// SPDX-License-Identifier: GPL-2.0-only /* * * Copyright (C) 2013 Freescale Semiconductor, Inc. */ #define pr_fmt(fmt) "fsl-pamu: %s: " fmt, __func__ #include "fsl_pamu.h" #include <linux/fsl/guts.h> #include <linux/interrupt.h> #include <linux/genalloc.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/platform_device.h> #include <asm/mpc85xx.h> /* define indexes for each operation mapping scenario */ #define OMI_QMAN 0x00 #define OMI_FMAN 0x01 #define OMI_QMAN_PRIV 0x02 #define OMI_CAAM 0x03 #define make64(high, low) (((u64)(high) << 32) | (low)) struct pamu_isr_data { void __iomem *pamu_reg_base; /* Base address of PAMU regs */ unsigned int count; /* The number of PAMUs */ }; static struct paace *ppaact; static struct paace *spaact; static bool probed; /* Has PAMU been probed? */ /* * Table for matching compatible strings, for device tree * guts node, for QorIQ SOCs. * "fsl,qoriq-device-config-2.0" corresponds to T4 & B4 * SOCs. For the older SOCs "fsl,qoriq-device-config-1.0" * string would be used. */ static const struct of_device_id guts_device_ids[] = { { .compatible = "fsl,qoriq-device-config-1.0", }, { .compatible = "fsl,qoriq-device-config-2.0", }, {} }; /* * Table for matching compatible strings, for device tree * L3 cache controller node. * "fsl,t4240-l3-cache-controller" corresponds to T4, * "fsl,b4860-l3-cache-controller" corresponds to B4 & * "fsl,p4080-l3-cache-controller" corresponds to other, * SOCs. */ static const struct of_device_id l3_device_ids[] = { { .compatible = "fsl,t4240-l3-cache-controller", }, { .compatible = "fsl,b4860-l3-cache-controller", }, { .compatible = "fsl,p4080-l3-cache-controller", }, {} }; /* maximum subwindows permitted per liodn */ static u32 max_subwindow_count; /** * pamu_get_ppaace() - Return the primary PACCE * @liodn: liodn PAACT index for desired PAACE * * Returns the ppace pointer upon success else return * null. */ static struct paace *pamu_get_ppaace(int liodn) { if (!ppaact || liodn >= PAACE_NUMBER_ENTRIES) { pr_debug("PPAACT doesn't exist\n"); return NULL; } return &ppaact[liodn]; } /** * pamu_enable_liodn() - Set valid bit of PACCE * @liodn: liodn PAACT index for desired PAACE * * Returns 0 upon success else error code < 0 returned */ int pamu_enable_liodn(int liodn) { struct paace *ppaace; ppaace = pamu_get_ppaace(liodn); if (!ppaace) { pr_debug("Invalid primary paace entry\n"); return -ENOENT; } if (!get_bf(ppaace->addr_bitfields, PPAACE_AF_WSE)) { pr_debug("liodn %d not configured\n", liodn); return -EINVAL; } /* Ensure that all other stores to the ppaace complete first */ mb(); set_bf(ppaace->addr_bitfields, PAACE_AF_V, PAACE_V_VALID); mb(); return 0; } /** * pamu_disable_liodn() - Clears valid bit of PACCE * @liodn: liodn PAACT index for desired PAACE * * Returns 0 upon success else error code < 0 returned */ int pamu_disable_liodn(int liodn) { struct paace *ppaace; ppaace = pamu_get_ppaace(liodn); if (!ppaace) { pr_debug("Invalid primary paace entry\n"); return -ENOENT; } set_bf(ppaace->addr_bitfields, PAACE_AF_V, PAACE_V_INVALID); mb(); return 0; } /* Derive