// SPDX-License-Identifier: GPL-2.0-only /* * sonic.c * * (C) 2005 Finn Thain * * Converted to DMA API, added zero-copy buffer handling, and * (from the mac68k project) introduced dhd's support for 16-bit cards. * * (C) 1996,1998 by Thomas Bogendoerfer (tsbogend@alpha.franken.de) * * This driver is based on work from Andreas Busse, but most of * the code is rewritten. * * (C) 1995 by Andreas Busse (andy@waldorf-gmbh.de) * * Core code included by system sonic drivers * * And... partially rewritten again by David Huggins-Daines in order * to cope with screwed up Macintosh NICs that may or may not use * 16-bit DMA. * * (C) 1999 David Huggins-Daines <dhd@debian.org> * */ /* * Sources: Olivetti M700-10 Risc Personal Computer hardware handbook, * National Semiconductors data sheet for the DP83932B Sonic Ethernet * controller, and the files "8390.c" and "skeleton.c" in this directory. * * Additional sources: Nat Semi data sheet for the DP83932C and Nat Semi * Application Note AN-746, the files "lance.c" and "ibmlana.c". See also * the NetBSD file "sys/arch/mac68k/dev/if_sn.c". */ static unsigned int version_printed; static int sonic_debug = -1; module_param(sonic_debug, int, 0); MODULE_PARM_DESC(sonic_debug, "debug message level"); static void sonic_msg_init(struct net_device *dev) { struct sonic_local *lp = netdev_priv(dev); lp->msg_enable = netif_msg_init(sonic_debug, 0); if (version_printed++ == 0) netif_dbg(lp, drv, dev, "%s", version); } static int sonic_alloc_descriptors(struct net_device *dev) { struct sonic_local *lp = netdev_priv(dev); /* Allocate a chunk of memory for the descriptors. Note that this * must not cross a 64K boundary. It is smaller than one page which * means that page alignment is a sufficient condition. */ lp->descriptors = dma_alloc_coherent(lp->device, SIZEOF_SONIC_DESC * SONIC_BUS_SCALE(lp->dma_bitmode), &lp->descriptors_laddr, GFP_KERNEL); if (!lp->descriptors) return -ENOMEM; lp->cda = lp->descriptors; lp->tda = lp->cda + SIZEOF_SONIC_CDA * SONIC_BUS_SCALE(lp->dma_bitmode); lp->rda = lp->tda + SIZEOF_SONIC_TD * SONIC_NUM_TDS * SONIC_BUS_SCALE(lp->dma_bitmode); lp->rra = lp->rda + SIZEOF_SONIC_RD * SONIC_NUM_RDS * SONIC_BUS_SCALE(lp->dma_bitmode); lp->cda_laddr = lp->descriptors_laddr; lp->tda_laddr = lp->cda_laddr + SIZEOF_SONIC_CDA * SONIC_BUS_SCALE(lp->dma_bitmode); lp->rda_laddr = lp->tda_laddr + SIZEOF_SONIC_TD * SONIC_NUM_TDS * SONIC_BUS_SCALE(lp->dma_bitmode); lp->rra_laddr = lp->rda_laddr + SIZEOF_SONIC_RD * SONIC_NUM_RDS * SONIC_BUS_SCALE(lp->dma_bitmode); return 0; } /* * Open/initialize the SONIC controller. * * This routine should set everything up anew at each open, even * registers that "should" only need to be set once at boot, so that * there is non-reboot way to recover if something goes wrong. */ static int sonic_open(struct net_device *dev) { struct sonic_local *lp = netdev_priv(dev); int