// SPDX-License-Identifier: GPL-2.0 /* Sparc SS1000/SC2000 SMP support. * * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) * * Based on sun4m's smp.c, which is: * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu) */ #include <linux/clockchips.h> #include <linux/interrupt.h> #include <linux/profile.h> #include <linux/delay.h> #include <linux/sched/mm.h> #include <linux/cpu.h> #include <asm/cacheflush.h> #include <asm/switch_to.h> #include <asm/tlbflush.h> #include <asm/timer.h> #include <asm/oplib.h> #include <asm/sbi.h> #include <asm/mmu.h> #include "kernel.h" #include "irq.h" #define IRQ_CROSS_CALL 15 static volatile int smp_processors_ready; static int smp_highest_cpu; static inline unsigned long sun4d_swap(volatile unsigned long *ptr, unsigned long val) { __asm__ __volatile__("swap [%1], %0\n\t" : "=&r" (val), "=&r" (ptr) : "0" (val), "1" (ptr)); return val; } static void smp4d_ipi_init(void); static unsigned char cpu_leds[32]; static inline void show_leds(int cpuid) { cpuid &= 0x1e; __asm__ __volatile__ ("stba %0, [%1] %2" : : "r" ((cpu_leds[cpuid] << 4) | cpu_leds[cpuid+1]), "r" (ECSR_BASE(cpuid) | BB_LEDS), "i" (ASI_M_CTL)); } void sun4d_cpu_pre_starting(void *arg) { int cpuid = hard_smp_processor_id(); /* Show we are alive */ cpu_leds[cpuid] = 0x6; show_leds(cpuid); /* Enable level15 interrupt, disable level14 interrupt for now */ cc_set_imsk((cc_get_imsk() & ~0x8000) | 0x4000); } void sun4d_cpu_pre_online(void *arg) { unsigned long flags; int cpuid; cpuid = hard_smp_processor_id(); /* Unblock the master CPU _only_ when the scheduler state * of all secondary CPUs will be up-to-date, so after * the SMP initialization the master will be just allowed * to call the scheduler code. */ sun4d_swap((unsigned long *)&cpu_callin_map[cpuid], 1); local_ops->cache_all(); local_ops->tlb_all(); while ((unsigned long)current_set[cpuid] < PAGE_OFFSET) barrier(); while (current_set[cpuid]->cpu != cpuid) barrier(); /* Fix idle thread fields. */ __asm__ __volatile__("ld [%0], %%g6\n\t" : : "r" (¤t_set[cpuid]) : "memory" /* paranoid */); cpu_leds[cpuid] = 0x9; show_leds(cpuid); /* Attach to the address space of init_task. */ mmgrab(&init_mm); current->active_mm = &init_mm; local_ops->cache_all(); local_ops->tlb_all(); while (!cpumask_test_cpu(cpuid, &smp_commenced_mask)) barrier(); spin_lock_irqsave(&sun4d_imsk_lock, flags); cc_set_imsk(cc_get_imsk() & ~0x4000); /* Allow PIL 14 as well */ spin_unlock_irqrestore(&sun4d_imsk_lock, flags); } /* * Cycle through the processors asking the PROM to start each one. */ void __init smp4d_boot_cpus(void) { smp4d_ipi_init(); if (boot_cpu_id) current_set[0] = NULL; local_ops->cache_all(); } int smp4d_boot_one_cpu(int i, struct task_struct *idle) { unsigned long *entry = &sun4d_cpu_startup; int timeout; int cpu_node; cpu_find_by_instance(i, &cpu_node, NULL); current_set[i] = task_thread_info(idle); /* * Initialize the contexts table * Since the call to prom_startcpu() trashes the structure, * we need to re-initialize it for each cpu */ smp_penguin_ctable.which_io = 0; smp_penguin_ctable.phys_addr = (unsigned int) srmmu_ctx_table_phys; smp_penguin_ctable.reg_size = 0; /* whirrr, whirrr, whirrrrrrrrr... */ printk(KERN_INFO "Starting CPU %d at %p\n", i, entry); local_ops->cache_all(); prom_startcpu(cpu_node, &smp_penguin_ctable, 0, (char *)entry); printk(KERN_INFO "prom_startcpu returned :)\n"); /* wheee... it's going... */ for (timeout = 0; timeout < 10000; timeout++) { if (cpu_callin_map[i]) break; udelay(200); } if (!