the window size encoding for a particular PAACE entry */ static unsigned int map_addrspace_size_to_wse(phys_addr_t addrspace_size) { /* Bug if not a power of 2 */ BUG_ON(addrspace_size & (addrspace_size - 1)); /* window size is 2^(WSE+1) bytes */ return fls64(addrspace_size) - 2; } /* * Set the PAACE type as primary and set the coherency required domain * attribute */ static void pamu_init_ppaace(struct paace *ppaace) { set_bf(ppaace->addr_bitfields, PAACE_AF_PT, PAACE_PT_PRIMARY); set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR, PAACE_M_COHERENCE_REQ); } /* * Function used for updating stash destination for the coressponding * LIODN. */ int pamu_update_paace_stash(int liodn, u32 value) { struct paace *paace; paace = pamu_get_ppaace(liodn); if (!paace) { pr_debug("Invalid liodn entry\n"); return -ENOENT; } set_bf(paace->impl_attr, PAACE_IA_CID, value); mb(); return 0; } /** * pamu_config_ppaace() - Sets up PPAACE entry for specified liodn * * @liodn: Logical IO device number * @omi: Operation mapping index -- if ~omi == 0 then omi not defined * @stashid: cache stash id for associated cpu -- if ~stashid == 0 then * stashid not defined * @prot: window permissions * * Returns 0 upon success else error code < 0 returned */ int pamu_config_ppaace(int liodn, u32 omi, u32 stashid, int prot) { struct paace *ppaace; ppaace = pamu_get_ppaace(liodn); if (!ppaace) return -ENOENT; /* window size is 2^(WSE+1) bytes */ set_bf(ppaace->addr_bitfields, PPAACE_AF_WSE, map_addrspace_size_to_wse(1ULL << 36)); pamu_init_ppaace(ppaace); ppaace->wbah = 0; set_bf(ppaace->addr_bitfields, PPAACE_AF_WBAL, 0); /* set up operation mapping if it's configured */ if (omi < OME_NUMBER_ENTRIES) { set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED); ppaace->op_encode.index_ot.omi = omi; } else if (~omi != 0) { pr_debug("bad operation mapping index: %d\n", omi); return -ENODEV; } /* configure stash id */ if (~stashid != 0) set_bf(ppaace->impl_attr, PAACE_IA_CID, stashid); set_bf(ppaace->impl_attr, PAACE_IA_ATM, PAACE_ATM_WINDOW_XLATE); ppaace->twbah = 0; set_bf(ppaace->win_bitfields, PAACE_WIN_TWBAL, 0); set_bf(ppaace->addr_bitfields, PAACE_AF_AP, prot); set_bf(ppaace->impl_attr, PAACE_IA_WCE, 0); set_bf(ppaace->addr_bitfields, PPAACE_AF_MW, 0); mb(); return 0; } /** * get_ome_index() - Returns the index in the operation mapping table * for device. * @omi_index: pointer for storing the index value * @dev: target device * */ void get_ome_index(u32 *omi_index, struct device *dev) { if (of_device_is_compatible(dev->of_node, "fsl,qman-portal")) *omi_index = OMI_QMAN; if (of_device_is_compatible(dev->of_node, "fsl,qman")) *omi_index = OMI_QMAN_PRIV; } /** * get_stash_id - Returns stash destination id corresponding to a * cache type and vcpu. * @stash_dest_hint: L1, L2 or L3 * @vcpu: vpcu target for a particular cache type. * * Returs stash on success or ~(u32)0 on failure. * */ u32 get_stash_id(u32 stash_dest_hint, u32 vcpu) { const u32 *prop; struct device_node *node; u32 cache_level; int len, found = 0; int i; /* Fastpath, exit early if L3/CPC cache