i; netif_dbg(lp, ifup, dev, "%s: initializing sonic driver\n", __func__); spin_lock_init(&lp->lock); for (i = 0; i < SONIC_NUM_RRS; i++) { struct sk_buff *skb = netdev_alloc_skb(dev, SONIC_RBSIZE + 2); if (skb == NULL) { while(i > 0) { /* free any that were allocated successfully */ i--; dev_kfree_skb(lp->rx_skb[i]); lp->rx_skb[i] = NULL; } printk(KERN_ERR "%s: couldn't allocate receive buffers\n", dev->name); return -ENOMEM; } /* align IP header unless DMA requires otherwise */ if (SONIC_BUS_SCALE(lp->dma_bitmode) == 2) skb_reserve(skb, 2); lp->rx_skb[i] = skb; } for (i = 0; i < SONIC_NUM_RRS; i++) { dma_addr_t laddr = dma_map_single(lp->device, skb_put(lp->rx_skb[i], SONIC_RBSIZE), SONIC_RBSIZE, DMA_FROM_DEVICE); if (dma_mapping_error(lp->device, laddr)) { while(i > 0) { /* free any that were mapped successfully */ i--; dma_unmap_single(lp->device, lp->rx_laddr[i], SONIC_RBSIZE, DMA_FROM_DEVICE); lp->rx_laddr[i] = (dma_addr_t)0; } for (i = 0; i < SONIC_NUM_RRS; i++) { dev_kfree_skb(lp->rx_skb[i]); lp->rx_skb[i] = NULL; } printk(KERN_ERR "%s: couldn't map rx DMA buffers\n", dev->name); return -ENOMEM; } lp->rx_laddr[i] = laddr; } /* * Initialize the SONIC */ sonic_init(dev, true); netif_start_queue(dev); netif_dbg(lp, ifup, dev, "%s: Initialization done\n", __func__); return 0; } /* Wait for the SONIC to become idle. */ static void sonic_quiesce(struct net_device *dev, u16 mask, bool may_sleep) { struct sonic_local * __maybe_unused lp = netdev_priv(dev); int i; u16 bits; for (i = 0; i < 1000; ++i) { bits = SONIC_READ(SONIC_CMD) & mask; if (!bits) return; if (!may_sleep) udelay(20); else usleep_range(100, 200); } WARN_ONCE(1, "command deadline expired! 0x%04x\n", bits); } /* * Close the SONIC device */ static int sonic_close(struct net_device *dev) { struct sonic_local *lp = netdev_priv(dev); int i; netif_dbg(lp, ifdown, dev, "%s\n", __func__); netif_stop_queue(dev); /* * stop the SONIC, disable interrupts */ SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS); sonic_quiesce(dev, SONIC_CR_ALL, true); SONIC_WRITE(SONIC_IMR, 0); SONIC_WRITE(SONIC_ISR, 0x7fff); SONIC_WRITE(SONIC_CMD, SONIC_CR_RST); /* unmap and free skbs that haven't been transmitted */ for (i = 0; i < SONIC_NUM_TDS; i++) { if(lp->tx_laddr[i]) { dma_unmap_single(lp->device, lp->tx_laddr[i], lp->tx_len[i], DMA_TO_DEVICE); lp->tx_laddr[i] = (dma_addr_t)0; } if(lp->tx_skb[i]) { dev_kfree_skb(lp->tx_skb[i]); lp->tx_skb[i] = NULL; } } /* unmap and free the receive buffers */ for (i = 0; i < SONIC_NUM_RRS; i++) { if(lp->rx_laddr[i]) { dma_unmap_single(lp->device, lp->rx_laddr[i], SONIC_RBSIZE, DMA_FROM_DEVICE); lp->rx_laddr[i] = (dma_addr_t)0; } if(lp->rx_skb[i]) { dev_kfree_skb(lp->rx_skb[i]); lp->rx_skb[i] = NULL; } } return 0; } static void sonic_tx_timeout(struct net_device *dev, unsigned int txqueue) { struct sonic_local *lp = netdev_priv(dev); int