// SPDX-License-Identifier: GPL-2.0 #define _GNU_SOURCE #include <stdio.h> #include <stdlib.h> #include <pthread.h> #include <semaphore.h> #include <sys/types.h> #include <signal.h> #include <errno.h> #include <linux/bitmap.h> #include <linux/bitops.h> #include <linux/atomic.h> #include <linux/sizes.h> #include "kvm_util.h" #include "test_util.h" #include "guest_modes.h" #include "processor.h" static void guest_code(uint64_t start_gpa, uint64_t end_gpa, uint64_t stride) { uint64_t gpa; for (gpa = start_gpa; gpa < end_gpa; gpa += stride) *((volatile uint64_t *)gpa) = gpa; GUEST_DONE(); } struct vcpu_info { struct kvm_vcpu *vcpu; uint64_t start_gpa; uint64_t end_gpa; }; static int nr_vcpus; static atomic_t rendezvous; static void rendezvous_with_boss(void) { int orig = atomic_read(&rendezvous); if (orig > 0) { atomic_dec_and_test(&rendezvous); while (atomic_read(&rendezvous) > 0) cpu_relax(); } else { atomic_inc(&rendezvous); while (atomic_read(&rendezvous) < 0) cpu_relax(); } } static void run_vcpu(struct kvm_vcpu *vcpu) { vcpu_run(vcpu); TEST_ASSERT_EQ(get_ucall(vcpu, NULL), UCALL_DONE); } static void *vcpu_worker(void *data) { struct vcpu_info *info = data; struct kvm_vcpu *vcpu = info->vcpu; struct kvm_vm *vm = vcpu->vm; struct kvm_sregs sregs; struct kvm_regs regs; vcpu_args_set(vcpu, 3, info->start_gpa, info->end_gpa, vm->page_size); /* Snapshot regs before the first run. */ vcpu_regs_get(vcpu, ®s); rendezvous_with_boss(); run_vcpu(vcpu); rendezvous_with_boss(); vcpu_regs_set(vcpu, ®s); vcpu_sregs_get(vcpu, &sregs); #ifdef __x86_64__ /* Toggle CR0.WP to trigger a MMU context reset. */ sregs.cr0 ^= X86_CR0_WP; #endif vcpu_sregs_set(vcpu, &sregs); rendezvous_with_boss(); run_vcpu(vcpu); rendezvous_with_boss(); return NULL; } static pthread_t *spawn_workers(struct kvm_vm *vm, struct kvm_vcpu **vcpus, uint64_t start_gpa, uint64_t end_gpa) { struct vcpu_info *info; uint64_t gpa, nr_bytes; pthread_t *threads; int i; threads = malloc(nr_vcpus * sizeof(*threads)); TEST_ASSERT(threads, "Failed to allocate vCPU threads"); info = malloc(nr_vcpus * sizeof(*info)); TEST_ASSERT(info, "Failed to allocate vCPU gpa ranges"); nr_bytes = ((end_gpa - start_gpa) / nr_vcpus) & ~((uint64_t)vm->page_size - 1); TEST_ASSERT(nr_bytes, "C'mon, no way you have %d CPUs", nr_vcpus); for (i = 0, gpa = start_gpa; i < nr_vcpus; i++, gpa += nr_bytes) { info[i].vcpu = vcpus[i]; info[i].start_gpa = gpa; info[i].end_gpa = gpa + nr_bytes; pthread_create(&threads[i], NULL, vcpu_worker, &info[i]); } return threads; } static void rendezvous_with_vcpus(struct timespec *time, const char *name) { int i, rendezvoused; pr_info("Waiting for vCPUs to finish %s...\n", name); rendezvoused = atomic_read(&rendezvous); for (i = 0; abs(rendezvoused) != 1; i++) { usleep(100); if (!(i & 0x3f)) pr_info("\r%d vCPUs haven't rendezvoused...", abs(rendezvoused) - 1); rendezvoused = atomic_read(&rendezvous); } clock_gettime(CLOCK_MONOTONIC, time); /* Release the vCPUs after getting the time of the previous action. */ pr_info("\rAll vCPUs finished %s, releasing...\n", name); if (rendezvoused > 0) atomic_set(&rendezvous, -nr_vcpus - 1); else atomic_set(&rendezvous, nr_vcpus + 1); } static void calc_default_nr_vcpus(void) { cpu_set_t possible_mask; int r; r = sched_getaffinity(0, sizeof(possible_mask), &possible_mask); TEST_ASSERT(!r, "sched_getaffinity failed, errno = %d (%s)", errno, strerror(errno)); nr_vcpus = CPU_COUNT(&possible_mask) * 3/4; TEST_ASSERT(nr_vcpus > 0, "Uh, no CPUs?"); } int main(int argc, char *argv[]) { /* * Skip the first 4gb and slot0. slot0 maps <1gb and is used to back * the guest's code, stack, and page tables. Because selftests creates * an IRQCHIP, a.k.a. a local APIC, KVM creates an internal memslot * just below