is target for stashing */ if (stash_dest_hint == PAMU_ATTR_CACHE_L3) { node = of_find_matching_node(NULL, l3_device_ids); if (node) { prop = of_get_property(node, "cache-stash-id", NULL); if (!prop) { pr_debug("missing cache-stash-id at %pOF\n", node); of_node_put(node); return ~(u32)0; } of_node_put(node); return be32_to_cpup(prop); } return ~(u32)0; } for_each_of_cpu_node(node) { prop = of_get_property(node, "reg", &len); for (i = 0; i < len / sizeof(u32); i++) { if (be32_to_cpup(&prop[i]) == vcpu) { found = 1; goto found_cpu_node; } } } found_cpu_node: /* find the hwnode that represents the cache */ for (cache_level = PAMU_ATTR_CACHE_L1; (cache_level < PAMU_ATTR_CACHE_L3) && found; cache_level++) { if (stash_dest_hint == cache_level) { prop = of_get_property(node, "cache-stash-id", NULL); if (!prop) { pr_debug("missing cache-stash-id at %pOF\n", node); of_node_put(node); return ~(u32)0; } of_node_put(node); return be32_to_cpup(prop); } prop = of_get_property(node, "next-level-cache", NULL); if (!prop) { pr_debug("can't find next-level-cache at %pOF\n", node); of_node_put(node); return ~(u32)0; /* can't traverse any further */ } of_node_put(node); /* advance to next node in cache hierarchy */ node = of_find_node_by_phandle(*prop); if (!node) { pr_debug("Invalid node for cache hierarchy\n"); return ~(u32)0; } } pr_debug("stash dest not found for %d on vcpu %d\n", stash_dest_hint, vcpu); return ~(u32)0; } /* Identify if the PAACT table entry belongs to QMAN, BMAN or QMAN Portal */ #define QMAN_PAACE 1 #define QMAN_PORTAL_PAACE 2 #define BMAN_PAACE 3 /* * Setup operation mapping and stash destinations for QMAN and QMAN portal. * Memory accesses to QMAN and BMAN private memory need not be coherent, so * clear the PAACE entry coherency attribute for them. */ static void setup_qbman_paace(struct paace *ppaace, int paace_type) { switch (paace_type) { case QMAN_PAACE: set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED); ppaace->op_encode.index_ot.omi = OMI_QMAN_PRIV; /* setup QMAN Private data stashing for the L3 cache */ set_bf(ppaace->impl_attr, PAACE_IA_CID, get_stash_id(PAMU_ATTR_CACHE_L3, 0)); set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR, 0); break; case QMAN_PORTAL_PAACE: set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED); ppaace->op_encode.index_ot.omi = OMI_QMAN; /* Set DQRR and Frame stashing for the L3 cache */ set_bf(ppaace->impl_attr, PAACE_IA_CID, get_stash_id(PAMU_ATTR_CACHE_L3, 0)); break; case BMAN_PAACE: set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR, 0); break; } } /* * Setup the operation mapping table for various devices. This is a static * table where each table index corresponds to a particular device. PAMU uses * this table to translate device transaction to appropriate corenet * transaction. */ static void setup_omt(struct ome *omt) { struct ome *ome; /* Configure OMI_QMAN */ ome = &omt[OMI_QMAN]; ome->moe[IOE_READ_IDX] = EOE_VALID | EOE_READ; ome->moe[IOE_EREAD0_IDX] = EOE_VALID | EOE_RSA; ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE; ome->moe[IOE_EWRITE0_IDX] = EOE_VALID | EOE_WWSAO; ome->moe[IOE_DIRECT0_IDX] = EOE_VALID | EOE_LDEC; ome->moe[IOE_DIRECT1_IDX] = EOE_VALID | EOE_LDECPE; /* Configure OMI_FMAN */ ome = &omt[OMI_FMAN]; ome->moe[IOE_READ_IDX] = EOE_VALID | EOE_READI; ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE; /* Configure OMI_QMAN private */ ome = &omt[OMI_QMAN_PRIV]; ome->moe[IOE_READ_IDX] = EOE_VALID | EOE_READ; ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE; ome->moe[IOE_EREAD0_IDX] = EOE_VALID | EOE_RSA; ome->moe[IOE_EWRITE0_IDX] = EOE_VALID | EOE_WWSA; /* Configure OMI_CAAM */ ome = &omt[OMI_CAAM]; ome->moe[IOE_READ_IDX] = EOE_VALID | EOE_READI; ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE; } /* * Get the maximum number of PAACT table entries * and subwindows supported by PAMU */ static void get_pamu_cap_values(unsigned long pamu_reg_base) { u32 pc_val; pc_val = in_be32((u32 *)(pamu_reg_base + PAMU_PC3)); /* Maximum number of subwindows per liodn */ max_subwindow_count = 1 << (1 + PAMU_PC3_MWCE(pc_val)); } /* Setup PAMU registers pointing to PAACT, SPAACT and OMT */ static int setup_one_pamu(unsigned long pamu_reg_base, unsigned long pamu_reg_size, phys_addr_t ppaact_phys, phys_addr_t spaact_phys, phys_addr_t omt_phys) { u32 *pc; struct pamu_mmap_regs *pamu_regs; pc = (u32 *) (pamu_reg_base + PAMU_PC); pamu_regs = (struct pamu_mmap_regs *) (pamu_reg_base + PAMU_MMAP_REGS_BASE); /* set up pointers to corenet control blocks */ out_be32(&pamu_regs->ppbah, upper_32_bits(ppaact_phys)); out_be32(&pamu_regs->ppbal, lower_32_bits(ppaact_phys)); ppaact_phys = ppaact_phys + PAACT_SIZE; out_be32(&pamu_regs->pplah, upper_32_bits(ppaact_phys)); out_be32(&pamu_regs->pplal, lower_32_bits(ppaact_phys)); out_be32(&pamu_regs->spbah, upper_32_bits(spaact_phys)); out_be32(&pamu_regs->spbal, lower_32_bits(spaact_phys)); spaact_phys = spaact_phys + SPAACT_SIZE; out_be32(&pamu_regs->splah, upper_32_bits(spaact_phys)); out_be32(&pamu_regs->splal, lower_32_bits(spaact_phys)); out_be32(&pamu_regs->obah, upper_32_bits(omt_phys)); out_be32(&pamu_regs->obal, lower_32_bits(omt_phys)); omt_phys = omt_phys + OMT_SIZE; out_be32(&pamu_regs->olah, upper_32_bits(omt_phys)); out_be32(&pamu_regs->olal, lower_32_bits(omt_phys)); /* * set PAMU enable bit, * allow ppaact & omt to be cached * & enable PAMU access violation interrupts. */ out_be32((u32 *)(pamu_reg_base + PAMU_PICS), PAMU_ACCESS_VIOLATION_ENABLE); out_be32(pc, PAMU_PC_PE | PAMU_PC_OCE | PAMU_PC_SPCC | PAMU_PC_PPCC); return 0; } /* Enable all device LIODNS */ static void setup_liodns(void) { int i, len; struct paace *ppaace; struct device_node *node = NULL; const u32 *prop; for_each_node_with_property(node, "fsl,liodn") { prop = of_get_property(node, "fsl,liodn", &len); for (i = 0; i < len / sizeof(u32); i++) { int liodn; liodn = be32_to_cpup(&prop[i]); if (liodn >= PAACE_NUMBER_ENTRIES) { pr_debug("Invalid LIODN value %d\n", liodn); continue; } ppaace = pamu_get_ppaace(liodn); pamu_init_ppaace(ppaace); /* window size is 2^(WSE+1) bytes */ set_bf(ppaace->addr_bitfields, PPAACE_AF_WSE, 35); ppaace->wbah = 