i; /* * put the Sonic into software-reset mode and * disable all interrupts before releasing DMA buffers */ SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS); sonic_quiesce(dev, SONIC_CR_ALL, false); SONIC_WRITE(SONIC_IMR, 0); SONIC_WRITE(SONIC_ISR, 0x7fff); SONIC_WRITE(SONIC_CMD, SONIC_CR_RST); /* We could resend the original skbs. Easier to re-initialise. */ for (i = 0; i < SONIC_NUM_TDS; i++) { if(lp->tx_laddr[i]) { dma_unmap_single(lp->device, lp->tx_laddr[i], lp->tx_len[i], DMA_TO_DEVICE); lp->tx_laddr[i] = (dma_addr_t)0; } if(lp->tx_skb[i]) { dev_kfree_skb(lp->tx_skb[i]); lp->tx_skb[i] = NULL; } } /* Try to restart the adaptor. */ sonic_init(dev, false); lp->stats.tx_errors++; netif_trans_update(dev); /* prevent tx timeout */ netif_wake_queue(dev); } /* * transmit packet * * Appends new TD during transmission thus avoiding any TX interrupts * until we run out of TDs. * This routine interacts closely with the ISR in that it may, * set tx_skb[i] * reset the status flags of the new TD * set and reset EOL flags * stop the tx queue * The ISR interacts with this routine in various ways. It may, * reset tx_skb[i] * test the EOL and status flags of the TDs * wake the tx queue * Concurrently with all of this, the SONIC is potentially writing to * the status flags of the TDs. */ static int sonic_send_packet(struct sk_buff *skb, struct net_device *dev) { struct sonic_local *lp = netdev_priv(dev); dma_addr_t laddr; int length; int entry; unsigned long flags; netif_dbg(lp, tx_queued, dev, "%s: skb=%p\n", __func__, skb); length = skb->len; if (length < ETH_ZLEN) { if (skb_padto(skb, ETH_ZLEN)) return NETDEV_TX_OK; length = ETH_ZLEN; } /* * Map the packet data into the logical DMA address space */ laddr = dma_map_single(lp->device, skb->data, length, DMA_TO_DEVICE); if (dma_mapping_error(lp->device, laddr)) { pr_err_ratelimited("%s: failed to map tx DMA buffer.\n", dev->name); dev_kfree_skb_any(skb); return NETDEV_TX_OK; } spin_lock_irqsave(&lp->lock, flags); entry = (lp->eol_tx + 1) & SONIC_TDS_MASK; sonic_tda_put(dev, entry, SONIC_TD_STATUS, 0); /* clear status */ sonic_tda_put(dev, entry, SONIC_TD_FRAG_COUNT, 1); /* single fragment */ sonic_tda_put(dev, entry, SONIC_TD_PKTSIZE, length); /* length of packet */ sonic_tda_put(dev, entry, SONIC_TD_FRAG_PTR_L, laddr & 0xffff); sonic_tda_put(dev, entry, SONIC_TD_FRAG_PTR_H, laddr >> 16); sonic_tda_put(dev, entry, SONIC_TD_FRAG_SIZE, length); sonic_tda_put(dev, entry, SONIC_TD_LINK, sonic_tda_get(dev, entry, SONIC_TD_LINK) | SONIC_EOL); sonic_tda_put(dev, lp->eol_tx, SONIC_TD_LINK, ~SONIC_EOL & sonic_tda_get(dev, lp->eol_tx, SONIC_TD_LINK)); netif_dbg(lp, tx_queued, dev, "%s: issuing Tx command\n", __func__); SONIC_WRITE(SONIC_CMD, SONIC_CR_TXP); lp->tx_len[entry] = length; lp->tx_laddr[entry] = laddr; lp->tx_skb[entry] = skb; lp->eol_tx = entry; entry = (entry + 