\t" ".chip 68040\n\t" "cpushl %%dc,(%0)\n\t" ".chip 68k" : : "a" (paddr)); break; case FLUSH_CACHE_INSN: __asm__ __volatile__ ("nop\n\t" ".chip 68040\n\t" "cpushl %%ic,(%0)\n\t" ".chip 68k" : : "a" (paddr)); break; default: case FLUSH_CACHE_BOTH: __asm__ __volatile__ ("nop\n\t" ".chip 68040\n\t" "cpushl %%bc,(%0)\n\t" ".chip 68k" : : "a" (paddr)); break; } if (!--i && len) { /* * No need to page align here since it is done by * virt_to_phys_040(). */ addr += PAGE_SIZE; i = PAGE_SIZE / 16; /* Recompute physical address when crossing a page boundary. */ for (;;) { if ((paddr = virt_to_phys_040(addr))) break; if (len <= i) return 0; len -= i; addr += PAGE_SIZE; } } else paddr += 16; } break; default: case FLUSH_SCOPE_PAGE: len += (addr & ~PAGE_MASK) + (PAGE_SIZE - 1); for (len >>= PAGE_SHIFT; len--; addr += PAGE_SIZE) { if (!(paddr = virt_to_phys_040(addr))) continue; switch (cache) { case FLUSH_CACHE_DATA: __asm__ __volatile__ ("nop\n\t" ".chip 68040\n\t" "cpushp %%dc,(%0)\n\t" ".chip 68k" : : "a" (paddr)); break; case FLUSH_CACHE_INSN: __asm__ __volatile__ ("nop\n\t" ".chip 68040\n\t" "cpushp %%ic,(%0)\n\t" ".chip 68k" : : "a" (paddr)); break; default: case FLUSH_CACHE_BOTH: __asm__ __volatile__ ("nop\n\t" ".chip 68040\n\t" "cpushp %%bc,(%0)\n\t" ".chip 68k" : : "a" (paddr)); break; } } break; } return 0; } #define virt_to_phys_060(vaddr) \ ({ \ unsigned long paddr; \ __asm__ __volatile__ (".chip 68060\n\t" \ "plpar (%0)\n\t" \ ".chip 68k" \ : "=a" (paddr) \ : "0" (vaddr)); \ (paddr); /* XXX */ \ }) static inline int cache_flush_060 (unsigned long addr, int scope, int cache, unsigned long len) { unsigned long paddr, i; /* * 68060 manual says: * cpush %dc : flush DC, remains valid (with our %cacr setup) * cpush %ic : invalidate IC * cpush %bc : flush DC + invalidate IC */ switch (scope) { case FLUSH_SCOPE_ALL: switch (cache) { case FLUSH_CACHE_DATA: __asm__ __volatile__ (".chip 68060\n\t" "cpusha %dc\n\t" ".chip 68k"); break; case FLUSH_CACHE_INSN: __asm__ __volatile__ (".chip 68060\n\t" "cpusha %ic\n\t" ".chip 68k"); break; default: case FLUSH_CACHE_BOTH: __asm__ __volatile__ (".chip 68060\n\t" "cpusha %bc\n\t" ".chip 68k"); break; } break; case FLUSH_SCOPE_LINE: /* Find the physical address of the first mapped page in the address range. */ len += addr & 15; addr &= -16; if (!(paddr = virt_to_phys_060(addr))) { unsigned long tmp = PAGE_SIZE - (addr & ~PAGE_MASK); if (len <= tmp) return 0; addr += tmp; len -= tmp; tmp = PAGE_SIZE; for (;;) { if ((paddr = virt_to_phys_060(addr))) break; if (len <= tmp) return 0; addr += tmp; len -= tmp; } } len = (len + 15) >> 4; i = (PAGE_SIZE - (paddr & ~PAGE_MASK)) >> 4; while (len--) { switch (cache) { case FLUSH_CACHE_DATA: __asm__ __volatile__ (".chip 68060\n\t" "cpushl %%dc,(%0)\n\t" ".chip 68k" : : "a" (paddr)); break; case FLUSH_CACHE_INSN: __asm__ __volatile__ (".chip 68060\n\t" "cpushl %%ic,(%0)\n\t" ".chip 68k" : : "a" (paddr)); break; default: case FLUSH_CACHE_BOTH: __asm__ __volatile__ (".chip 68060\n\t" "cpushl %%bc,(%0)\n\t" ".chip 68k" : : "a" (paddr)); break; } if (!