0; set_bf(ppaace->addr_bitfields, PPAACE_AF_WBAL, 0); set_bf(ppaace->impl_attr, PAACE_IA_ATM, PAACE_ATM_NO_XLATE); set_bf(ppaace->addr_bitfields, PAACE_AF_AP, PAACE_AP_PERMS_ALL); if (of_device_is_compatible(node, "fsl,qman-portal")) setup_qbman_paace(ppaace, QMAN_PORTAL_PAACE); if (of_device_is_compatible(node, "fsl,qman")) setup_qbman_paace(ppaace, QMAN_PAACE); if (of_device_is_compatible(node, "fsl,bman")) setup_qbman_paace(ppaace, BMAN_PAACE); mb(); pamu_enable_liodn(liodn); } } } static irqreturn_t pamu_av_isr(int irq, void *arg) { struct pamu_isr_data *data = arg; phys_addr_t phys; unsigned int i, j, ret; pr_emerg("access violation interrupt\n"); for (i = 0; i < data->count; i++) { void __iomem *p = data->pamu_reg_base + i * PAMU_OFFSET; u32 pics = in_be32(p + PAMU_PICS); if (pics & PAMU_ACCESS_VIOLATION_STAT) { u32 avs1 = in_be32(p + PAMU_AVS1); struct paace *paace; pr_emerg("POES1=%08x\n", in_be32(p + PAMU_POES1)); pr_emerg("POES2=%08x\n", in_be32(p + PAMU_POES2)); pr_emerg("AVS1=%08x\n", avs1); pr_emerg("AVS2=%08x\n", in_be32(p + PAMU_AVS2)); pr_emerg("AVA=%016llx\n", make64(in_be32(p + PAMU_AVAH), in_be32(p + PAMU_AVAL))); pr_emerg("UDAD=%08x\n", in_be32(p + PAMU_UDAD)); pr_emerg("POEA=%016llx\n", make64(in_be32(p + PAMU_POEAH), in_be32(p + PAMU_POEAL))); phys = make64(in_be32(p + PAMU_POEAH), in_be32(p + PAMU_POEAL)); /* Assume that POEA points to a PAACE */ if (phys) { u32 *paace = phys_to_virt(phys); /* Only the first four words are relevant */ for (j = 0; j < 4; j++) pr_emerg("PAACE[%u]=%08x\n", j, in_be32(paace + j)); } /* clear access violation condition */ out_be32(p + PAMU_AVS1, avs1 & PAMU_AV_MASK); paace = pamu_get_ppaace(avs1 >> PAMU_AVS1_LIODN_SHIFT); BUG_ON(!paace); /* check if we got a violation for a disabled LIODN */ if (!get_bf(paace->addr_bitfields, PAACE_AF_V)) { /* * As per hardware erratum A-003638, access * violation can be reported for a disabled * LIODN. If we hit that condition, disable * access violation reporting. */ pics &= ~PAMU_ACCESS_VIOLATION_ENABLE; } else { /* Disable the LIODN */ ret = pamu_disable_liodn(avs1 >> PAMU_AVS1_LIODN_SHIFT); BUG_ON(ret); pr_emerg("Disabling liodn %x\n", avs1 >> PAMU_AVS1_LIODN_SHIFT); } out_be32((p + PAMU_PICS), pics); } } return IRQ_HANDLED; } #define LAWAR_EN 0x80000000 #define LAWAR_TARGET_MASK 0x0FF00000 #define LAWAR_TARGET_SHIFT 20 #define LAWAR_SIZE_MASK 0x0000003F #define LAWAR_CSDID_MASK 0x000FF000 #define LAWAR_CSDID_SHIFT 12 #define LAW_SIZE_4K 0xb struct ccsr_law { u32 lawbarh; /* LAWn base address high */ u32 lawbarl; /* LAWn base address low */ u32 lawar; /* LAWn attributes */ u32 reserved; }; /* * Create a coherence subdomain for a given memory block. */ static int create_csd(phys_addr_t phys, size_t size, u32 csd_port_id) { struct device_node *np; const __be32 *iprop; void __iomem *lac = NULL; /* Local Access Control registers */ struct ccsr_law __iomem *law; void __iomem *ccm = NULL; u32 __iomem *csdids; unsigned int i, num_laws, num_csds; u32 law_target = 0; u32 csd_id = 0; int ret = 0; np = of_find_compatible_node(NULL, NULL, "fsl,corenet-law"); if (!np) return -ENODEV; iprop = of_get_property(np, "fsl,num-laws", NULL); if (!iprop) { ret = -ENODEV; goto error; } num_laws = be32_to_cpup(iprop); if (!num_laws) { ret = -ENODEV; goto error; } lac = of_iomap(np, 0); if (!lac) { ret = -ENODEV; goto error; } /* LAW registers are at offset 0xC00 */ law = lac + 0xC00; of_node_put(np); np = of_find_compatible_node(NULL, NULL, "fsl,corenet-cf"); if (!np) { ret = -ENODEV; goto error; } iprop = of_get_property(np, "fsl,ccf-num-csdids", NULL); if (!iprop) { ret = -ENODEV; goto error; } num_csds = be32_to_cpup(iprop); if (!num_csds) { ret = -ENODEV; goto error; } ccm = of_iomap(np, 0); if (!ccm) { ret = -ENOMEM; goto error; } /* The undocumented CSDID registers are at offset 0x600 */ csdids = ccm + 0x600; of_node_put(np); np = NULL; /* Find an unused coherence subdomain ID */ for (csd_id = 0; csd_id < num_csds; csd_id++) { if (!csdids[csd_id]) break; } /* Store the Port ID in the (undocumented) proper CIDMRxx register */ csdids[csd_id] = csd_port_id; /* Find the DDR LAW that maps to our buffer. */ for (i = 0; i < num_laws; i++) { if (law[i].lawar & LAWAR_EN) { phys_addr_t law_start, law_end; law_start = make64(law[i].lawbarh, law[i].lawbarl); law_end = law_start + (2ULL << (law[i].lawar & LAWAR_SIZE_MASK)); if (law_start <= phys && phys < law_end) { law_target = law[i].lawar & LAWAR_TARGET_MASK; break; } } } if (i == 0 || i == num_laws) { /* This should never happen */ ret = -ENOENT; goto error; } /* Find a free LAW entry */ while (law[--i].lawar & LAWAR_EN) { if (i == 0) { /* No higher priority LAW slots available */ ret = -ENOENT; goto error; } } law[i].lawbarh = upper_32_bits(phys); law[i].lawbarl = lower_32_bits(phys); wmb(); law[i].lawar = LAWAR_EN | law_target | (csd_id << LAWAR_CSDID_SHIFT) | (LAW_SIZE_4K + get_order(size)); wmb(); error: if (ccm) iounmap(ccm); if (lac) iounmap(lac); if (np) of_node_put(np); return ret; } /* * Table of SVRs and the corresponding PORT_ID values. Port ID corresponds to a * bit map of snoopers for a given range of memory mapped by a LAW. * * All future CoreNet-enabled SOCs will have this erratum(A-004510) fixed, so this * table should never need to be updated. SVRs are guaranteed to be unique, so * there is no worry that a future SOC will inadvertently have one of these * values. */ static const struct { u32 svr; u32 port_id; } port_id_map[] = { {(SVR_P2040 << 8) | 0x10, 0xFF000000}, /* P2040 1.0 */ {(SVR_P2040 << 8) | 0x11, 0xFF000000}, /* P2040 1.1 */ {(SVR_P2041 << 8) | 0x10, 0xFF000000}, /* P2041 1.0 */ {(SVR_P2041 << 8) | 0x11, 0xFF000000}, /* P2041 1.1 */ {(SVR_P3041 << 8) | 0x10, 0xFF000000}, /* P3041 1.0 */ {(SVR_P3041 << 8) | 0x11, 0xFF000000}, /* P3041 1.1 */ {(SVR_P4040 << 8) | 0x20, 0xFFF80000}, /* P4040 2.0 */ {(SVR_P4080 << 8) | 0x20, 0xFFF80000}, /* P4080 2.0 */ {(SVR_P5010 << 8) | 0x10, 0xFC000000}, /* P5010 1.0 */ {(SVR_P5010 << 8) | 0x20, 0xFC000000}, /* P5010 2.0 */ {(SVR_P5020 << 8) | 0x10, 0xFC000000}, /* P5020 1.0 */ {(SVR_P5021 << 8) | 0x10, 0xFF800000}, /* P5021 1.0 */ {(SVR_P5040 << 8) | 0x10, 0xFF800000}, /* P5040 