1) & SONIC_TDS_MASK; if (lp->tx_skb[entry]) { /* The ring is full, the ISR has yet to process the next TD. */ netif_dbg(lp, tx_queued, dev, "%s: stopping queue\n", __func__); netif_stop_queue(dev); /* after this packet, wait for ISR to free up some TDAs */ } spin_unlock_irqrestore(&lp->lock, flags); return NETDEV_TX_OK; } /* * The typical workload of the driver: * Handle the network interface interrupts. */ static irqreturn_t sonic_interrupt(int irq, void *dev_id) { struct net_device *dev = dev_id; struct sonic_local *lp = netdev_priv(dev); int status; unsigned long flags; /* The lock has two purposes. Firstly, it synchronizes sonic_interrupt() * with sonic_send_packet() so that the two functions can share state. * Secondly, it makes sonic_interrupt() re-entrant, as that is required * by macsonic which must use two IRQs with different priority levels. */ spin_lock_irqsave(&lp->lock, flags); status = SONIC_READ(SONIC_ISR) & SONIC_IMR_DEFAULT; if (!status) { spin_unlock_irqrestore(&lp->lock, flags); return IRQ_NONE; } do { SONIC_WRITE(SONIC_ISR, status); /* clear the interrupt(s) */ if (status & SONIC_INT_PKTRX) { netif_dbg(lp, intr, dev, "%s: packet rx\n", __func__); sonic_rx(dev); /* got packet(s) */ } if (status & SONIC_INT_TXDN) { int entry = lp->cur_tx; int td_status; int freed_some = 0; /* The state of a Transmit Descriptor may be inferred * from { tx_skb[entry], td_status } as follows. * { clear, clear } => the TD has never been used * { set, clear } => the TD was handed to SONIC * { set, set } => the TD was handed back * { clear, set } => the TD is available for re-use */ netif_dbg(lp, intr, dev, "%s: tx done\n", __func__); while (lp->tx_skb[entry] != NULL) { if ((td_status = sonic_tda_get(dev, entry, SONIC_TD_STATUS)) == 0) break; if (td_status & SONIC_TCR_PTX) { lp->stats.tx_packets++; lp->stats.tx_bytes += sonic_tda_get(dev, entry, SONIC_TD_PKTSIZE); } else { if (td_status & (SONIC_TCR_EXD | SONIC_TCR_EXC | SONIC_TCR_BCM)) lp->stats.tx_aborted_errors++; if (td_status & (SONIC_TCR_NCRS | SONIC_TCR_CRLS)) lp->stats.tx_carrier_errors++; if (td_status & SONIC_TCR_OWC) lp->stats.tx_window_errors++; if (td_status & SONIC_TCR_FU) lp->stats.tx_fifo_errors++; } /* We must free the original skb */ dev_consume_skb_irq(lp->tx_skb[entry]); lp->tx_skb[entry] = NULL; /* and unmap DMA buffer */ dma_unmap_single(lp->device, lp->tx_laddr[entry], lp->tx_len[entry], DMA_TO_DEVICE); lp->tx_laddr[entry] = (dma_addr_t)0; freed_some = 1; if (sonic_tda_get(dev, entry, SONIC_TD_LINK) & SONIC_EOL) { entry = (entry + 1) & SONIC_TDS_MASK; break; } entry = (entry + 1) & SONIC_TDS_MASK; } if (freed_some || lp->tx_skb[entry] == NULL) netif_wake_queue(dev); /* The ring is no longer full */ lp->cur_tx = entry; } /* * check error conditions */ if (status & SONIC_INT_RFO) { netif_dbg(lp, rx_err, dev, "%s: rx fifo overrun\n", __func__); } if (status & SONIC_INT_RDE) { netif_dbg(lp, rx_err, dev, "%s: rx descriptors exhausted\n", __func__); } if (status & SONIC_INT_RBAE) { netif_dbg(lp, rx_err, dev, "%s: rx buffer area exceeded\n", __func__); } /* counter overruns; all counters are 16bit wide */ if (status & SONIC_INT_FAE) lp->stats.rx_frame_errors += 65536; if (status & SONIC_INT_CRC) lp->stats.rx_crc_errors += 65536; if (status & SONIC_INT_MP) lp->stats.rx_missed_errors += 65536; /* transmit error */ if (status & SONIC_INT_TXER) { u16 tcr = SONIC_READ(SONIC_TCR); netif_dbg(lp, tx_err, dev, "%s: TXER intr, TCR %04x\n", __func__, tcr); if (tcr & (SONIC_TCR_EXD | SONIC_TCR_EXC | SONIC_TCR_FU | SONIC_TCR_BCM)) { /* Aborted transmission. Try again. */ netif_stop_queue(dev); SONIC_WRITE(SONIC_CMD, SONIC_CR_TXP); } } /* bus retry */ if (status & SONIC_INT_BR) { printk(KERN_ERR "%s: Bus retry occurred! Device interrupt disabled.\n", dev->name); /* ... to help debug DMA problems causing endless interrupts. */ /* Bounce the eth interface to turn on the interrupt again. */ SONIC_WRITE(SONIC_IMR, 0); } status = SONIC_READ(SONIC_ISR) & SONIC_IMR_DEFAULT; } while (status); spin_unlock_irqrestore(&lp->lock, flags); return IRQ_HANDLED; } /* Return the array index corresponding to a given Receive Buffer pointer. */ static int index_from_addr(struct sonic_local *lp, dma_addr_t addr, unsigned int last) { unsigned int i = last; do { i = (i + 1) & SONIC_RRS_MASK; if (addr == lp->rx_laddr[i]) return i; } while (i != last); return -ENOENT; } /* Allocate and map a new skb to be used as a receive buffer. */ static bool sonic_alloc_rb(struct net_device *dev, struct sonic_local *lp, struct sk_buff **new_skb, dma_addr_t *new_addr) { *new_skb = netdev_alloc_skb(dev, SONIC_RBSIZE + 2); if (!*new_skb) return false; if (SONIC_BUS_SCALE(lp->dma_bitmode) == 2) skb_reserve(*new_skb, 2); *new_addr = dma_map_single(lp->device, skb_put(*new_skb, SONIC_RBSIZE), SONIC_RBSIZE, DMA_FROM_DEVICE); if (dma_mapping_error(lp->device, *new_addr)) { dev_kfree_skb(*new_skb); *new_skb = NULL; return false; } return true; } /* Place a new receive resource in the Receive Resource Area and update RWP. */ static void sonic_update_rra(struct net_device *dev, struct sonic_local *lp, dma_addr_t old_addr, dma_addr_t new_addr) { unsigned int entry = sonic_rr_entry(dev, SONIC_READ(SONIC_RWP)); unsigned int end = sonic_rr_entry(dev, SONIC_READ(SONIC_RRP)); u32 buf; /* The resources in the range [RRP, RWP) belong to the SONIC. This loop * scans the other resources in the RRA, those in the range [RWP, RRP). */ do { buf = (sonic_rra_get(dev, entry, SONIC_RR_BUFADR_H) << 16) | sonic_rra_get(dev, entry, SONIC_RR_BUFADR_L); if (buf == old_addr) break; entry = (entry + 1) & SONIC_RRS_MASK; } while (entry != end); WARN_ONCE(buf != old_addr, "failed to find resource!