--i && len) { /* * We just want to jump to the first cache line * in the next page. */ addr += PAGE_SIZE; addr &= PAGE_MASK; i = PAGE_SIZE / 16; /* Recompute physical address when crossing a page boundary. */ for (;;) { if ((paddr = virt_to_phys_060(addr))) break; if (len <= i) return 0; len -= i; addr += PAGE_SIZE; } } else paddr += 16; } break; default: case FLUSH_SCOPE_PAGE: len += (addr & ~PAGE_MASK) + (PAGE_SIZE - 1); addr &= PAGE_MASK; /* Workaround for bug in some revisions of the 68060 */ for (len >>= PAGE_SHIFT; len--; addr += PAGE_SIZE) { if (!(paddr = virt_to_phys_060(addr))) continue; switch (cache) { case FLUSH_CACHE_DATA: __asm__ __volatile__ (".chip 68060\n\t" "cpushp %%dc,(%0)\n\t" ".chip 68k" : : "a" (paddr)); break; case FLUSH_CACHE_INSN: __asm__ __volatile__ (".chip 68060\n\t" "cpushp %%ic,(%0)\n\t" ".chip 68k" : : "a" (paddr)); break; default: case FLUSH_CACHE_BOTH: __asm__ __volatile__ (".chip 68060\n\t" "cpushp %%bc,(%0)\n\t" ".chip 68k" : : "a" (paddr)); break; } } break; } return 0; } /* sys_cacheflush -- flush (part of) the processor cache. */ asmlinkage int sys_cacheflush (unsigned long addr, int scope, int cache, unsigned long len) { int ret = -EINVAL; if (scope < FLUSH_SCOPE_LINE || scope > FLUSH_SCOPE_ALL || cache & ~FLUSH_CACHE_BOTH) goto out; if (scope == FLUSH_SCOPE_ALL) { /* Only the superuser may explicitly flush the whole cache. */ ret = -EPERM; if (!capable(CAP_SYS_ADMIN)) goto out; mmap_read_lock(current->mm); } else { struct vm_area_struct *vma; /* Check for overflow. */ if (addr + len < addr) goto out; /* * Verify that the specified address region actually belongs * to this process. */ mmap_read_lock(current->mm); vma = vma_lookup(current->mm, addr); if (!vma || addr + len > vma->vm_end) goto out_unlock; } if (CPU_IS_020_OR_030) { if (scope == FLUSH_SCOPE_LINE && len < 256) { unsigned long cacr; __asm__ ("movec %%cacr, %0" : "=r" (cacr)); if (cache & FLUSH_CACHE_INSN) cacr |= 4; if (cache & FLUSH_CACHE_DATA) cacr |= 0x400; len >>= 2; while (len--) { __asm__ __volatile__ ("movec %1, %%caar\n\t" "movec %0, %%cacr" : /* no outputs */ : "r" (cacr), "r" (addr)); addr += 4; } } else { /* Flush the whole cache, even if page granularity requested. */ unsigned long cacr; __asm__ ("movec %%cacr, %0" : "=r" (cacr)); if (cache & FLUSH_CACHE_INSN) cacr |= 8; if (cache & FLUSH_CACHE_DATA) cacr |= 0x800; __asm__ __volatile__ ("movec %0, %%cacr" : : "r" (cacr)); } ret = 0; goto out_unlock; } else { /* * 040 or 060: don't blindly trust 'scope', someone could * try to flush a few megs of memory. */ if (len>=3*PAGE_SIZE && scope<FLUSH_SCOPE_PAGE) scope=FLUSH_SCOPE_PAGE; if (len>=10*PAGE_SIZE && scope<FLUSH_SCOPE_ALL) scope=FLUSH_SCOPE_ALL; if (CPU_IS_040) { ret = cache_flush_040 (addr, scope, cache, len); } else