// SPDX-License-Identifier: GPL-2.0 /* * builtin-record.c * * Builtin record command: Record the profile of a workload * (or a CPU, or a PID) into the perf.data output file - for * later analysis via perf report. */ #include "builtin.h" #include "util/build-id.h" #include <subcmd/parse-options.h> #include <internal/xyarray.h> #include "util/parse-events.h" #include "util/config.h" #include "util/callchain.h" #include "util/cgroup.h" #include "util/header.h" #include "util/event.h" #include "util/evlist.h" #include "util/evsel.h" #include "util/debug.h" #include "util/mmap.h" #include "util/mutex.h" #include "util/target.h" #include "util/session.h" #include "util/tool.h" #include "util/symbol.h" #include "util/record.h" #include "util/cpumap.h" #include "util/thread_map.h" #include "util/data.h" #include "util/perf_regs.h" #include "util/auxtrace.h" #include "util/tsc.h" #include "util/parse-branch-options.h" #include "util/parse-regs-options.h" #include "util/perf_api_probe.h" #include "util/trigger.h" #include "util/perf-hooks.h" #include "util/cpu-set-sched.h" #include "util/synthetic-events.h" #include "util/time-utils.h" #include "util/units.h" #include "util/bpf-event.h" #include "util/util.h" #include "util/pfm.h" #include "util/pmu.h" #include "util/pmus.h" #include "util/clockid.h" #include "util/off_cpu.h" #include "util/bpf-filter.h" #include "asm/bug.h" #include "perf.h" #include "cputopo.h" #include <errno.h> #include <inttypes.h> #include <locale.h> #include <poll.h> #include <pthread.h> #include <unistd.h> #ifndef HAVE_GETTID #include <syscall.h> #endif #include <sched.h> #include <signal.h> #ifdef HAVE_EVENTFD_SUPPORT #include <sys/eventfd.h> #endif #include <sys/mman.h> #include <sys/wait.h> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <linux/err.h> #include <linux/string.h> #include <linux/time64.h> #include <linux/zalloc.h> #include <linux/bitmap.h> #include <sys/time.h> struct switch_output { bool enabled; bool signal; unsigned long size; unsigned long time; const char *str; bool set; char **filenames; int num_files; int cur_file; }; struct thread_mask { struct mmap_cpu_mask maps; struct mmap_cpu_mask affinity; }; struct record_thread { pid_t tid; struct thread_mask *mask; struct { int msg[2]; int ack[2]; } pipes; struct fdarray pollfd; int ctlfd_pos; int nr_mmaps; struct mmap **maps; struct mmap **overwrite_maps; struct record *rec; unsigned long long samples; unsigned long waking; u64 bytes_written; u64 bytes_transferred; u64 bytes_compressed; }; static __thread struct record_thread *thread; enum thread_msg { THREAD_MSG__UNDEFINED = 0, THREAD_MSG__READY, THREAD_MSG__MAX, }; static const char *thread_msg_tags[THREAD_MSG__MAX] = { "UNDEFINED", "READY" }; enum thread_spec { THREAD_SPEC__UNDEFINED = 0, THREAD_SPEC__CPU, THREAD_SPEC__CORE, THREAD_SPEC__PACKAGE, THREAD_SPEC__NUMA, THREAD_SPEC__USER, THREAD_SPEC__MAX, }; static const char *thread_spec_tags[THREAD_SPEC__MAX] = { "undefined", "cpu", "core", "package", "numa", "user" }; struct pollfd_index_map { int evlist_pollfd_index; int thread_pollfd_index; }; struct record { struct perf_tool tool; struct record_opts opts; u64 bytes_written; u64 thread_bytes_written; struct perf_data data; struct auxtrace_record *itr; struct evlist *evlist; struct perf_session *session; struct evlist *sb_evlist; pthread_t thread_id; int realtime_prio; bool switch_output_event_set; bool no_buildid; bool no_buildid_set; bool no_buildid_cache; bool no_buildid_cache_set; bool buildid_all; bool buildid_mmap; bool timestamp_filename; bool timestamp_boundary; bool off_cpu; struct switch_output switch_output; unsigned long long samples; unsigned long output_max_size; /* = 0: unlimited */ struct perf_debuginfod debuginfod; int nr_threads; struct thread_mask *thread_masks; struct record_thread *thread_data; struct pollfd_index_map *index_map; size_t index_map_sz; size_t index_map_cnt; }; static volatile int done; static volatile int auxtrace_record__snapshot_started; static DEFINE_TRIGGER(auxtrace_snapshot_trigger); static DEFINE_TRIGGER(switch_output_trigger); static const char *affinity_tags[PERF_AFFINITY_MAX] = { "SYS", "NODE", "CPU" }; #ifndef HAVE_GETTID static inline pid_t gettid(void) { return (pid_t)syscall(__NR_gettid); } #endif static int record__threads_enabled(struct record *rec) { return rec->opts.threads_spec; } static bool switch_output_signal(struct record *rec) { return rec->switch_output.signal && trigger_is_ready(&switch_output_trigger); } static bool switch_output_size(struct record *rec) { return rec->switch_output.size && trigger_is_ready(&switch_output_trigger) && (rec->bytes_written >= rec->switch_output.size); } static bool switch_output_time(struct record *rec) { return rec->switch_output.time && trigger_is_ready(&switch_output_trigger); } static u64 record__bytes_written(struct record *rec) { return rec->bytes_written + rec->thread_bytes_written; } static bool record__output_max_size_exceeded(struct record *rec) { return rec->output_max_size && (record__bytes_written(rec) >= rec->output_max_size); } static int record__write(struct record *rec, struct mmap *map __maybe_unused, void *bf, size_t size) { struct perf_data_file *file = &rec->session->data->file; if (map && map->file) file = map->file; if (perf_data_file__write(file, bf, size) < 0) { pr_err("failed to write perf data, error: %m\n"); return -1; } if (map && map->file) { thread->bytes_written += size; rec->thread_bytes_written += size; } else { rec->bytes_written += size; } if (record__output_max_size_exceeded(rec) && !done) { fprintf(stderr, "[ perf record: perf size limit reached (%" PRIu64 " KB)," " stopping session ]\n", record__bytes_written(rec) >> 10); done = 1; } if (switch_output_size(rec)) trigger_hit(&switch_output_trigger); return 0; } static int record__aio_enabled(struct record *rec); static int record__comp_enabled(struct record *rec); static size_t zstd_compress(struct perf_session *session, struct mmap *map, void *dst, size_t dst_size, void *src, size_t src_size); #ifdef HAVE_AIO_SUPPORT static int record__aio_write(struct aiocb *cblock, int trace_fd, void *buf, size_t size, off_t off) { int rc; cblock->aio_fildes = trace_fd; cblock->aio_buf = buf; cblock->aio_nbytes = size; cblock->aio_offset = off; cblock->aio_sigevent.sigev_notify = SIGEV_NONE; do { rc = aio_write(cblock); if (rc == 0) { break; } else if (errno != EAGAIN) { cblock->aio_fildes = -1; pr_err("failed to queue perf data, error: %m\n"); break; } } while (1); return rc; } static int record__aio_complete(struct mmap *md, struct aiocb *cblock) { void *rem_buf; off_t rem_off; size_t rem_size; int rc, aio_errno; ssize_t aio_ret, written; aio_errno = aio_error(cblock); if (aio_errno == EINPROGRESS) return 0; written = aio_ret = aio_return(cblock); if (aio_ret < 0) { if (aio_errno != EINTR) pr_err("failed to write perf data, error: %m\n"); written = 0; } rem_size = cblock->aio_nbytes - written; if (rem_size == 0) { cblock->aio_fildes = -1; /* * md->refcount is incremented in record__aio_pushfn() for * every aio write request started in record__aio_push() so * decrement it because the request is now complete. */ perf_mmap__put(&md->core); rc = 1; } else { /* * aio write request may require restart with the * reminder if the kernel didn't write whole * chunk at once. */ rem_off = cblock->aio_offset + written; rem_buf = (void *)(cblock->aio_buf + written); record__aio_write(cblock, cblock->aio_fildes, rem_buf, rem_size, rem_off); rc = 0; } return rc; } static int record__aio_sync(struct mmap *md, bool sync_all) { struct aiocb **aiocb = md->aio.aiocb; struct aiocb *cblocks = md->aio.cblocks; struct timespec timeout = { 0, 1000 * 1000 * 1 }; /* 1ms */ int i, do_suspend; do { do_suspend = 0; for (i = 0; i < md->aio.nr_cblocks; ++i) { if (cblocks[i].aio_fildes == -1 || record__aio_complete(md, &cblocks[i])) { if (sync_all) aiocb[i] = NULL; else return i; } else { /* * Started aio write is not complete yet * so it has to be waited before the * next allocation. */ aiocb[i] = &cblocks[i]; do_suspend = 1; } } if (!do_suspend) return -1; while (aio_suspend((const struct aiocb **)aiocb, md->aio.nr_cblocks, &timeout)) { if (!(errno == EAGAIN || errno == EINTR)) pr_err("failed to sync perf data, error: %m\n"); } } while (1); } struct record_aio { struct record *rec; void *data; size_t size; }; static int record__aio_pushfn(struct mmap *map, void *to, void *buf, size_t size) { struct record_aio *aio = to; /* * map->core.base data pointed by buf is copied into free map->aio.data[] buffer * to release space in the kernel buffer as fast as possible, calling * perf_mmap__consume() from perf_mmap__push() function. * * That lets the kernel to proceed with storing more profiling data into * the kernel buffer earlier than other per-cpu kernel buffers are handled. * * Coping can be done in two steps in case the chunk of profiling data * crosses the upper bound of the kernel buffer. In this case we first move * part of data from map->start till the upper bound and then the reminder * from the beginning of the kernel buffer till the end of the data chunk. */ if (record__comp_enabled(aio->rec)) { size = zstd_compress(aio->rec->session, NULL, aio->data + aio->size, mmap__mmap_len(map) - aio->size, buf, size); } else { memcpy(aio->data + aio->size, buf, size); } if (!aio->size) { /* * Increment map->refcount to guard map->aio.data[] buffer * from premature deallocation because map object can be * released earlier than aio write request started on * map->aio.data[] buffer is complete. * * perf_mmap__put() is done at record__aio_complete() * after started aio request completion or at record__aio_push() * if the request failed to start. */ perf_mmap__get(&map->core); } aio->size += size; return size; } static int record__aio_push(struct record *rec, struct mmap *map, off_t *off) { int ret, idx; int trace_fd = rec->session->data->file.fd; struct record_aio aio = { .rec = rec, .size = 0 }; /* * Call record__aio_sync() to wait till map->aio.data[] buffer * becomes available after previous aio write operation. */ idx = record__aio_sync(map, false); aio.data = map->aio.data[idx]; ret = perf_mmap__push(map, &aio, record__aio_pushfn); if (ret != 0) /* ret > 0 - no data, ret < 0 - error */ return ret; rec->samples++; ret = record__aio_write(&(map->aio.cblocks[idx]), trace_fd, aio.data, aio.size, *off); if (!ret) { *off += aio.size; rec->bytes_written += aio.size; if (switch_output_size(rec)) trigger_hit(&switch_output_trigger); } else { /* * Decrement map->refcount incremented in record__aio_pushfn() * back if record__aio_write() operation failed to start, otherwise * map->refcount is decremented in record__aio_complete() after * aio write operation finishes successfully. */ perf_mmap__put(&map->core); } return ret; } static off_t record__aio_get_pos(int trace_fd) { return lseek(trace_fd, 0, SEEK_CUR); } static void record__aio_set_pos(int trace_fd, off_t pos) { lseek(trace_fd, pos, SEEK_SET); } static void record__aio_mmap_read_sync(struct record *rec) { int i; struct evlist *evlist = rec->evlist; struct mmap *maps = evlist->mmap; if (!record__aio_enabled(rec)) return; for (i = 0; i < evlist->core.nr_mmaps; i++) { struct mmap *map = &maps[i]; if (map->core.base) record__aio_sync(map, true); } } static int nr_cblocks_default = 1; static int nr_cblocks_max = 4; static int record__aio_parse(const struct option *opt, const char *str, int unset) { struct record_opts *opts = (struct record_opts *)opt->value; if (unset) { opts->nr_cblocks = 0; } else { if (str) opts->nr_cblocks = strtol(str, NULL, 0); if (!opts->nr_cblocks) opts->nr_cblocks = nr_cblocks_default; } return 0; } #else /* HAVE_AIO_SUPPORT */ static int nr_cblocks_max = 0; static int record__aio_push(struct record *rec __maybe_unused, struct mmap *map __maybe_unused, off_t *off __maybe_unused) { return -1; } static off_t record__aio_get_pos(int trace_fd __maybe_unused) { return -1; } static void record__aio_set_pos(int trace_fd __maybe_unused, off_t pos __maybe_unused) { } static void record__aio_mmap_read_sync(struct record *rec __maybe_unused) { } #endif static int record__aio_enabled(struct record *rec) { return rec->opts.nr_cblocks > 0; } #define MMAP_FLUSH_DEFAULT 1 static int record__mmap_flush_parse(const struct option *opt, const char *str, int unset) { int flush_max; struct record_opts *opts = (struct record_opts *)opt->value; static struct parse_tag tags[] = { { .tag = 'B', .mult = 1 }, { .tag = 'K', .mult = 1 << 10 }, { .tag = 'M', .mult = 1 << 20 }, { .tag = 'G', .mult = 1 << 30 }, { .tag = 0 }, }; if (unset) return 0; if (str) { opts->mmap_flush = parse_tag_value(str, tags); if (opts->mmap_flush == (int)-1) opts->mmap_flush = strtol(str, NULL, 0); } if (!opts->mmap_flush) opts->mmap_flush = MMAP_FLUSH_DEFAULT; flush_max = evlist__mmap_size(opts->mmap_pages); flush_max /= 4; if (opts->mmap_flush > flush_max) opts->mmap_flush = flush_max; return 0; } #ifdef HAVE_ZSTD_SUPPORT static unsigned int comp_level_default = 1; static int record__parse_comp_level(const struct option *opt, const char *str, int unset) { struct record_opts *opts = opt->value; if (unset) { opts->comp_level = 0; } else { if (str) opts->comp_level = strtol(str, NULL, 0); if (!opts->comp_level) opts->comp_level = comp_level_default; } return 0; } #endif static unsigned int comp_level_max = 22; static int record__comp_enabled(struct record *rec) { return rec->opts.comp_level > 0; } static int process_synthesized_event(struct perf_tool *tool, union perf_event *event, struct perf_sample *sample __maybe_unused, struct machine *machine __maybe_unused) { struct record *rec = container_of(tool, struct record, tool); return record__write(rec, NULL, event, event->header.size); } static struct mutex synth_lock; static int process_locked_synthesized_event(struct perf_tool *tool, union perf_event *event, struct perf_sample *sample __maybe_unused, struct machine *machine __maybe_unused) { int ret; mutex_lock(&synth_lock); ret = process_synthesized_event(tool, event, sample, machine); mutex_unlock(&synth_lock); return ret; } static int record__pushfn(struct mmap *map, void *to, void *bf, size_t size) { struct record *rec = to; if (record__comp_enabled(rec)) { size = zstd_compress(rec->session, map, map->data, mmap__mmap_len(map), bf, size); bf = map->data; } thread->samples++; return record__write(rec, map, bf, size); } static volatile sig_atomic_t signr = -1; static volatile sig_atomic_t child_finished; #ifdef HAVE_EVENTFD_SUPPORT static volatile sig_atomic_t done_fd = -1; #endif static void sig_handler(int sig) { if (sig == SIGCHLD) child_finished = 1; else signr = sig; done = 1; #ifdef HAVE_EVENTFD_SUPPORT if (done_fd >= 0) { u64 tmp = 1; int orig_errno = errno; /* * It is possible for this signal handler to run after done is * checked in the main loop, but before the perf counter fds are * polled. If this happens, the poll() will continue to wait * even though done is set, and will only break out if either * another signal is received, or the counters are ready for * read. To ensure the poll() doesn't sleep when done is set, * use an eventfd (done_fd) to wake up the poll(). */ if (write(done_fd, &tmp, sizeof(tmp)) < 0) pr_err("failed to signal wakeup fd, error: %m\n"); errno = orig_errno; } #endif // HAVE_EVENTFD_SUPPORT } static void sigsegv_handler(int sig) { perf_hooks__recover(); sighandler_dump_stack(sig); } static void record__sig_exit(void) { if (signr == -1) return; signal(signr, SIG_DFL); raise(signr); } #ifdef HAVE_AUXTRACE_SUPPORT static int record__process_auxtrace(struct perf_tool *tool, struct mmap *map, union perf_event *event, void *data1, size_t len1, void *data2, size_t len2) { struct record *rec = container_of(tool, struct record, tool); struct perf_data *data = &rec->data; size_t padding; u8 pad[8] = {0}; if (!perf_data__is_pipe(data) && perf_data__is_single_file(data)) { off_t file_offset; int fd = perf_data__fd(data); int err; file_offset = lseek(fd, 0, SEEK_CUR); if (file_offset == -1) return -1; err = auxtrace_index__auxtrace_event(&rec->session->auxtrace_index, event, file_offset); if (err) return err; } /* event.auxtrace.size includes padding, see __auxtrace_mmap__read() */ padding = (len1 + len2) & 7; if (padding) padding = 8 - padding; record__write(rec, map, event, event->header.size); record__write(rec, map, data1, len1); if (len2) record__write(rec, map, data2, len2); record__write(rec, map, &pad, padding); return 0; } static int record__auxtrace_mmap_read(struct record *rec, struct mmap *map) { int ret; ret = auxtrace_mmap__read(map, rec->itr, &rec->tool, record__process_auxtrace); if (ret < 0) return ret; if (ret) rec->samples++; return 0; } static int record__auxtrace_mmap_read_snapshot(struct record *rec, struct mmap *map) { int ret; ret = auxtrace_mmap__read_snapshot(map, rec->itr, &rec->tool, record__process_auxtrace, rec->opts.auxtrace_snapshot_size); if (ret < 0) return ret; if (ret) rec->samples++; return 0; } static int record__auxtrace_read_snapshot_all(struct record *rec) { int i; int rc = 0; for (i = 0; i < rec->evlist->core.nr_mmaps; i++) { struct mmap *map = &rec->evlist->mmap[i]; if (!map->auxtrace_mmap.base) continue; if (record__auxtrace_mmap_read_snapshot(rec, map) != 0) { rc = -1; goto out; } } out: return rc; } static void record__read_auxtrace_snapshot(struct record *rec, bool on_exit) { pr_debug("Recording AUX area tracing snapshot\n"); if (record__auxtrace_read_snapshot_all(rec) < 0) { trigger_error(&auxtrace_snapshot_trigger); } else { if (auxtrace_record__snapshot_finish(rec->itr, on_exit)) trigger_error(&auxtrace_snapshot_trigger); else trigger_ready(&auxtrace_snapshot_trigger); } } static int record__auxtrace_snapshot_exit(struct record *rec) { if (trigger_is_error(&auxtrace_snapshot_trigger)) return 0; if (!auxtrace_record__snapshot_started && auxtrace_record__snapshot_start(rec->itr)) return -1; record__read_auxtrace_snapshot(rec, true); if (trigger_is_error(&auxtrace_snapshot_trigger)) return -1; return 0; } static int record__auxtrace_init(struct record *rec) { int err; if ((rec->opts.auxtrace_snapshot_opts || rec->opts.auxtrace_sample_opts) && record__threads_enabled(rec)) { pr_err("AUX area tracing options are not available in parallel streaming mode.