\n"); sonic_rra_put(dev, entry, SONIC_RR_BUFADR_H, new_addr >> 16); sonic_rra_put(dev, entry, SONIC_RR_BUFADR_L, new_addr & 0xffff); entry = (entry + 1) & SONIC_RRS_MASK; SONIC_WRITE(SONIC_RWP, sonic_rr_addr(dev, entry)); } /* * We have a good packet(s), pass it/them up the network stack. */ static void sonic_rx(struct net_device *dev) { struct sonic_local *lp = netdev_priv(dev); int entry = lp->cur_rx; int prev_entry = lp->eol_rx; bool rbe = false; while (sonic_rda_get(dev, entry, SONIC_RD_IN_USE) == 0) { u16 status = sonic_rda_get(dev, entry, SONIC_RD_STATUS); /* If the RD has LPKT set, the chip has finished with the RB */ if ((status & SONIC_RCR_PRX) && (status & SONIC_RCR_LPKT)) { struct sk_buff *new_skb; dma_addr_t new_laddr; u32 addr = (sonic_rda_get(dev, entry, SONIC_RD_PKTPTR_H) << 16) | sonic_rda_get(dev, entry, SONIC_RD_PKTPTR_L); int i = index_from_addr(lp, addr, entry); if (i < 0) { WARN_ONCE(1, "failed to find buffer!\n"); break; } if (sonic_alloc_rb(dev, lp, &new_skb, &new_laddr)) { struct sk_buff *used_skb = lp->rx_skb[i]; int pkt_len; /* Pass the used buffer up the stack */ dma_unmap_single(lp->device, addr, SONIC_RBSIZE, DMA_FROM_DEVICE); pkt_len = sonic_rda_get(dev, entry, SONIC_RD_PKTLEN); skb_trim(used_skb, pkt_len); used_skb->protocol = eth_type_trans(used_skb, dev); netif_rx(used_skb); lp->stats.rx_packets++; lp->stats.rx_bytes += pkt_len; lp->rx_skb[i] = new_skb; lp->rx_laddr[i] = new_laddr; } else { /* Failed to obtain a new buffer so re-use it */ new_laddr = addr; lp->stats.rx_dropped++; } /* If RBE is already asserted when RWP advances then * it's safe to clear RBE after processing this packet. */ rbe = rbe || SONIC_READ(SONIC_ISR) & SONIC_INT_RBE; sonic_update_rra(dev, lp, addr, new_laddr); } /* * give back the descriptor */ sonic_rda_put(dev, entry, SONIC_RD_STATUS, 0); sonic_rda_put(dev, entry, SONIC_RD_IN_USE, 1); prev_entry = entry; entry = (entry + 1) & SONIC_RDS_MASK; } lp->cur_rx = entry; if (prev_entry != lp->eol_rx) { /* Advance the EOL flag to put descriptors back into service */ sonic_rda_put(dev, prev_entry, SONIC_RD_LINK, SONIC_EOL | sonic_rda_get(dev, prev_entry, SONIC_RD_LINK)); sonic_rda_put(dev, lp->eol_rx, SONIC_RD_LINK, ~SONIC_EOL & sonic_rda_get(dev, lp->eol_rx, SONIC_RD_LINK)); lp->eol_rx = prev_entry; } if (rbe) SONIC_WRITE(SONIC_ISR, SONIC_INT_RBE); } /* * Get the current statistics. * This may be called with the device open or closed. */ static struct net_device_stats *sonic_get_stats(struct net_device *dev) { struct sonic_local *lp = netdev_priv(dev); /* read the tally counter from the SONIC and reset them */ lp->stats.rx_crc_errors += SONIC_READ(SONIC_CRCT); SONIC_WRITE(SONIC_CRCT, 0xffff); lp->stats.rx_frame_errors += SONIC_READ(SONIC_FAET); SONIC_WRITE(SONIC_FAET, 0xffff); lp->stats.rx_missed_errors += SONIC_READ(SONIC_MPT); SONIC_WRITE(SONIC_MPT, 0xffff); return &lp->stats; } /* * Set or clear the multicast filter for this adaptor. */ static