1.0 */ }; #define SVR_SECURITY 0x80000 /* The Security (E) bit */ static int fsl_pamu_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; void __iomem *pamu_regs = NULL; struct ccsr_guts __iomem *guts_regs = NULL; u32 pamubypenr, pamu_counter; unsigned long pamu_reg_off; unsigned long pamu_reg_base; struct pamu_isr_data *data = NULL; struct device_node *guts_node; u64 size; struct page *p; int ret = 0; int irq; phys_addr_t ppaact_phys; phys_addr_t spaact_phys; struct ome *omt; phys_addr_t omt_phys; size_t mem_size = 0; unsigned int order = 0; u32 csd_port_id = 0; unsigned i; /* * enumerate all PAMUs and allocate and setup PAMU tables * for each of them, * NOTE : All PAMUs share the same LIODN tables. */ if (WARN_ON(probed)) return -EBUSY; pamu_regs = of_iomap(dev->of_node, 0); if (!pamu_regs) { dev_err(dev, "ioremap of PAMU node failed\n"); return -ENOMEM; } of_get_address(dev->of_node, 0, &size, NULL); irq = irq_of_parse_and_map(dev->of_node, 0); if (!irq) { dev_warn(dev, "no interrupts listed in PAMU node\n"); goto error; } data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) { ret = -ENOMEM; goto error; } data->pamu_reg_base = pamu_regs; data->count = size / PAMU_OFFSET; /* The ISR needs access to the regs, so we won't iounmap them */ ret = request_irq(irq, pamu_av_isr, 0, "pamu", data); if (ret < 0) { dev_err(dev, "error %i installing ISR for irq %i\n", ret, irq); goto error; } guts_node = of_find_matching_node(NULL, guts_device_ids); if (!guts_node) { dev_err(dev, "could not find GUTS node %pOF\n", dev->of_node); ret = -ENODEV; goto error; } guts_regs = of_iomap(guts_node, 0); of_node_put(guts_node); if (!guts_regs) { dev_err(dev, "ioremap of GUTS node failed\n"); ret = -ENODEV; goto error; } /* read in the PAMU capability registers */ get_pamu_cap_values((unsigned long)pamu_regs); /* * To simplify the allocation of a coherency domain, we allocate the * PAACT and the OMT in the same memory buffer. Unfortunately, this * wastes more memory compared to allocating the buffers separately. */ /* Determine how much memory we need */ mem_size = (PAGE_SIZE << get_order(PAACT_SIZE)) + (PAGE_SIZE << get_order(SPAACT_SIZE)) + (PAGE_SIZE << get_order(OMT_SIZE)); order = get_order(mem_size); p = alloc_pages(GFP_KERNEL | __GFP_ZERO, order); if (!p) { dev_err(dev, "unable to allocate PAACT/SPAACT/OMT block\n"); ret = -ENOMEM; goto error; } ppaact = page_address(p); ppaact_phys = page_to_phys(p); /* Make sure the memory is naturally aligned */ if (ppaact_phys & ((PAGE_SIZE << order) - 1)) { dev_err(dev, "PAACT/OMT block is unaligned\n"); ret = -ENOMEM; goto error; } spaact = (void *)ppaact + (PAGE_SIZE << get_order(PAACT_SIZE)); omt = (void *)spaact + (PAGE_SIZE << get_order(SPAACT_SIZE)); dev_dbg(dev, "ppaact virt=%p phys=%pa\n", ppaact, &ppaact_phys); /* Check to see if we need to implement the work-around on this SOC */ /* Determine the Port ID for our coherence subdomain */ for (i = 0; i < ARRAY_SIZE(port_id_map); i++) { if (port_id_map[i].svr == (mfspr(SPRN_SVR) & ~SVR_SECURITY)) { csd_port_id = port_id_map[i].port_id; dev_dbg(dev, "found