\n"); return -EINVAL; } if (!rec->itr) { rec->itr = auxtrace_record__init(rec->evlist, &err); if (err) return err; } err = auxtrace_parse_snapshot_options(rec->itr, &rec->opts, rec->opts.auxtrace_snapshot_opts); if (err) return err; err = auxtrace_parse_sample_options(rec->itr, rec->evlist, &rec->opts, rec->opts.auxtrace_sample_opts); if (err) return err; auxtrace_regroup_aux_output(rec->evlist); return auxtrace_parse_filters(rec->evlist); } #else static inline int record__auxtrace_mmap_read(struct record *rec __maybe_unused, struct mmap *map __maybe_unused) { return 0; } static inline void record__read_auxtrace_snapshot(struct record *rec __maybe_unused, bool on_exit __maybe_unused) { } static inline int auxtrace_record__snapshot_start(struct auxtrace_record *itr __maybe_unused) { return 0; } static inline int record__auxtrace_snapshot_exit(struct record *rec __maybe_unused) { return 0; } static int record__auxtrace_init(struct record *rec __maybe_unused) { return 0; } #endif static int record__config_text_poke(struct evlist *evlist) { struct evsel *evsel; /* Nothing to do if text poke is already configured */ evlist__for_each_entry(evlist, evsel) { if (evsel->core.attr.text_poke) return 0; } evsel = evlist__add_dummy_on_all_cpus(evlist); if (!evsel) return -ENOMEM; evsel->core.attr.text_poke = 1; evsel->core.attr.ksymbol = 1; evsel->immediate = true; evsel__set_sample_bit(evsel, TIME); return 0; } static int record__config_off_cpu(struct record *rec) { return off_cpu_prepare(rec->evlist, &rec->opts.target, &rec->opts); } static bool record__kcore_readable(struct machine *machine) { char kcore[PATH_MAX]; int fd; scnprintf(kcore, sizeof(kcore), "%s/proc/kcore", machine->root_dir); fd = open(kcore, O_RDONLY); if (fd < 0) return false; close(fd); return true; } static int record__kcore_copy(struct machine *machine, struct perf_data *data) { char from_dir[PATH_MAX]; char kcore_dir[PATH_MAX]; int ret; snprintf(from_dir, sizeof(from_dir), "%s/proc", machine->root_dir); ret = perf_data__make_kcore_dir(data, kcore_dir, sizeof(kcore_dir)); if (ret) return ret; return kcore_copy(from_dir, kcore_dir); } static void record__thread_data_init_pipes(struct record_thread *thread_data) { thread_data->pipes.msg[0] = -1; thread_data->pipes.msg[1] = -1; thread_data->pipes.ack[0] = -1; thread_data->pipes.ack[1] = -1; } static int record__thread_data_open_pipes(struct record_thread *thread_data) { if (pipe(thread_data->pipes.msg)) return -EINVAL; if (pipe(thread_data->pipes.ack)) { close(thread_data->pipes.msg[0]); thread_data->pipes.msg[0] = -1; close(thread_data->pipes.msg[1]); thread_data->pipes.msg[1] = -1; return -EINVAL; } pr_debug2("thread_data[%p]: msg=[%d,%d], ack=[%d,%d]\n", thread_data, thread_data->pipes.msg[0], thread_data->pipes.msg[1], thread_data->pipes.ack[0], thread_data->pipes.ack[1]); return 0; } static void record__thread_data_close_pipes(struct record_thread *thread_data) { if (thread_data->pipes.msg[0] != -1) { close(thread_data->pipes.msg[0]); thread_data->pipes.msg[0] = -1; } if (thread_data->pipes.msg[1] != -1) { close(thread_data->pipes.msg[1]); thread_data->pipes.msg[1] = -1; } if (thread_data->pipes.ack[0] != -1) { close(thread_data->pipes.ack[0]); thread_data->pipes.ack[0] = -1; } if (thread_data->pipes.ack[1] != -1) { close(thread_data->pipes.ack[1]); thread_data->pipes.ack[1] = -1; } } static bool evlist__per_thread(struct evlist *evlist) { return cpu_map__is_dummy(evlist->core.user_requested_cpus); } static int record__thread_data_init_maps(struct record_thread *thread_data, struct evlist *evlist) { int m, tm, nr_mmaps = evlist->core.nr_mmaps; struct mmap *mmap = evlist->mmap; struct mmap *overwrite_mmap = evlist->overwrite_mmap; struct perf_cpu_map *cpus = evlist->core.all_cpus; bool per_thread = evlist__per_thread(evlist); if (per_thread) thread_data->nr_mmaps = nr_mmaps; else thread_data->nr_mmaps = bitmap_weight(thread_data->mask->maps.bits, thread_data->mask->maps.nbits); if (mmap) { thread_data->maps = zalloc(thread_data->nr_mmaps * sizeof(struct mmap *)); if (!thread_data->maps) return -ENOMEM; } if (overwrite_mmap) { thread_data->overwrite_maps = zalloc(thread_data->nr_mmaps * sizeof(struct mmap *)); if (!thread_data->overwrite_maps) { zfree(&thread_data->maps); return -ENOMEM; } } pr_debug2("thread_data[%p]: nr_mmaps=%d, maps=%p, ow_maps=%p\n", thread_data, thread_data->nr_mmaps, thread_data->maps, thread_data->overwrite_maps); for (m = 0, tm = 0; m < nr_mmaps && tm < thread_data->nr_mmaps; m++) { if (per_thread || test_bit(perf_cpu_map__cpu(cpus, m).cpu, thread_data->mask->maps.bits)) { if (thread_data->maps) { thread_data->maps[tm] = &mmap[m]; pr_debug2("thread_data[%p]: cpu%d: maps[%d] -> mmap[%d]\n", thread_data, perf_cpu_map__cpu(cpus, m).cpu, tm, m); } if (thread_data->overwrite_maps) { thread_data->overwrite_maps[tm] = &overwrite_mmap[m]; pr_debug2("thread_data[%p]: cpu%d: ow_maps[%d] -> ow_mmap[%d]\n", thread_data, perf_cpu_map__cpu(cpus, m).cpu, tm, m); } tm++; } } return 0; } static int record__thread_data_init_pollfd(struct record_thread *thread_data, struct evlist *evlist) { int f, tm, pos; struct mmap *map, *overwrite_map; fdarray__init(&thread_data->pollfd, 64); for (tm = 0; tm < thread_data->nr_mmaps; tm++) { map = thread_data->maps ? thread_data->maps[tm] : NULL; overwrite_map = thread_data->overwrite_maps ? thread_data->overwrite_maps[tm] : NULL; for (f = 0; f < evlist->core.pollfd.nr; f++) { void *ptr = evlist->core.pollfd.priv[f].ptr; if ((map && ptr == map) || (overwrite_map && ptr == overwrite_map)) { pos = fdarray__dup_entry_from(&thread_data->pollfd, f, &evlist->core.pollfd); if (pos < 0) return pos; pr_debug2("thread_data[%p]: pollfd[%d] <- event_fd=%d\n", thread_data, pos, evlist->core.pollfd.entries[f].fd); } } } return 0; } static void record__free_thread_data(struct record *rec) { int t; struct record_thread *thread_data = rec->thread_data; if (thread_data == NULL) return; for (t = 0; t < rec->nr_threads; t++) { record__thread_data_close_pipes(&thread_data[t]); zfree(&thread_data[t].maps); zfree(&thread_data[t].overwrite_maps); fdarray__exit(&thread_data[t].pollfd); } zfree(&rec->thread_data); } static int record__map_thread_evlist_pollfd_indexes(struct record *rec, int evlist_pollfd_index, int thread_pollfd_index) { size_t x = rec->index_map_cnt; if (realloc_array_as_needed(rec->index_map, rec->index_map_sz, x, NULL)) return -ENOMEM; rec->index_map[x].evlist_pollfd_index = evlist_pollfd_index; rec->index_map[x].thread_pollfd_index = thread_pollfd_index; rec->index_map_cnt += 1; return 0; } static int record__update_evlist_pollfd_from_thread(struct record *rec, struct evlist *evlist, struct record_thread *thread_data) { struct pollfd *e_entries = evlist->core.pollfd.entries; struct pollfd *t_entries = thread_data->pollfd.entries; int err = 0; size_t i; for (i = 0; i < rec->index_map_cnt; i++) { int e_pos = rec->index_map[i].evlist_pollfd_index; int t_pos = rec->index_map[i].thread_pollfd_index; if (e_entries[e_pos].fd != t_entries[t_pos].fd || e_entries[e_pos].events != t_entries[t_pos].events) { pr_err("Thread and evlist pollfd index mismatch\n"); err = -EINVAL; continue; } e_entries[e_pos].revents = t_entries[t_pos].revents; } return err; } static int record__dup_non_perf_events(struct record *rec, struct evlist *evlist, struct record_thread *thread_data) { struct fdarray *fda = &evlist->core.pollfd; int i, ret; for (i = 0; i < fda->nr; i++) { if (!(fda->priv[i].flags & fdarray_flag__non_perf_event)) continue; ret = fdarray__dup_entry_from(&thread_data->pollfd, i, fda); if (ret < 0) { pr_err("Failed to duplicate descriptor in main thread pollfd\n"); return ret; } pr_debug2("thread_data[%p]: pollfd[%d] <- non_perf_event fd=%d\n", thread_data, ret, fda->entries[i].fd); ret = record__map_thread_evlist_pollfd_indexes(rec, i, ret); if (ret < 0) { pr_err("Failed to map thread and evlist pollfd indexes\n"); return ret; } } return 0; } static int record__alloc_thread_data(struct record *rec, struct evlist *evlist) { int t, ret; struct record_thread *thread_data; rec->thread_data = zalloc(rec->nr_threads * sizeof(*(rec->thread_data))); if (!rec->thread_data) { pr_err("Failed to allocate thread data\n"); return -ENOMEM; } thread_data = rec->thread_data; for (t = 0; t < rec->nr_threads; t++) record__thread_data_init_pipes(&thread_data[t]); for (t = 0; t < rec->nr_threads; t++) { thread_data[t].rec = rec; thread_data[t].mask = &rec->thread_masks[t]; ret = record__thread_data_init_maps(&thread_data[t], evlist); if (ret) { pr_err("Failed to initialize thread[%d] maps\n", t); goto out_free; } ret = record__thread_data_init_pollfd(&thread_data[t], evlist); if (ret) { pr_err("Failed to initialize thread[%d] pollfd\n", t); goto out_free; } if (t) { thread_data[t].tid = -1; ret = record__thread_data_open_pipes(&thread_data[t]); if (ret) { pr_err("Failed to open thread[%d] communication pipes\n", t); goto out_free; } ret = fdarray__add(&thread_data[t].pollfd, thread_data[t].pipes.msg[0], POLLIN | POLLERR | POLLHUP, fdarray_flag__nonfilterable); if (ret < 0) { pr_err("Failed to add descriptor to thread[%d] pollfd\n", t); goto out_free; } thread_data[t].ctlfd_pos = ret; pr_debug2("thread_data[%p]: pollfd[%d] <- ctl_fd=%d\n", thread_data, thread_data[t].ctlfd_pos, thread_data[t].pipes.msg[0]); } else { thread_data[t].tid = gettid(); ret = record__dup_non_perf_events(rec, evlist, &thread_data[t]); if (ret < 0) goto out_free; thread_data[t].ctlfd_pos = -1; /* Not used */ } } return 0; out_free: record__free_thread_data(rec); return ret; } static int record__mmap_evlist(struct record *rec, struct evlist *evlist) { int i, ret; struct record_opts *opts = &rec->opts; bool auxtrace_overwrite = opts->auxtrace_snapshot_mode || opts->auxtrace_sample_mode; char msg[512]; if (opts->affinity != PERF_AFFINITY_SYS) cpu__setup_cpunode_map(); if (evlist__mmap_ex(evlist, opts->mmap_pages, opts->auxtrace_mmap_pages, auxtrace_overwrite, opts->nr_cblocks, opts->affinity, opts->mmap_flush, opts->comp_level) < 0) { if (errno == EPERM) { pr_err("Permission error mapping pages.\n" "Consider increasing " "/proc/sys/kernel/perf_event_mlock_kb,\n" "or try again with a smaller value of -m/--mmap_pages.