void sonic_multicast_list(struct net_device *dev) { struct sonic_local *lp = netdev_priv(dev); unsigned int rcr; struct netdev_hw_addr *ha; unsigned char *addr; int i; rcr = SONIC_READ(SONIC_RCR) & ~(SONIC_RCR_PRO | SONIC_RCR_AMC); rcr |= SONIC_RCR_BRD; /* accept broadcast packets */ if (dev->flags & IFF_PROMISC) { /* set promiscuous mode */ rcr |= SONIC_RCR_PRO; } else { if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 15)) { rcr |= SONIC_RCR_AMC; } else { unsigned long flags; netif_dbg(lp, ifup, dev, "%s: mc_count %d\n", __func__, netdev_mc_count(dev)); sonic_set_cam_enable(dev, 1); /* always enable our own address */ i = 1; netdev_for_each_mc_addr(ha, dev) { addr = ha->addr; sonic_cda_put(dev, i, SONIC_CD_CAP0, addr[1] << 8 | addr[0]); sonic_cda_put(dev, i, SONIC_CD_CAP1, addr[3] << 8 | addr[2]); sonic_cda_put(dev, i, SONIC_CD_CAP2, addr[5] << 8 | addr[4]); sonic_set_cam_enable(dev, sonic_get_cam_enable(dev) | (1 << i)); i++; } SONIC_WRITE(SONIC_CDC, 16); SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff); /* LCAM and TXP commands can't be used simultaneously */ spin_lock_irqsave(&lp->lock, flags); sonic_quiesce(dev, SONIC_CR_TXP, false); SONIC_WRITE(SONIC_CMD, SONIC_CR_LCAM); sonic_quiesce(dev, SONIC_CR_LCAM, false); spin_unlock_irqrestore(&lp->lock, flags); } } netif_dbg(lp, ifup, dev, "%s: setting RCR=%x\n", __func__, rcr); SONIC_WRITE(SONIC_RCR, rcr); } /* * Initialize the SONIC ethernet controller. */ static int sonic_init(struct net_device *dev, bool may_sleep) { struct sonic_local *lp = netdev_priv(dev); int i; /* * put the Sonic into software-reset mode and * disable all interrupts */ SONIC_WRITE(SONIC_IMR, 0); SONIC_WRITE(SONIC_ISR, 0x7fff); SONIC_WRITE(SONIC_CMD, SONIC_CR_RST); /* While in reset mode, clear CAM Enable register */ SONIC_WRITE(SONIC_CE, 0); /* * clear software reset flag, disable receiver, clear and * enable interrupts, then completely initialize the SONIC */ SONIC_WRITE(SONIC_CMD, 0); SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS | SONIC_CR_STP); sonic_quiesce(dev, SONIC_CR_ALL, may_sleep); /* * initialize the receive resource area */ netif_dbg(lp, ifup, dev, "%s: initialize receive resource area\n", __func__); for (i = 0; i < SONIC_NUM_RRS; i++) { u16 bufadr_l = (unsigned long)lp->rx_laddr[i] & 0xffff; u16 bufadr_h = (unsigned long)lp->rx_laddr[i] >> 16; sonic_rra_put(dev, i, SONIC_RR_BUFADR_L, bufadr_l); sonic_rra_put(dev, i, SONIC_RR_BUFADR_H, bufadr_h); sonic_rra_put(dev, i, SONIC_RR_BUFSIZE_L, SONIC_RBSIZE >> 1); sonic_rra_put(dev, i, SONIC_RR_BUFSIZE_H, 0); } /* initialize all RRA registers */ SONIC_WRITE(SONIC_RSA, sonic_rr_addr(dev, 0)); SONIC_WRITE(SONIC_REA, sonic_rr_addr(dev, SONIC_NUM_RRS)); SONIC_WRITE(SONIC_RRP, sonic_rr_addr(dev, 0)); SONIC_WRITE(SONIC_RWP, sonic_rr_addr(dev, SONIC_NUM_RRS - 1)); SONIC_WRITE(SONIC_URRA, lp->rra_laddr >> 16); SONIC_WRITE(SONIC_EOBC, (SONIC_RBSIZE >> 1) - (lp->dma_bitmode ? 