(cpu_callin_map[i])) { printk(KERN_ERR "Processor %d is stuck.\n", i); return -ENODEV; } local_ops->cache_all(); return 0; } void __init smp4d_smp_done(void) { int i, first; int *prev; /* setup cpu list for irq rotation */ first = 0; prev = &first; for_each_online_cpu(i) { *prev = i; prev = &cpu_data(i).next; } *prev = first; local_ops->cache_all(); /* Ok, they are spinning and ready to go. */ smp_processors_ready = 1; sun4d_distribute_irqs(); } /* Memory structure giving interrupt handler information about IPI generated */ struct sun4d_ipi_work { int single; int msk; int resched; }; static DEFINE_PER_CPU_SHARED_ALIGNED(struct sun4d_ipi_work, sun4d_ipi_work); /* Initialize IPIs on the SUN4D SMP machine */ static void __init smp4d_ipi_init(void) { int cpu; struct sun4d_ipi_work *work; printk(KERN_INFO "smp4d: setup IPI at IRQ %d\n", SUN4D_IPI_IRQ); for_each_possible_cpu(cpu) { work = &per_cpu(sun4d_ipi_work, cpu); work->single = work->msk = work->resched = 0; } } void sun4d_ipi_interrupt(void) { struct sun4d_ipi_work *work = this_cpu_ptr(&sun4d_ipi_work); if (work->single) { work->single = 0; smp_call_function_single_interrupt(); } if (work->msk) { work->msk = 0; smp_call_function_interrupt(); } if (work->resched) { work->resched = 0; smp_resched_interrupt(); } } /* +-------+-------------+-----------+------------------------------------+ * | bcast | devid | sid | levels mask | * +-------+-------------+-----------+------------------------------------+ * 31 30 23 22 15 14 0 */ #define IGEN_MESSAGE(bcast, devid, sid, levels) \ (((bcast) << 31) | ((devid) << 23) | ((sid) << 15) | (levels)) static void sun4d_send_ipi(int cpu, int level) { cc_set_igen(IGEN_MESSAGE(0, cpu << 3, 6 + ((level >> 1) & 7), 1 << (level - 1))); } static void sun4d_ipi_single(int cpu) { struct sun4d_ipi_work *work = &per_cpu(sun4d_ipi_work, cpu); /* Mark work */ work->single = 1; /* Generate IRQ on the CPU */ sun4d_send_ipi(cpu, SUN4D_IPI_IRQ); } static void sun4d_ipi_mask_one(int cpu) { struct sun4d_ipi_work *work = &per_cpu(sun4d_ipi_work, cpu); /* Mark work */ work->msk = 1; /* Generate IRQ on the CPU */ sun4d_send_ipi(cpu, SUN4D_IPI_IRQ); } static void sun4d_ipi_resched(int cpu) { struct sun4d_ipi_work *work = &per_cpu(sun4d_ipi_work, cpu); /* Mark work */ work->resched = 1; /* Generate IRQ on the CPU (any IRQ will cause resched) */ sun4d_send_ipi(cpu, SUN4D_IPI_IRQ); } static struct smp_funcall { void *func; unsigned long arg1; unsigned long arg2; unsigned long arg3; unsigned long arg4; unsigned long arg5; unsigned char processors_in[NR_CPUS]; /* Set when ipi entered. */ unsigned char