\n" "(current value: %u,%u)\n", opts->mmap_pages, opts->auxtrace_mmap_pages); return -errno; } else { pr_err("failed to mmap with %d (%s)\n", errno, str_error_r(errno, msg, sizeof(msg))); if (errno) return -errno; else return -EINVAL; } } if (evlist__initialize_ctlfd(evlist, opts->ctl_fd, opts->ctl_fd_ack)) return -1; ret = record__alloc_thread_data(rec, evlist); if (ret) return ret; if (record__threads_enabled(rec)) { ret = perf_data__create_dir(&rec->data, evlist->core.nr_mmaps); if (ret) { pr_err("Failed to create data directory: %s\n", strerror(-ret)); return ret; } for (i = 0; i < evlist->core.nr_mmaps; i++) { if (evlist->mmap) evlist->mmap[i].file = &rec->data.dir.files[i]; if (evlist->overwrite_mmap) evlist->overwrite_mmap[i].file = &rec->data.dir.files[i]; } } return 0; } static int record__mmap(struct record *rec) { return record__mmap_evlist(rec, rec->evlist); } static int record__open(struct record *rec) { char msg[BUFSIZ]; struct evsel *pos; struct evlist *evlist = rec->evlist; struct perf_session *session = rec->session; struct record_opts *opts = &rec->opts; int rc = 0; /* * For initial_delay, system wide or a hybrid system, we need to add a * dummy event so that we can track PERF_RECORD_MMAP to cover the delay * of waiting or event synthesis. */ if (opts->target.initial_delay || target__has_cpu(&opts->target) || perf_pmus__num_core_pmus() > 1) { pos = evlist__get_tracking_event(evlist); if (!evsel__is_dummy_event(pos)) { /* Set up dummy event. */ if (evlist__add_dummy(evlist)) return -ENOMEM; pos = evlist__last(evlist); evlist__set_tracking_event(evlist, pos); } /* * Enable the dummy event when the process is forked for * initial_delay, immediately for system wide. */ if (opts->target.initial_delay && !pos->immediate && !target__has_cpu(&opts->target)) pos->core.attr.enable_on_exec = 1; else pos->immediate = 1; } evlist__config(evlist, opts, &callchain_param); evlist__for_each_entry(evlist, pos) { try_again: if (evsel__open(pos, pos->core.cpus, pos->core.threads) < 0) { if (evsel__fallback(pos, errno, msg, sizeof(msg))) { if (verbose > 0) ui__warning("%s\n", msg); goto try_again; } if ((errno == EINVAL || errno == EBADF) && pos->core.leader != &pos->core && pos->weak_group) { pos = evlist__reset_weak_group(evlist, pos, true); goto try_again; } rc = -errno; evsel__open_strerror(pos, &opts->target, errno, msg, sizeof(msg)); ui__error("%s\n", msg); goto out; } pos->supported = true; } if (symbol_conf.kptr_restrict && !evlist__exclude_kernel(evlist)) { pr_warning( "WARNING: Kernel address maps (/proc/{kallsyms,modules}) are restricted,\n" "check /proc/sys/kernel/kptr_restrict and /proc/sys/kernel/perf_event_paranoid.\n\n" "Samples in kernel functions may not be resolved if a suitable vmlinux\n" "file is not found in the buildid cache or in the vmlinux path.\n\n" "Samples in kernel modules won't be resolved at all.\n\n" "If some relocation was applied (e.g. kexec) symbols may be misresolved\n" "even with a suitable vmlinux or kallsyms file.\n\n"); } if (evlist__apply_filters(evlist, &pos)) { pr_err("failed to set filter \"%s\" on event %s with %d (%s)\n", pos->filter ?: "BPF", evsel__name(pos), errno, str_error_r(errno, msg, sizeof(msg))); rc = -1; goto out; } rc = record__mmap(rec); if (rc) goto out; session->evlist = evlist; perf_session__set_id_hdr_size(session); out: return rc; } static void set_timestamp_boundary(struct record *rec, u64 sample_time) { if (rec->evlist->first_sample_time == 0) rec->evlist->first_sample_time = sample_time; if (sample_time) rec->evlist->last_sample_time = sample_time; } static int process_sample_event(struct perf_tool *tool, union perf_event *event, struct perf_sample *sample, struct evsel *evsel, struct machine *machine) { struct record *rec = container_of(tool, struct record, tool); set_timestamp_boundary(rec, sample->time); if (rec->buildid_all) return 0; rec->samples++; return build_id__mark_dso_hit(tool, event, sample, evsel, machine); } static int process_buildids(struct record *rec) { struct perf_session *session = rec->session; if (perf_data__size(&rec->data) == 0) return 0; /* * During this process, it'll load kernel map and replace the * dso->long_name to a real pathname it found. In this case * we prefer the vmlinux path like * /lib/modules/3.16.4/build/vmlinux * * rather than build-id path (in debug directory). * $HOME/.debug/.build-id/f0/6e17aa50adf4d00b88925e03775de107611551 */ symbol_conf.ignore_vmlinux_buildid = true; /* * If --buildid-all is given, it marks all DSO regardless of hits, * so no need to process samples. But if timestamp_boundary is enabled, * it still needs to walk on all samples to get the timestamps of * first/last samples. */ if (rec->buildid_all && !rec->timestamp_boundary) rec->tool.sample = NULL; return perf_session__process_events(session); } static void perf_event__synthesize_guest_os(struct machine *machine, void *data) { int err; struct perf_tool *tool = data; /* *As for guest kernel when processing subcommand record&report, *we arrange module mmap prior to guest kernel mmap and trigger *a preload dso because default guest module symbols are loaded *from guest kallsyms instead of /lib/modules/XXX/XXX. This *method is used to avoid symbol missing when the first addr is *in module instead of in guest kernel. */ err = perf_event__synthesize_modules(tool, process_synthesized_event, machine); if (err < 0) pr_err("Couldn't record guest kernel [%d]'s reference" " relocation symbol.\n", machine->pid); /* * We use _stext for guest kernel because guest kernel's /proc/kallsyms * have no _text sometimes. */ err = perf_event__synthesize_kernel_mmap(tool, process_synthesized_event, machine); if (err < 0) pr_err("Couldn't record guest kernel [%d]'s reference" " relocation symbol.\n", machine->pid); } static struct perf_event_header finished_round_event = { .size = sizeof(struct perf_event_header), .type = PERF_RECORD_FINISHED_ROUND, }; static struct perf_event_header finished_init_event = { .size = sizeof(struct perf_event_header), .type = PERF_RECORD_FINISHED_INIT, }; static void record__adjust_affinity(struct record *rec, struct mmap *map) { if (rec->opts.affinity != PERF_AFFINITY_SYS && !bitmap_equal(thread->mask->affinity.bits, map->affinity_mask.bits, thread->mask->affinity.nbits)) { bitmap_zero(thread->mask->affinity.bits, thread->mask->affinity.nbits); bitmap_or(thread->mask->affinity.bits, thread->mask->affinity.bits, map->affinity_mask.bits, thread->mask->affinity.nbits); sched_setaffinity(0, MMAP_CPU_MASK_BYTES(&thread->mask->affinity), (cpu_set_t *)thread->mask->affinity.bits); if (verbose == 2) { pr_debug("threads[%d]: running on cpu%d: ", thread->tid, sched_getcpu()); mmap_cpu_mask__scnprintf(&thread->mask->affinity, "affinity"); } } } static size_t process_comp_header(void *record, size_t increment) { struct perf_record_compressed *event = record; size_t size = sizeof(*event); if (increment) { event->header.size += increment; return increment; } event->header.type = PERF_RECORD_COMPRESSED; event->header.size = size; return size; } static size_t zstd_compress(struct perf_session *session, struct mmap *map, void *dst, size_t dst_size, void *src, size_t src_size) { size_t compressed; size_t max_record_size = PERF_SAMPLE_MAX_SIZE - sizeof(struct perf_record_compressed) - 1; struct zstd_data *zstd_data = &session->zstd_data; if (map && map->file) zstd_data = &map->zstd_data; compressed = zstd_compress_stream_to_records(zstd_data, dst, dst_size, src, src_size, max_record_size, process_comp_header); if (map && map->file) { thread->bytes_transferred += src_size; thread->bytes_compressed += compressed; } else { session->bytes_transferred += src_size; session->bytes_compressed += compressed; } return compressed; } static int record__mmap_read_evlist(struct record *rec, struct evlist *evlist, bool overwrite, bool synch) { u64 bytes_written = rec->bytes_written; int i; int rc = 0; int nr_mmaps; struct mmap **maps; int trace_fd = rec->data.file.fd; off_t off = 0; if (!evlist) return 0; nr_mmaps = thread->nr_mmaps; maps = overwrite ? thread->overwrite_maps : thread->maps; if (!maps) return 0; if (overwrite && evlist->bkw_mmap_state != BKW_MMAP_DATA_PENDING) return 0; if (record__aio_enabled(rec)) off = record__aio_get_pos(trace_fd); for (i = 0; i < nr_mmaps; i++) { u64 flush = 0; struct mmap *map = maps[i]; if (map->core.base) { record__adjust_affinity(rec, map); if (synch) { flush = map->core.flush; map->core.flush = 1; } if (!record__aio_enabled(rec)) { if (perf_mmap__push(map, rec, record__pushfn) < 0) { if (synch) map->core.flush = flush; rc = -1; goto out; } } else { if (record__aio_push(rec, map, &off) < 0) { record__aio_set_pos(trace_fd, off); if (synch) map->core.flush = flush; rc = -1; goto out; } } if (synch) map->core.flush = flush; } if (map->auxtrace_mmap.base && !rec->opts.auxtrace_snapshot_mode && !rec->opts.auxtrace_sample_mode && record__auxtrace_mmap_read(rec, map) != 0) { rc = -1; goto out; } } if (record__aio_enabled(rec)) record__aio_set_pos(trace_fd, off); /* * Mark the round finished in case we wrote * at least one event. * * No need for round events in directory mode, * because per-cpu maps and files have data * sorted by kernel. */ if (!record__threads_enabled(rec) && bytes_written != rec->bytes_written) rc = record__write(rec, NULL, &finished_round_event, sizeof(finished_round_event)); if (overwrite) evlist__toggle_bkw_mmap(evlist, BKW_MMAP_EMPTY); out: return rc; } static int record__mmap_read_all(struct record *rec, bool synch) { int err; err = record__mmap_read_evlist(rec, rec->evlist, false, synch); if (err) return err; return record__mmap_read_evlist(rec, rec->evlist, true, synch); } static void record__thread_munmap_filtered(struct fdarray *fda, int fd, void *arg __maybe_unused) { struct perf_mmap *map = fda->priv[fd].ptr; if (map) perf_mmap__put(map); } static void *record__thread(void *arg) { enum thread_msg msg = THREAD_MSG__READY; bool terminate = false; struct fdarray *pollfd; int err, ctlfd_pos; thread = arg; thread->tid = gettid(); err = write(thread->pipes.ack[1], &msg, sizeof(msg)); if (err == -1) pr_warning("threads[%d]: failed to notify on start: %s\n", thread->tid, strerror(errno)); pr_debug("threads[%d]: started on cpu%d\n", thread->tid, sched_getcpu()); pollfd = &thread->pollfd; ctlfd_pos = thread->ctlfd_pos; for (;;) { unsigned long long hits = thread->samples; if (record__mmap_read_all(thread->rec, false) < 0 || terminate) break; if (hits == thread->samples) { err = fdarray__poll(pollfd, -1); /* * Propagate error, only if there's any. Ignore positive * number of returned events and interrupt error. */ if (err > 0 || (err < 0 && errno == EINTR)) err = 0; thread->waking++; if (fdarray__filter(pollfd, POLLERR | POLLHUP, record__thread_munmap_filtered, NULL) == 0) break; } if (pollfd->entries[ctlfd_pos].revents & POLLHUP) { terminate = true; close(thread->pipes.msg[0]); thread->pipes.msg[0] = -1; pollfd->entries[ctlfd_pos].fd = -1; pollfd->entries[ctlfd_pos].events = 0; } pollfd->entries[ctlfd_pos].revents = 0; } record__mmap_read_all(thread->rec, true); err = write(thread->pipes.ack[1], &msg, sizeof(msg)); if (err == -1) pr_warning("threads[%d]: failed to notify on termination: %s\n", thread->tid, strerror(errno)); return NULL; } static void record__init_features(struct record *rec) { struct perf_session *session = rec->session; int feat; for (feat = HEADER_FIRST_FEATURE; feat < HEADER_LAST_FEATURE; feat++) perf_header__set_feat(&session->header, feat); if (rec->no_buildid) perf_header__clear_feat(&session->header, HEADER_BUILD_ID); #ifdef HAVE_LIBTRACEEVENT if (!have_tracepoints(&rec->evlist->core.entries)) perf_header__clear_feat(&session->header, HEADER_TRACING_DATA); #endif if (!rec->opts.branch_stack) perf_header__clear_feat(&session->header, HEADER_BRANCH_STACK); if (!rec->opts.full_auxtrace) perf_header__clear_feat(&session->header, HEADER_AUXTRACE); if (!(rec->opts.use_clockid && rec->opts.clockid_res_ns)) perf_header__clear_feat(&session->header, HEADER_CLOCKID); if (!rec->opts.use_clockid) perf_header__clear_feat(&session->header, HEADER_CLOCK_DATA); if (!record__threads_enabled(rec)) perf_header__clear_feat(&session->header, HEADER_DIR_FORMAT); if (!record__comp_enabled(rec)) perf_header__clear_feat(&session->header, HEADER_COMPRESSED); perf_header__clear_feat(&session->header, HEADER_STAT); } static void record__finish_output(struct record *rec) { int i; struct perf_data *data = &rec->data; int fd = perf_data__fd(data); if (data->is_pipe) return; rec->session->header.data_size += rec->bytes_written; data->file.size = lseek(perf_data__fd(data), 0, SEEK_CUR); if (record__threads_enabled(rec)) { for (i = 0; i < data->dir.nr; i++) data->dir.files[i].size = lseek(data->dir.files[i].fd, 0, SEEK_CUR); } if (!rec->no_buildid) { process_buildids(rec); if (rec->buildid_all) dsos__hit_all(rec->session); } perf_session__write_header(rec->session, rec->evlist, fd, true); return; } static int record__synthesize_workload(struct record *rec, bool tail) { int err; struct perf_thread_map *thread_map; bool needs_mmap = rec->opts.synth & PERF_SYNTH_MMAP; if (rec->opts.tail_synthesize != tail) return 0; thread_map = thread_map__new_by_tid(rec->evlist->workload.pid); if (thread_map == NULL) return -1; err = perf_event__synthesize_thread_map(&rec->tool, thread_map, process_synthesized_event, &rec->session->machines.host, needs_mmap, rec->opts.sample_address); perf_thread_map__put(thread_map); return err; } static int write_finished_init(struct record *rec, bool tail) { if (rec->opts.tail_synthesize != tail) return 0; return record__write(rec, NULL, &finished_init_event, sizeof(finished_init_event)); } static int record__synthesize(struct record *rec, bool tail); static int record__switch_output(struct record *rec, bool at_exit) { struct perf_data *data = &rec->data; int fd, err; char *new_filename; /* Same Size: "2015122520103046"*/ char timestamp[] = "InvalidTimestamp"; record__aio_mmap_read_sync(rec); write_finished_init(rec, true); record__synthesize(rec, true); if (target__none(&rec->opts.target)) record__synthesize_workload(rec, true); rec->samples = 0; record__finish_output(rec); err = fetch_current_timestamp(timestamp, sizeof(timestamp)); if (err) { pr_err("Failed to get current timestamp\n"); return -EINVAL; } fd = perf_data__switch(data, timestamp, rec->session->header.data_offset, at_exit, &new_filename); if (fd >= 0 && !at_exit) { rec->bytes_written = 0; rec->session->header.data_size = 0; } if (!quiet) fprintf(stderr, "[ perf record: Dump %s.%s ]\n", data->path, timestamp); if (rec->switch_output.num_files) { int n = rec->switch_output.cur_file + 1; if (n >= rec->switch_output.num_files) n = 0; rec->switch_output.cur_file = n; if (rec->switch_output.filenames[n]) { remove(rec->switch_output.filenames[n]); zfree(&rec->switch_output.filenames[n]); } rec->switch_output.filenames[n] = new_filename; } else { free(new_filename); } /* Output tracking events */ if (!at_exit) { record__synthesize(rec, false); /* * In 'perf record --switch-output' without -a, * record__synthesize() in record__switch_output() won't * generate tracking events because there's no thread_map * in evlist. Which causes newly created perf.data doesn't * contain map and comm information. * Create a fake thread_map and directly call * perf_event__synthesize_thread_map() for those events. */ if (target__none(&rec->opts.target)) record__synthesize_workload(rec, false); write_finished_init(rec, false); } return fd; } static void __record__save_lost_samples(struct record *rec, struct evsel *evsel, struct perf_record_lost_samples *lost, int cpu_idx, int thread_idx, u64 lost_count, u16 misc_flag) { struct perf_sample_id *sid; struct perf_sample sample = {}; int id_hdr_size; lost->lost = lost_count; if (evsel->core.ids) { sid = xyarray__entry(evsel->core.sample_id, cpu_idx, thread_idx); sample.id = sid->id; } id_hdr_size = perf_event__synthesize_id_sample((void *)(lost + 1), evsel->core.attr.sample_type, &sample); lost->header.size = sizeof(*lost) + id_hdr_size; lost->header.misc = misc_flag; record__write(rec, NULL, lost, lost->header.size); } static void record__read_lost_samples(struct record *rec) { struct perf_session *session = rec->session; struct perf_record_lost_samples *lost; struct evsel *evsel; /* there was an error during record__open */ if (session->evlist == NULL) return; lost = zalloc(PERF_SAMPLE_MAX_SIZE); if (lost == NULL) { pr_debug("Memory allocation failed\n"); return; } lost->header.type = PERF_RECORD_LOST_SAMPLES; evlist__for_each_entry(session->evlist, evsel) { struct xyarray *xy = evsel->core.sample_id; u64 lost_count; if (xy == NULL || evsel->core.fd == NULL) continue; if (xyarray__max_x(evsel->core.fd) != xyarray__max_x(xy) || xyarray__max_y(evsel->core.fd) != xyarray__max_y(xy)) { pr_debug("Unmatched FD vs. sample ID: skip reading LOST count\n"); continue; } for (int x = 0; x < xyarray__max_x(xy); x++) { for (int y = 0; y < xyarray__max_y(xy); y++) { struct perf_counts_values count; if (perf_evsel__read(&evsel->core, x, y, &count) < 0) { pr_debug("read LOST count failed\n"); goto out; } if (count.lost) { __record__save_lost_samples(rec, evsel, lost, x, y, count.lost, 0); } } } lost_count = perf_bpf_filter__lost_count(evsel); if (lost_count) __record__save_lost_samples(rec, evsel, lost, 0, 0, lost_count, PERF_RECORD_MISC_LOST_SAMPLES_BPF); } out: free(lost); } static volatile sig_atomic_t workload_exec_errno; /* * evlist__prepare_workload will send a SIGUSR1 * if the fork fails, since we asked by setting its * want_signal to true. */ static void workload_exec_failed_signal(int signo __maybe_unused, siginfo_t *info, void *ucontext __maybe_unused) { workload_exec_errno = info->si_value.sival_int; done = 1; child_finished = 1; } static void snapshot_sig_handler(int sig); static void alarm_sig_handler(int sig); static const struct perf_event_mmap_page *evlist__pick_pc(struct evlist *evlist) { if (evlist) { if (evlist->mmap && evlist->mmap[0].core.base) return evlist->mmap[0].core.base; if (evlist->overwrite_mmap && evlist->overwrite_mmap[0].core.base) return evlist->overwrite_mmap[0].core.base; } return NULL; } static const struct perf_event_mmap_page *record__pick_pc(struct record *rec) { const struct perf_event_mmap_page *pc = evlist__pick_pc(rec->evlist); if (pc) return pc; return NULL; } static int record__synthesize(struct record *rec, bool tail) { struct perf_session *session = rec->session; struct machine *machine = &session->machines.host; struct perf_data *data = &rec->data; struct record_opts *opts = &rec->opts; struct perf_tool *tool = &rec->tool; int err = 0; event_op f = process_synthesized_event; if (rec->opts.tail_synthesize != tail) return 0; if (data->is_pipe) { err = perf_event__synthesize_for_pipe(tool, session, data, process_synthesized_event); if (err < 0) goto out; rec->bytes_written += err; } err = perf_event__synth_time_conv(record__pick_pc(rec), tool, process_synthesized_event, machine); if (err) goto out; /* Synthesize id_index before auxtrace_info */ err = perf_event__synthesize_id_index(tool, process_synthesized_event, session->evlist, machine); if (err) goto out; if (rec->opts.full_auxtrace) { err = perf_event__synthesize_auxtrace_info(rec->itr, tool, session, process_synthesized_event); if (err) goto out; } if (!evlist__exclude_kernel(rec->evlist)) { err = perf_event__synthesize_kernel_mmap(tool, process_synthesized_event, machine); WARN_ONCE(err < 0, "Couldn't record kernel reference relocation symbol\n" "Symbol resolution may be skewed if relocation was used (e.g. kexec).\n" "Check /proc/kallsyms permission or run as root.\n"); err = perf_event__synthesize_modules(tool, process_synthesized_event, machine); WARN_ONCE(err < 0, "Couldn't record kernel module information.\n" "Symbol resolution may be skewed if relocation was used (e.g. kexec).\n" "Check /proc/modules permission or run as root.