the 4gb boundary. This test could create memory at * 1gb-3gb,but it's simpler to skip straight to 4gb. */ const uint64_t start_gpa = SZ_4G; const int first_slot = 1; struct timespec time_start, time_run1, time_reset, time_run2; uint64_t max_gpa, gpa, slot_size, max_mem, i; int max_slots, slot, opt, fd; bool hugepages = false; struct kvm_vcpu **vcpus; pthread_t *threads; struct kvm_vm *vm; void *mem; /* * Default to 2gb so that maxing out systems with MAXPHADDR=46, which * are quite common for x86, requires changing only max_mem (KVM allows * 32k memslots, 32k * 2gb == ~64tb of guest memory). */ slot_size = SZ_2G; max_slots = kvm_check_cap(KVM_CAP_NR_MEMSLOTS); TEST_ASSERT(max_slots > first_slot, "KVM is broken"); /* All KVM MMUs should be able to survive a 128gb guest. */ max_mem = 128ull * SZ_1G; calc_default_nr_vcpus(); while ((opt = getopt(argc, argv, "c:h:m:s:H")) != -1) { switch (opt) { case 'c': nr_vcpus = atoi_positive("Number of vCPUs", optarg); break; case 'm': max_mem = 1ull * atoi_positive("Memory size", optarg) * SZ_1G; break; case 's': slot_size = 1ull * atoi_positive("Slot size", optarg) * SZ_1G; break; case 'H': hugepages = true; break; case 'h': default: printf("usage: %s [-c nr_vcpus] [-m max_mem_in_gb] [-s slot_size_in_gb] [-H]\n", argv[0]); exit(1); } } vcpus = malloc(nr_vcpus * sizeof(*vcpus)); TEST_ASSERT(vcpus, "Failed to allocate vCPU array"); vm = vm_create_with_vcpus(nr_vcpus, guest_code, vcpus); max_gpa = vm->max_gfn << vm->page_shift; TEST_ASSERT(max_gpa > (4 * slot_size), "MAXPHYADDR <4gb "); fd = kvm_memfd_alloc(slot_size, hugepages); mem = mmap(NULL, slot_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); TEST_ASSERT(mem != MAP_FAILED, "mmap() failed"); TEST_ASSERT(!madvise(mem, slot_size, MADV_NOHUGEPAGE), "madvise() failed"); /* Pre-fault the memory to avoid taking mmap_sem on guest page faults. */ for (i = 0; i < slot_size; i += vm->page_size) ((uint8_t *)mem)[i] = 0xaa; gpa = 0; for (slot = first_slot; slot < max_slots; slot++) { gpa = start_gpa + ((slot - first_slot) * slot_size); if (gpa + slot_size > max_gpa) break; if ((gpa - start_gpa) >= max_mem) break; vm_set_user_memory_region(vm, slot, 0, gpa, slot_size, mem); #ifdef __x86_64__ /* Identity map memory in the guest using 1gb pages. */ for (i = 0; i < slot_size; i += SZ_1G) __virt_pg_map(vm, gpa + i, gpa + i, PG_LEVEL_1G); #else for (i = 0; i < slot_size; i += vm->page_size) virt_pg_map(vm, gpa + i, gpa + i); #endif } atomic_set(&rendezvous, nr_vcpus + 1); threads = spawn_workers(vm, vcpus, start_gpa, gpa); free(vcpus); vcpus = NULL; pr_info("Running with %lugb of guest memory and %u vCPUs\n", (gpa - start_gpa) / SZ_1G, nr_vcpus); rendezvous_with_vcpus(&time_start, "spawning"); rendezvous_with_vcpus(&time_run1, "run 1"); rendezvous_with_vcpus(&time_reset, "reset"); rendezvous_with_vcpus(&time_run2, "run 2"); time_run2 = timespec_sub(time_run2, time_reset); time_reset = timespec_sub(time_reset, time_run1); time_run1 = timespec_sub(time_run1, time_start); pr_info("run1 = %ld.%.9lds, reset = %ld.%.9lds, run2 = %ld.%.9lds\n", time_run1.tv_sec, time_run1.tv_nsec, time_reset.tv_sec, time_reset.tv_nsec, time_run2.tv_sec, time_run2.tv_nsec); /* * Delete even numbered slots (arbitrary) and unmap the first half of * the backing (also arbitrary) to verify KVM correctly drops all * references to the removed regions. */ for (slot = (slot - 1) & ~1ull; slot >= first_slot; slot -= 2) vm_set_user_memory_region(vm, slot, 0, 0, 0, NULL); munmap(mem, slot_size / 2); /* Sanity check that the vCPUs actually ran. */ for (i = 0; i < nr_vcpus; i++) pthread_join(threads[i], NULL); /* * Deliberately exit without deleting the remaining memslots or closing * kvm_fd to test cleanup via mmu_notifier.release. */ }