processors_out[NR_CPUS]; /* Set when ipi exited. */ } ccall_info __attribute__((aligned(8))); static DEFINE_SPINLOCK(cross_call_lock); /* Cross calls must be serialized, at least currently. */ static void sun4d_cross_call(void *func, cpumask_t mask, unsigned long arg1, unsigned long arg2, unsigned long arg3, unsigned long arg4) { if (smp_processors_ready) { register int high = smp_highest_cpu; unsigned long flags; spin_lock_irqsave(&cross_call_lock, flags); { /* * If you make changes here, make sure * gcc generates proper code... */ register void *f asm("i0") = func; register unsigned long a1 asm("i1") = arg1; register unsigned long a2 asm("i2") = arg2; register unsigned long a3 asm("i3") = arg3; register unsigned long a4 asm("i4") = arg4; register unsigned long a5 asm("i5") = 0; __asm__ __volatile__( "std %0, [%6]\n\t" "std %2, [%6 + 8]\n\t" "std %4, [%6 + 16]\n\t" : : "r"(f), "r"(a1), "r"(a2), "r"(a3), "r"(a4), "r"(a5), "r" (&ccall_info.func)); } /* Init receive/complete mapping, plus fire the IPI's off. */ { register int i; cpumask_clear_cpu(smp_processor_id(), &mask); cpumask_and(&mask, cpu_online_mask, &mask); for (i = 0; i <= high; i++) { if (cpumask_test_cpu(i, &mask)) { ccall_info.processors_in[i] = 0; ccall_info.processors_out[i] = 0; sun4d_send_ipi(i, IRQ_CROSS_CALL); } } } { register int i; i = 0; do { if (!cpumask_test_cpu(i, &mask)) continue; while (!ccall_info.processors_in[i]) barrier(); } while (++i <= high); i = 0; do { if (!cpumask_test_cpu(i, &mask)) continue; while (!ccall_info.processors_out[i]) barrier(); } while (++i <= high); } spin_unlock_irqrestore(&cross_call_lock, flags); } } /* Running cross calls. */ void smp4d_cross_call_irq(void) { void (*func)(unsigned long, unsigned long, unsigned long, unsigned long, unsigned long) = ccall_info.func; int i = hard_smp_processor_id(); ccall_info.processors_in[i] = 1; func(ccall_info.arg1, ccall_info.arg2, ccall_info.arg3, ccall_info.arg4, ccall_info.arg5); ccall_info.processors_out[i] = 1; } void smp4d_percpu_timer_interrupt(struct pt_regs *regs) { struct pt_regs *old_regs; int cpu = hard_smp_processor_id(); struct clock_event_device *ce; static int cpu_tick[NR_CPUS]; static char led_mask[] = { 0xe, 0xd, 0xb, 0x7, 0xb, 0xd }; old_regs = set_irq_regs(regs); bw_get_prof_limit(cpu); bw_clear_intr_mask(0, 1); /* INTR_TABLE[0] & 1 is Profile IRQ */ cpu_tick[cpu]++; if (!(cpu_tick[cpu] & 15)) { if (cpu_tick[cpu] == 0x60) cpu_tick[cpu] = 0; cpu_leds[cpu] = led_mask[cpu_tick[cpu] >> 4]; show_leds(cpu); } ce = &per_cpu(sparc32_clockevent, cpu); irq_enter(); ce->event_handler(ce); irq_exit(); set_irq_regs(old_regs); } static const struct sparc32_ipi_ops sun4d_ipi_ops = { .cross_call = sun4d_cross_call, .resched = sun4d_ipi_resched, .single = sun4d_ipi_single, .mask_one = sun4d_ipi_mask_one, }; void __init sun4d_init_smp(void) { int i; /* Patch ipi15 trap table */ t_nmi[1] = t_nmi[1] + (linux_trap_ipi15_sun4d - linux_trap_ipi15_sun4m); sparc32_ipi_ops = &sun4d_ipi_ops; for (i = 0; i < NR_CPUS; i++) { ccall_info.processors_in[i] = 1; ccall_info.processors_out[i] = 1; } }