\n"); } if (perf_guest) { machines__process_guests(&session->machines, perf_event__synthesize_guest_os, tool); } err = perf_event__synthesize_extra_attr(&rec->tool, rec->evlist, process_synthesized_event, data->is_pipe); if (err) goto out; err = perf_event__synthesize_thread_map2(&rec->tool, rec->evlist->core.threads, process_synthesized_event, NULL); if (err < 0) { pr_err("Couldn't synthesize thread map.\n"); return err; } err = perf_event__synthesize_cpu_map(&rec->tool, rec->evlist->core.all_cpus, process_synthesized_event, NULL); if (err < 0) { pr_err("Couldn't synthesize cpu map.\n"); return err; } err = perf_event__synthesize_bpf_events(session, process_synthesized_event, machine, opts); if (err < 0) { pr_warning("Couldn't synthesize bpf events.\n"); err = 0; } if (rec->opts.synth & PERF_SYNTH_CGROUP) { err = perf_event__synthesize_cgroups(tool, process_synthesized_event, machine); if (err < 0) { pr_warning("Couldn't synthesize cgroup events.\n"); err = 0; } } if (rec->opts.nr_threads_synthesize > 1) { mutex_init(&synth_lock); perf_set_multithreaded(); f = process_locked_synthesized_event; } if (rec->opts.synth & PERF_SYNTH_TASK) { bool needs_mmap = rec->opts.synth & PERF_SYNTH_MMAP; err = __machine__synthesize_threads(machine, tool, &opts->target, rec->evlist->core.threads, f, needs_mmap, opts->sample_address, rec->opts.nr_threads_synthesize); } if (rec->opts.nr_threads_synthesize > 1) { perf_set_singlethreaded(); mutex_destroy(&synth_lock); } out: return err; } static int record__process_signal_event(union perf_event *event __maybe_unused, void *data) { struct record *rec = data; pthread_kill(rec->thread_id, SIGUSR2); return 0; } static int record__setup_sb_evlist(struct record *rec) { struct record_opts *opts = &rec->opts; if (rec->sb_evlist != NULL) { /* * We get here if --switch-output-event populated the * sb_evlist, so associate a callback that will send a SIGUSR2 * to the main thread. */ evlist__set_cb(rec->sb_evlist, record__process_signal_event, rec); rec->thread_id = pthread_self(); } #ifdef HAVE_LIBBPF_SUPPORT if (!opts->no_bpf_event) { if (rec->sb_evlist == NULL) { rec->sb_evlist = evlist__new(); if (rec->sb_evlist == NULL) { pr_err("Couldn't create side band evlist.\n."); return -1; } } if (evlist__add_bpf_sb_event(rec->sb_evlist, &rec->session->header.env)) { pr_err("Couldn't ask for PERF_RECORD_BPF_EVENT side band events.\n."); return -1; } } #endif if (evlist__start_sb_thread(rec->sb_evlist, &rec->opts.target)) { pr_debug("Couldn't start the BPF side band thread:\nBPF programs starting from now on won't be annotatable\n"); opts->no_bpf_event = true; } return 0; } static int record__init_clock(struct record *rec) { struct perf_session *session = rec->session; struct timespec ref_clockid; struct timeval ref_tod; u64 ref; if (!rec->opts.use_clockid) return 0; if (rec->opts.use_clockid && rec->opts.clockid_res_ns) session->header.env.clock.clockid_res_ns = rec->opts.clockid_res_ns; session->header.env.clock.clockid = rec->opts.clockid; if (gettimeofday(&ref_tod, NULL) != 0) { pr_err("gettimeofday failed, cannot set reference time.\n"); return -1; } if (clock_gettime(rec->opts.clockid, &ref_clockid)) { pr_err("clock_gettime failed, cannot set reference time.\n"); return -1; } ref = (u64) ref_tod.tv_sec * NSEC_PER_SEC + (u64) ref_tod.tv_usec * NSEC_PER_USEC; session->header.env.clock.tod_ns = ref; ref = (u64) ref_clockid.tv_sec * NSEC_PER_SEC + (u64) ref_clockid.tv_nsec; session->header.env.clock.clockid_ns = ref; return 0; } static void hit_auxtrace_snapshot_trigger(struct record *rec) { if (trigger_is_ready(&auxtrace_snapshot_trigger)) { trigger_hit(&auxtrace_snapshot_trigger); auxtrace_record__snapshot_started = 1; if (auxtrace_record__snapshot_start(rec->itr)) trigger_error(&auxtrace_snapshot_trigger); } } static void record__uniquify_name(struct record *rec) { struct evsel *pos; struct evlist *evlist = rec->evlist; char *new_name; int ret; if (perf_pmus__num_core_pmus() == 1) return; evlist__for_each_entry(evlist, pos) { if (!evsel__is_hybrid(pos)) continue; if (strchr(pos->name, '/')) continue; ret = asprintf(&new_name, "%s/%s/", pos->pmu_name, pos->name); if (ret) { free(pos->name); pos->name = new_name; } } } static int record__terminate_thread(struct record_thread *thread_data) { int err; enum thread_msg ack = THREAD_MSG__UNDEFINED; pid_t tid = thread_data->tid; close(thread_data->pipes.msg[1]); thread_data->pipes.msg[1] = -1; err = read(thread_data->pipes.ack[0], &ack, sizeof(ack)); if (err > 0) pr_debug2("threads[%d]: sent %s\n", tid, thread_msg_tags[ack]); else pr_warning("threads[%d]: failed to receive termination notification from %d\n", thread->tid, tid); return 0; } static int record__start_threads(struct record *rec) { int t, tt, err, ret = 0, nr_threads = rec->nr_threads; struct record_thread *thread_data = rec->thread_data; sigset_t full, mask; pthread_t handle; pthread_attr_t attrs; thread = &thread_data[0]; if (!record__threads_enabled(rec)) return 0; sigfillset(&full); if (sigprocmask(SIG_SETMASK, &full, &mask)) { pr_err("Failed to block signals on threads start: %s\n", strerror(errno)); return -1; } pthread_attr_init(&attrs); pthread_attr_setdetachstate(&attrs, PTHREAD_CREATE_DETACHED); for (t = 1; t < nr_threads; t++) { enum thread_msg msg = THREAD_MSG__UNDEFINED; #ifdef HAVE_PTHREAD_ATTR_SETAFFINITY_NP pthread_attr_setaffinity_np(&attrs, MMAP_CPU_MASK_BYTES(&(thread_data[t].mask->affinity)), (cpu_set_t *)(thread_data[t].mask->affinity.bits)); #endif if (pthread_create(&handle, &attrs, record__thread, &thread_data[t])) { for (tt = 1; tt < t; tt++) record__terminate_thread(&thread_data[t]); pr_err("Failed to start threads: %s\n", strerror(errno)); ret = -1; goto out_err; } err = read(thread_data[t].pipes.ack[0], &msg, sizeof(msg)); if (err > 0) pr_debug2("threads[%d]: sent %s\n", rec->thread_data[t].tid, thread_msg_tags[msg]); else pr_warning("threads[%d]: failed to receive start notification from %d\n", thread->tid, rec->thread_data[t].tid); } sched_setaffinity(0, MMAP_CPU_MASK_BYTES(&thread->mask->affinity), (cpu_set_t *)thread->mask->affinity.bits); pr_debug("threads[%d]: started on cpu%d\n", thread->tid, sched_getcpu()); out_err: pthread_attr_destroy(&attrs); if (sigprocmask(SIG_SETMASK, &mask, NULL)) { pr_err("Failed to unblock signals on threads start: %s\n", strerror(errno)); ret = -1; } return ret; } static int record__stop_threads(struct record *rec) { int t; struct record_thread *thread_data = rec->thread_data; for (t = 1; t < rec->nr_threads; t++) record__terminate_thread(&thread_data[t]); for (t = 0; t < rec->nr_threads; t++) { rec->samples += thread_data[t].samples; if (!record__threads_enabled(rec)) continue; rec->session->bytes_transferred += thread_data[t].bytes_transferred; rec->session->bytes_compressed += thread_data[t].bytes_compressed; pr_debug("threads[%d]: samples=%lld, wakes=%ld, ", thread_data[t].tid, thread_data[t].samples, thread_data[t].waking); if (thread_data[t].bytes_transferred && thread_data[t].bytes_compressed) pr_debug("transferred=%" PRIu64 ", compressed=%" PRIu64 "\n", thread_data[t].bytes_transferred, thread_data[t].bytes_compressed); else pr_debug("written=%" PRIu64 "\n", thread_data[t].bytes_written); } return 0; } static unsigned long record__waking(struct record *rec) { int t; unsigned long waking = 0; struct record_thread *thread_data = rec->thread_data; for (t = 0; t < rec->nr_threads; t++) waking += thread_data[t].waking; return waking; } static int __cmd_record(struct record *rec, int argc, const char **argv) { int err; int status = 0; const bool forks = argc > 0; struct perf_tool *tool = &rec->tool; struct record_opts *opts = &rec->opts; struct perf_data *data = &rec->data; struct perf_session *session; bool disabled = false, draining = false; int fd; float ratio = 0; enum evlist_ctl_cmd cmd = EVLIST_CTL_CMD_UNSUPPORTED; atexit(record__sig_exit); signal(SIGCHLD, sig_handler); signal(SIGINT, sig_handler); signal(SIGTERM, sig_handler); signal(SIGSEGV, sigsegv_handler); if (rec->opts.record_namespaces) tool->namespace_events = true; if (rec->opts.record_cgroup) { #ifdef HAVE_FILE_HANDLE tool->cgroup_events = true; #else pr_err("cgroup tracking is not supported\n"); return -1; #endif } if (rec->opts.auxtrace_snapshot_mode || rec->switch_output.enabled) { signal(SIGUSR2, snapshot_sig_handler); if (rec->opts.auxtrace_snapshot_mode) trigger_on(&auxtrace_snapshot_trigger); if (rec->switch_output.enabled) trigger_on(&switch_output_trigger); } else { signal(SIGUSR2, SIG_IGN); } session = perf_session__new(data, tool); if (IS_ERR(session)) { pr_err("Perf session creation failed.\n"); return PTR_ERR(session); } if (record__threads_enabled(rec)) { if (perf_data__is_pipe(&rec->data)) { pr_err("Parallel trace streaming is not available in pipe mode.\n"); return -1; } if (rec->opts.full_auxtrace) { pr_err("Parallel trace streaming is not available in AUX area tracing mode.\n"); return -1; } } fd = perf_data__fd(data); rec->session = session; if (zstd_init(&session->zstd_data, rec->opts.comp_level) < 0) { pr_err("Compression initialization failed.\n"); return -1; } #ifdef HAVE_EVENTFD_SUPPORT done_fd = eventfd(0, EFD_NONBLOCK); if (done_fd < 0) { pr_err("Failed to create wakeup eventfd, error: %m\n"); status = -1; goto out_delete_session; } err = evlist__add_wakeup_eventfd(rec->evlist, done_fd); if (err < 0) { pr_err("Failed to add wakeup eventfd to poll list\n"); status = err; goto out_delete_session; } #endif // HAVE_EVENTFD_SUPPORT session->header.env.comp_type = PERF_COMP_ZSTD; session->header.env.comp_level = rec->opts.comp_level; if (rec->opts.kcore && !record__kcore_readable(&session->machines.host)) { pr_err("ERROR: kcore is not readable.\n"); return -1; } if (record__init_clock(rec)) return -1; record__init_features(rec); if (forks) { err = evlist__prepare_workload(rec->evlist, &opts->target, argv, data->is_pipe, workload_exec_failed_signal); if (err < 0) { pr_err("Couldn't run the workload!