2 : 1)); /* load the resource pointers */ netif_dbg(lp, ifup, dev, "%s: issuing RRRA command\n", __func__); SONIC_WRITE(SONIC_CMD, SONIC_CR_RRRA); sonic_quiesce(dev, SONIC_CR_RRRA, may_sleep); /* * Initialize the receive descriptors so that they * become a circular linked list, ie. let the last * descriptor point to the first again. */ netif_dbg(lp, ifup, dev, "%s: initialize receive descriptors\n", __func__); for (i=0; i<SONIC_NUM_RDS; i++) { sonic_rda_put(dev, i, SONIC_RD_STATUS, 0); sonic_rda_put(dev, i, SONIC_RD_PKTLEN, 0); sonic_rda_put(dev, i, SONIC_RD_PKTPTR_L, 0); sonic_rda_put(dev, i, SONIC_RD_PKTPTR_H, 0); sonic_rda_put(dev, i, SONIC_RD_SEQNO, 0); sonic_rda_put(dev, i, SONIC_RD_IN_USE, 1); sonic_rda_put(dev, i, SONIC_RD_LINK, lp->rda_laddr + ((i+1) * SIZEOF_SONIC_RD * SONIC_BUS_SCALE(lp->dma_bitmode))); } /* fix last descriptor */ sonic_rda_put(dev, SONIC_NUM_RDS - 1, SONIC_RD_LINK, (lp->rda_laddr & 0xffff) | SONIC_EOL); lp->eol_rx = SONIC_NUM_RDS - 1; lp->cur_rx = 0; SONIC_WRITE(SONIC_URDA, lp->rda_laddr >> 16); SONIC_WRITE(SONIC_CRDA, lp->rda_laddr & 0xffff); /* * initialize transmit descriptors */ netif_dbg(lp, ifup, dev, "%s: initialize transmit descriptors\n", __func__); for (i = 0; i < SONIC_NUM_TDS; i++) { sonic_tda_put(dev, i, SONIC_TD_STATUS, 0); sonic_tda_put(dev, i, SONIC_TD_CONFIG, 0); sonic_tda_put(dev, i, SONIC_TD_PKTSIZE, 0); sonic_tda_put(dev, i, SONIC_TD_FRAG_COUNT, 0); sonic_tda_put(dev, i, SONIC_TD_LINK, (lp->tda_laddr & 0xffff) + (i + 1) * SIZEOF_SONIC_TD * SONIC_BUS_SCALE(lp->dma_bitmode)); lp->tx_skb[i] = NULL; } /* fix last descriptor */ sonic_tda_put(dev, SONIC_NUM_TDS - 1, SONIC_TD_LINK, (lp->tda_laddr & 0xffff)); SONIC_WRITE(SONIC_UTDA, lp->tda_laddr >> 16); SONIC_WRITE(SONIC_CTDA, lp->tda_laddr & 0xffff); lp->cur_tx = 0; lp->eol_tx = SONIC_NUM_TDS - 1; /* * put our own address to CAM desc[0] */ sonic_cda_put(dev, 0, SONIC_CD_CAP0, dev->dev_addr[1] << 8 | dev->dev_addr[0]); sonic_cda_put(dev, 0, SONIC_CD_CAP1, dev->dev_addr[3] << 8 | dev->dev_addr[2]); sonic_cda_put(dev, 0, SONIC_CD_CAP2, dev->dev_addr[5] << 8 | dev->dev_addr[4]); sonic_set_cam_enable(dev, 1); for (i = 0; i < 16; i++) sonic_cda_put(dev, i, SONIC_CD_ENTRY_POINTER, i); /* * initialize CAM registers */ SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff); SONIC_WRITE(SONIC_CDC, 16); /* * load the CAM */ SONIC_WRITE(SONIC_CMD, SONIC_CR_LCAM); sonic_quiesce(dev, SONIC_CR_LCAM, may_sleep); /* * enable receiver, disable loopback * and enable all interrupts */ SONIC_WRITE(SONIC_RCR, SONIC_RCR_DEFAULT); SONIC_WRITE(SONIC_TCR, SONIC_TCR_DEFAULT); SONIC_WRITE(SONIC_ISR, 0x7fff); SONIC_WRITE(SONIC_IMR, SONIC_IMR_DEFAULT); SONIC_WRITE(SONIC_CMD, SONIC_CR_RXEN); netif_dbg(lp, ifup, dev, "%s: new status=%x\n", __func__, SONIC_READ(SONIC_CMD)); return 0; } MODULE_LICENSE("GPL");