if (CPU_IS_060) { ret = cache_flush_060 (addr, scope, cache, len); } } out_unlock: mmap_read_unlock(current->mm); out: return ret; } /* This syscall gets its arguments in A0 (mem), D2 (oldval) and D1 (newval). */ asmlinkage int sys_atomic_cmpxchg_32(unsigned long newval, int oldval, int d3, int d4, int d5, unsigned long __user * mem) { /* This was borrowed from ARM's implementation. */ for (;;) { struct mm_struct *mm = current->mm; pgd_t *pgd; p4d_t *p4d; pud_t *pud; pmd_t *pmd; pte_t *pte; spinlock_t *ptl; unsigned long mem_value; mmap_read_lock(mm); pgd = pgd_offset(mm, (unsigned long)mem); if (!pgd_present(*pgd)) goto bad_access; p4d = p4d_offset(pgd, (unsigned long)mem); if (!p4d_present(*p4d)) goto bad_access; pud = pud_offset(p4d, (unsigned long)mem); if (!pud_present(*pud)) goto bad_access; pmd = pmd_offset(pud, (unsigned long)mem); if (!pmd_present(*pmd)) goto bad_access; pte = pte_offset_map_lock(mm, pmd, (unsigned long)mem, &ptl); if (!pte) goto bad_access; if (!pte_present(*pte) || !pte_dirty(*pte) || !pte_write(*pte)) { pte_unmap_unlock(pte, ptl); goto bad_access; } /* * No need to check for EFAULT; we know that the page is * present and writable. */ __get_user(mem_value, mem); if (mem_value == oldval) __put_user(newval, mem); pte_unmap_unlock(pte, ptl); mmap_read_unlock(mm); return mem_value; bad_access: mmap_read_unlock(mm); /* This is not necessarily a bad access, we can get here if a memory we're trying to write to should be copied-on-write. Make the kernel do the necessary page stuff, then re-iterate. Simulate a write access fault to do that. */ { /* The first argument of the function corresponds to D1, which is the first field of struct pt_regs. */ struct pt_regs *fp = (struct pt_regs *)&newval; /* '3' is an RMW flag. */ if (do_page_fault(fp, (unsigned long)mem, 3)) /* If the do_page_fault() failed, we don't have anything meaningful to return. There should be a SIGSEGV pending for the process. */ return 0xdeadbeef; } } } #else /* sys_cacheflush -- flush (part of) the processor cache. */ asmlinkage int sys_cacheflush (unsigned long addr, int scope, int cache, unsigned long len) { flush_cache_all(); return 0; } /* This syscall gets its arguments in A0 (mem), D2 (oldval) and D1 (newval). */ asmlinkage int sys_atomic_cmpxchg_32(unsigned long newval, int oldval, int d3, int d4, int d5, unsigned long __user * mem) { struct mm_struct *mm = current->mm; unsigned long mem_value; mmap_read_lock(mm); mem_value = *mem; if (mem_value == oldval) *mem = newval; mmap_read_unlock(mm); return mem_value; } #endif /* CONFIG_MMU */ asmlinkage int sys_getpagesize(void) { return PAGE_SIZE; } asmlinkage unsigned long sys_get_thread_area(void) { return current_thread_info()->tp_value; } asmlinkage int sys_set_thread_area(unsigned long tp) { current_thread_info()->tp_value = tp; return 0; } asmlinkage int sys_atomic_barrier(void) { /* no code needed for uniprocs */ return 0; }