\n"); status = err; goto out_delete_session; } } /* * If we have just single event and are sending data * through pipe, we need to force the ids allocation, * because we synthesize event name through the pipe * and need the id for that. */ if (data->is_pipe && rec->evlist->core.nr_entries == 1) rec->opts.sample_id = true; record__uniquify_name(rec); /* Debug message used by test scripts */ pr_debug3("perf record opening and mmapping events\n"); if (record__open(rec) != 0) { err = -1; goto out_free_threads; } /* Debug message used by test scripts */ pr_debug3("perf record done opening and mmapping events\n"); session->header.env.comp_mmap_len = session->evlist->core.mmap_len; if (rec->opts.kcore) { err = record__kcore_copy(&session->machines.host, data); if (err) { pr_err("ERROR: Failed to copy kcore\n"); goto out_free_threads; } } /* * Normally perf_session__new would do this, but it doesn't have the * evlist. */ if (rec->tool.ordered_events && !evlist__sample_id_all(rec->evlist)) { pr_warning("WARNING: No sample_id_all support, falling back to unordered processing\n"); rec->tool.ordered_events = false; } if (evlist__nr_groups(rec->evlist) == 0) perf_header__clear_feat(&session->header, HEADER_GROUP_DESC); if (data->is_pipe) { err = perf_header__write_pipe(fd); if (err < 0) goto out_free_threads; } else { err = perf_session__write_header(session, rec->evlist, fd, false); if (err < 0) goto out_free_threads; } err = -1; if (!rec->no_buildid && !perf_header__has_feat(&session->header, HEADER_BUILD_ID)) { pr_err("Couldn't generate buildids. " "Use --no-buildid to profile anyway.\n"); goto out_free_threads; } err = record__setup_sb_evlist(rec); if (err) goto out_free_threads; err = record__synthesize(rec, false); if (err < 0) goto out_free_threads; if (rec->realtime_prio) { struct sched_param param; param.sched_priority = rec->realtime_prio; if (sched_setscheduler(0, SCHED_FIFO, ¶m)) { pr_err("Could not set realtime priority.\n"); err = -1; goto out_free_threads; } } if (record__start_threads(rec)) goto out_free_threads; /* * When perf is starting the traced process, all the events * (apart from group members) have enable_on_exec=1 set, * so don't spoil it by prematurely enabling them. */ if (!target__none(&opts->target) && !opts->target.initial_delay) evlist__enable(rec->evlist); /* * Let the child rip */ if (forks) { struct machine *machine = &session->machines.host; union perf_event *event; pid_t tgid; event = malloc(sizeof(event->comm) + machine->id_hdr_size); if (event == NULL) { err = -ENOMEM; goto out_child; } /* * Some H/W events are generated before COMM event * which is emitted during exec(), so perf script * cannot see a correct process name for those events. * Synthesize COMM event to prevent it. */ tgid = perf_event__synthesize_comm(tool, event, rec->evlist->workload.pid, process_synthesized_event, machine); free(event); if (tgid == -1) goto out_child; event = malloc(sizeof(event->namespaces) + (NR_NAMESPACES * sizeof(struct perf_ns_link_info)) + machine->id_hdr_size); if (event == NULL) { err = -ENOMEM; goto out_child; } /* * Synthesize NAMESPACES event for the command specified. */ perf_event__synthesize_namespaces(tool, event, rec->evlist->workload.pid, tgid, process_synthesized_event, machine); free(event); evlist__start_workload(rec->evlist); } if (opts->target.initial_delay) { pr_info(EVLIST_DISABLED_MSG); if (opts->target.initial_delay > 0) { usleep(opts->target.initial_delay * USEC_PER_MSEC); evlist__enable(rec->evlist); pr_info(EVLIST_ENABLED_MSG); } } err = event_enable_timer__start(rec->evlist->eet); if (err) goto out_child; /* Debug message used by test scripts */ pr_debug3("perf record has started\n"); fflush(stderr); trigger_ready(&auxtrace_snapshot_trigger); trigger_ready(&switch_output_trigger); perf_hooks__invoke_record_start(); /* * Must write FINISHED_INIT so it will be seen after all other * synthesized user events, but before any regular events. */ err = write_finished_init(rec, false); if (err < 0) goto out_child; for (;;) { unsigned long long hits = thread->samples; /* * rec->evlist->bkw_mmap_state is possible to be * BKW_MMAP_EMPTY here: when done == true and * hits != rec->samples in previous round. * * evlist__toggle_bkw_mmap ensure we never * convert BKW_MMAP_EMPTY to BKW_MMAP_DATA_PENDING. */ if (trigger_is_hit(&switch_output_trigger) || done || draining) evlist__toggle_bkw_mmap(rec->evlist, BKW_MMAP_DATA_PENDING); if (record__mmap_read_all(rec, false) < 0) { trigger_error(&auxtrace_snapshot_trigger); trigger_error(&switch_output_trigger); err = -1; goto out_child; } if (auxtrace_record__snapshot_started) { auxtrace_record__snapshot_started = 0; if (!trigger_is_error(&auxtrace_snapshot_trigger)) record__read_auxtrace_snapshot(rec, false); if (trigger_is_error(&auxtrace_snapshot_trigger)) { pr_err("AUX area tracing snapshot failed\n"); err = -1; goto out_child; } } if (trigger_is_hit(&switch_output_trigger)) { /* * If switch_output_trigger is hit, the data in * overwritable ring buffer should have been collected, * so bkw_mmap_state should be set to BKW_MMAP_EMPTY. * * If SIGUSR2 raise after or during record__mmap_read_all(), * record__mmap_read_all() didn't collect data from * overwritable ring buffer. Read again. */ if (rec->evlist->bkw_mmap_state == BKW_MMAP_RUNNING) continue; trigger_ready(&switch_output_trigger); /* * Reenable events in overwrite ring buffer after * record__mmap_read_all(): we should have collected * data from it. */ evlist__toggle_bkw_mmap(rec->evlist, BKW_MMAP_RUNNING); if (!quiet) fprintf(stderr, "[ perf record: dump data: Woken up %ld times ]\n", record__waking(rec)); thread->waking = 0; fd = record__switch_output(rec, false); if (fd < 0) { pr_err("Failed to switch to new file\n"); trigger_error(&switch_output_trigger); err = fd; goto out_child; } /* re-arm the alarm */ if (rec->switch_output.time) alarm(rec->switch_output.time); } if (hits == thread->samples) { if (done || draining) break; err = fdarray__poll(&thread->pollfd, -1); /* * Propagate error, only if there's any. Ignore positive * number of returned events and interrupt error. */ if (err > 0 || (err < 0 && errno == EINTR)) err = 0; thread->waking++; if (fdarray__filter(&thread->pollfd, POLLERR | POLLHUP, record__thread_munmap_filtered, NULL) == 0) draining = true; err = record__update_evlist_pollfd_from_thread(rec, rec->evlist, thread); if (err) goto out_child; } if (evlist__ctlfd_process(rec->evlist, &cmd) > 0) { switch (cmd) { case EVLIST_CTL_CMD_SNAPSHOT: hit_auxtrace_snapshot_trigger(rec); evlist__ctlfd_ack(rec->evlist); break; case EVLIST_CTL_CMD_STOP: done = 1; break; case EVLIST_CTL_CMD_ACK: case EVLIST_CTL_CMD_UNSUPPORTED: case EVLIST_CTL_CMD_ENABLE: case EVLIST_CTL_CMD_DISABLE: case EVLIST_CTL_CMD_EVLIST: case EVLIST_CTL_CMD_PING: default: break; } } err = event_enable_timer__process(rec->evlist->eet); if (err < 0) goto out_child; if (err) { err = 0; done = 1; } /* * When perf is starting the traced process, at the end events * die with the process and we wait for that. Thus no need to * disable events in this case. */ if (done && !disabled && !target__none(&opts->target)) { trigger_off(&auxtrace_snapshot_trigger); evlist__disable(rec->evlist); disabled = true; } } trigger_off(&auxtrace_snapshot_trigger); trigger_off(&switch_output_trigger); if (opts->auxtrace_snapshot_on_exit) record__auxtrace_snapshot_exit(rec); if (forks && workload_exec_errno) { char msg[STRERR_BUFSIZE], strevsels[2048]; const char *emsg = str_error_r(workload_exec_errno, msg, sizeof(msg)); evlist__scnprintf_evsels(rec->evlist, sizeof(strevsels), strevsels); pr_err("Failed to collect '%s' for the '%s' workload: %s\n", strevsels, argv[0], emsg); err = -1; goto out_child; } if (!quiet) fprintf(stderr, "[ perf record: Woken up %ld times to write data ]\n", record__waking(rec)); write_finished_init(rec, true); if (target__none(&rec->opts.target)) record__synthesize_workload(rec, true); out_child: record__stop_threads(rec); record__mmap_read_all(rec, true); out_free_threads: record__free_thread_data(rec); evlist__finalize_ctlfd(rec->evlist); record__aio_mmap_read_sync(rec); if (rec->session->bytes_transferred && rec->session->bytes_compressed) { ratio = (float)rec->session->bytes_transferred/(float)rec->session->bytes_compressed; session->header.env.comp_ratio = ratio + 0.5; } if (forks) { int exit_status; if (!child_finished) kill(rec->evlist->workload.pid, SIGTERM); wait(&exit_status); if (err < 0) status = err; else if (WIFEXITED(exit_status)) status = WEXITSTATUS(exit_status); else if (WIFSIGNALED(exit_status)) signr = WTERMSIG(exit_status); } else status = err; if (rec->off_cpu) rec->bytes_written += off_cpu_write(rec->session); record__read_lost_samples(rec); record__synthesize(rec, true); /* this will be recalculated during process_buildids() */ rec->samples = 0; if (!err) { if (!rec->timestamp_filename) { record__finish_output(rec); } else { fd = record__switch_output(rec, true); if (fd < 0) { status = fd; goto out_delete_session; } } } perf_hooks__invoke_record_end(); if (!err && !quiet) { char samples[128]; const char *postfix = rec->timestamp_filename ? ".