matching SVR %08x\n", port_id_map[i].svr); break; } } if (csd_port_id) { dev_dbg(dev, "creating coherency subdomain at address %pa, size %zu, port id 0x%08x", &ppaact_phys, mem_size, csd_port_id); ret = create_csd(ppaact_phys, mem_size, csd_port_id); if (ret) { dev_err(dev, "could not create coherence subdomain\n"); goto error; } } spaact_phys = virt_to_phys(spaact); omt_phys = virt_to_phys(omt); pamubypenr = in_be32(&guts_regs->pamubypenr); for (pamu_reg_off = 0, pamu_counter = 0x80000000; pamu_reg_off < size; pamu_reg_off += PAMU_OFFSET, pamu_counter >>= 1) { pamu_reg_base = (unsigned long)pamu_regs + pamu_reg_off; setup_one_pamu(pamu_reg_base, pamu_reg_off, ppaact_phys, spaact_phys, omt_phys); /* Disable PAMU bypass for this PAMU */ pamubypenr &= ~pamu_counter; } setup_omt(omt); /* Enable all relevant PAMU(s) */ out_be32(&guts_regs->pamubypenr, pamubypenr); iounmap(guts_regs); /* Enable DMA for the LIODNs in the device tree */ setup_liodns(); probed = true; return 0; error: if (irq) free_irq(irq, data); kfree_sensitive(data); if (pamu_regs) iounmap(pamu_regs); if (guts_regs) iounmap(guts_regs); if (ppaact) free_pages((unsigned long)ppaact, order); ppaact = NULL; return ret; } static struct platform_driver fsl_of_pamu_driver = { .driver = { .name = "fsl-of-pamu", }, .probe = fsl_pamu_probe, }; static __init int fsl_pamu_init(void) { struct platform_device *pdev = NULL; struct device_node *np; int ret; /* * The normal OF process calls the probe function at some * indeterminate later time, after most drivers have loaded. This is * too late for us, because PAMU clients (like the Qman driver) * depend on PAMU being initialized early. * * So instead, we "manually" call our probe function by creating the * platform devices ourselves. */ /* * We assume that there is only one PAMU node in the device tree. A * single PAMU node represents all of the PAMU devices in the SOC * already. Everything else already makes that assumption, and the * binding for the PAMU nodes doesn't allow for any parent-child * relationships anyway. In other words, support for more than one * PAMU node would require significant changes to a lot of code. */ np = of_find_compatible_node(NULL, NULL, "fsl,pamu"); if (!np) { pr_err("could not find a PAMU node\n"); return -ENODEV; } ret = platform_driver_register(&fsl_of_pamu_driver); if (ret) { pr_err("could not register driver (err=%i)\n", ret); goto error_driver_register; } pdev = platform_device_alloc("fsl-of-pamu", 0); if (!pdev) { pr_err("could not allocate device %pOF\n", np); ret = -ENOMEM; goto error_device_alloc; } pdev->dev.of_node = of_node_get(np); ret = pamu_domain_init(); if (ret) goto error_device_add; ret = platform_device_add(pdev); if (ret) { pr_err("could not add device %pOF (err=%i)\n", np, ret); goto error_device_add; } return 0; error_device_add: of_node_put(pdev->dev.of_node); pdev->dev.of_node = NULL; platform_device_put(pdev); error_device_alloc: platform_driver_unregister(&fsl_of_pamu_driver); error_driver_register: of_node_put(np); return ret; } arch_initcall(fsl_pamu_init);