<timestamp>" : ""; if (rec->samples && !rec->opts.full_auxtrace) scnprintf(samples, sizeof(samples), " (%" PRIu64 " samples)", rec->samples); else samples[0] = '\0'; fprintf(stderr, "[ perf record: Captured and wrote %.3f MB %s%s%s", perf_data__size(data) / 1024.0 / 1024.0, data->path, postfix, samples); if (ratio) { fprintf(stderr, ", compressed (original %.3f MB, ratio is %.3f)", rec->session->bytes_transferred / 1024.0 / 1024.0, ratio); } fprintf(stderr, " ]\n"); } out_delete_session: #ifdef HAVE_EVENTFD_SUPPORT if (done_fd >= 0) { fd = done_fd; done_fd = -1; close(fd); } #endif zstd_fini(&session->zstd_data); perf_session__delete(session); if (!opts->no_bpf_event) evlist__stop_sb_thread(rec->sb_evlist); return status; } static void callchain_debug(struct callchain_param *callchain) { static const char *str[CALLCHAIN_MAX] = { "NONE", "FP", "DWARF", "LBR" }; pr_debug("callchain: type %s\n", str[callchain->record_mode]); if (callchain->record_mode == CALLCHAIN_DWARF) pr_debug("callchain: stack dump size %d\n", callchain->dump_size); } int record_opts__parse_callchain(struct record_opts *record, struct callchain_param *callchain, const char *arg, bool unset) { int ret; callchain->enabled = !unset; /* --no-call-graph */ if (unset) { callchain->record_mode = CALLCHAIN_NONE; pr_debug("callchain: disabled\n"); return 0; } ret = parse_callchain_record_opt(arg, callchain); if (!ret) { /* Enable data address sampling for DWARF unwind. */ if (callchain->record_mode == CALLCHAIN_DWARF) record->sample_address = true; callchain_debug(callchain); } return ret; } int record_parse_callchain_opt(const struct option *opt, const char *arg, int unset) { return record_opts__parse_callchain(opt->value, &callchain_param, arg, unset); } int record_callchain_opt(const struct option *opt, const char *arg __maybe_unused, int unset __maybe_unused) { struct callchain_param *callchain = opt->value; callchain->enabled = true; if (callchain->record_mode == CALLCHAIN_NONE) callchain->record_mode = CALLCHAIN_FP; callchain_debug(callchain); return 0; } static int perf_record_config(const char *var, const char *value, void *cb) { struct record *rec = cb; if (!strcmp(var, "record.build-id")) { if (!strcmp(value, "cache")) rec->no_buildid_cache = false; else if (!strcmp(value, "no-cache")) rec->no_buildid_cache = true; else if (!strcmp(value, "skip")) rec->no_buildid = true; else if (!strcmp(value, "mmap")) rec->buildid_mmap = true; else return -1; return 0; } if (!strcmp(var, "record.call-graph")) { var = "call-graph.record-mode"; return perf_default_config(var, value, cb); } #ifdef HAVE_AIO_SUPPORT if (!strcmp(var, "record.aio")) { rec->opts.nr_cblocks = strtol(value, NULL, 0); if (!rec->opts.nr_cblocks) rec->opts.nr_cblocks = nr_cblocks_default; } #endif if (!strcmp(var, "record.debuginfod")) { rec->debuginfod.urls = strdup(value); if (!rec->debuginfod.urls) return -ENOMEM; rec->debuginfod.set = true; } return 0; } static int record__parse_event_enable_time(const struct option *opt, const char *str, int unset) { struct record *rec = (struct record *)opt->value; return evlist__parse_event_enable_time(rec->evlist, &rec->opts, str, unset); } static int record__parse_affinity(const struct option *opt, const char *str, int unset) { struct record_opts *opts = (struct record_opts *)opt->value; if (unset || !str) return 0; if (!strcasecmp(str, "node")) opts->affinity = PERF_AFFINITY_NODE; else if (!strcasecmp(str, "cpu")) opts->affinity = PERF_AFFINITY_CPU; return 0; } static int record__mmap_cpu_mask_alloc(struct mmap_cpu_mask *mask, int nr_bits) { mask->nbits = nr_bits; mask->bits = bitmap_zalloc(mask->nbits); if (!mask->bits) return -ENOMEM; return 0; } static void record__mmap_cpu_mask_free(struct mmap_cpu_mask *mask) { bitmap_free(mask->bits); mask->nbits = 0; } static int record__thread_mask_alloc(struct thread_mask *mask, int nr_bits) { int ret; ret = record__mmap_cpu_mask_alloc(&mask->maps, nr_bits); if (ret) { mask->affinity.bits = NULL; return ret; } ret = record__mmap_cpu_mask_alloc(&mask->affinity, nr_bits); if (ret) { record__mmap_cpu_mask_free(&mask->maps); mask->maps.bits = NULL; } return ret; } static void record__thread_mask_free(struct thread_mask *mask) { record__mmap_cpu_mask_free(&mask->maps); record__mmap_cpu_mask_free(&mask->affinity); } static int record__parse_threads(const struct option *opt, const char *str, int unset) { int s; struct record_opts *opts = opt->value; if (unset || !str || !strlen(str)) { opts->threads_spec = THREAD_SPEC__CPU; } else { for (s = 1; s < THREAD_SPEC__MAX; s++) { if (s == THREAD_SPEC__USER) { opts->threads_user_spec = strdup(str); if (!opts->threads_user_spec) return -ENOMEM; opts->threads_spec = THREAD_SPEC__USER; break; } if (!strncasecmp(str, thread_spec_tags[s], strlen(thread_spec_tags[s]))) { opts->threads_spec = s; break; } } } if (opts->threads_spec == THREAD_SPEC__USER) pr_debug("threads_spec: %s\n", opts->threads_user_spec); else pr_debug("threads_spec: %s\n", thread_spec_tags[opts->threads_spec]); return 0; } static int parse_output_max_size(const struct option *opt, const char *str, int unset) { unsigned long *s = (unsigned long *)opt->value; static struct parse_tag tags_size[] = { { .tag = 'B', .mult = 1 }, { .tag = 'K', .mult = 1 << 10 }, { .tag = 'M', .mult = 1 << 20 }, { .tag = 'G', .mult = 1 << 30 }, { .tag = 0 }, }; unsigned long val; if (unset) { *s = 0; return 0; } val = parse_tag_value(str, tags_size); if (val != (unsigned long) -1) { *s = val; return 0; } return -1; } static int record__parse_mmap_pages(const struct option *opt, const char *str, int unset __maybe_unused) { struct record_opts *opts = opt->value; char *s, *p; unsigned int mmap_pages; int ret; if (!str) return -EINVAL; s = strdup(str); if (!s) return -ENOMEM; p = strchr(s, ','); if (p) *p = '\0'; if (*s) { ret = __evlist__parse_mmap_pages(&mmap_pages, s); if (ret) goto out_free; opts->mmap_pages = mmap_pages; } if (!p) { ret = 0; goto out_free; } ret = __evlist__parse_mmap_pages(&mmap_pages, p + 1); if (ret) goto out_free; opts->auxtrace_mmap_pages = mmap_pages; out_free: free(s); return ret; } void __weak arch__add_leaf_frame_record_opts(struct record_opts *opts __maybe_unused) { } static int parse_control_option(const struct option *opt, const char *str, int unset __maybe_unused) { struct record_opts *opts = opt->value; return evlist__parse_control(str, &opts->ctl_fd, &opts->ctl_fd_ack, &opts->ctl_fd_close); } static void switch_output_size_warn(struct record *rec) { u64 wakeup_size = evlist__mmap_size(rec->opts.mmap_pages); struct switch_output *s = &rec->switch_output; wakeup_size /= 2; if (s->size < wakeup_size) { char buf[100]; unit_number__scnprintf(buf, sizeof(buf), wakeup_size); pr_warning("WARNING: switch-output data size lower than " "wakeup kernel buffer size (%s) " "expect bigger perf.data sizes\n", buf); } } static int switch_output_setup(struct record *rec) { struct switch_output *s = &rec->switch_output; static struct parse_tag tags_size[] = { { .tag = 'B', .mult = 1 }, { .tag = 'K', .mult = 1 << 10 }, { .tag = 'M', .mult = 1 << 20 }, { .tag = 'G', .mult = 1 << 30 }, { .tag = 0 }, }; static struct parse_tag tags_time[] = { { .tag = 's', .mult = 1 }, { .tag = 'm', .mult = 60 }, { .tag = 'h', .mult = 60*60 }, { .tag = 'd', .mult = 60*60*24 }, { .tag = 0 }, }; unsigned long val; /* * If we're using --switch-output-events, then we imply its * --switch-output=signal, as we'll send a SIGUSR2 from the side band * thread to its parent. */ if (rec->switch_output_event_set) { if (record__threads_enabled(rec)) { pr_warning("WARNING: --switch-output-event option is not available in parallel streaming mode.\n"); return 0; } goto do_signal; } if (!s->set) return 0; if (record__threads_enabled(rec)) { pr_warning("WARNING: --switch-output option is not available in parallel streaming mode.\n"); return 0; } if (!strcmp(s->str, "signal")) { do_signal: s->signal = true; pr_debug("switch-output with SIGUSR2 signal\n"); goto enabled; } val = parse_tag_value(s->str, tags_size); if (val != (unsigned long) -1) { s->size = val; pr_debug("switch-output with %s size threshold\n", s->str); goto enabled; } val = parse_tag_value(s->str, tags_time); if (val != (unsigned long) -1) { s->time = val; pr_debug("switch-output with %s time threshold (%lu seconds)\n", s->str, s->time); goto enabled; } return -1; enabled: rec->timestamp_filename = true; s->enabled = true; if (s->size && !rec->opts.no_buffering) switch_output_size_warn(rec); return 0; } static const char * const __record_usage[] = { "perf record [<options>] [<command>]", "perf record [<options>] -- <command> [<options>]", NULL }; const char * const *record_usage = __record_usage; static int build_id__process_mmap(struct perf_tool *tool, union perf_event *event, struct perf_sample *sample, struct machine *machine) { /* * We already have the kernel maps, put in place via perf_session__create_kernel_maps() * no need to add them twice. */ if (!(event->header.misc & PERF_RECORD_MISC_USER)) return 0; return perf_event__process_mmap(tool, event, sample, machine); } static int build_id__process_mmap2(struct perf_tool *tool, union perf_event *event, struct perf_sample *sample, struct machine *machine) { /* * We already have the kernel maps, put in place via perf_session__create_kernel_maps() * no need to add them twice. */ if (!(event->header.misc & PERF_RECORD_MISC_USER)) return 0; return perf_event__process_mmap2(tool, event, sample, machine); } static int process_timestamp_boundary(struct perf_tool *tool, union perf_event *event __maybe_unused, struct perf_sample *sample, struct machine *machine __maybe_unused) { struct record *rec = container_of(tool, struct record, tool); set_timestamp_boundary(rec, sample->time); return 0; } static int parse_record_synth_option(const struct option *opt, const char *str, int unset __maybe_unused) { struct record_opts *opts = opt->value; char *p = strdup(str); if (p == NULL) return -1; opts->synth = parse_synth_opt(p); free(p); if (opts->synth < 0) { pr_err("Invalid synth option: %s\n", str); return -1; } return 0; } /* * XXX Ideally would be local to cmd_record() and passed to a record__new * because we need to have access to it in record__exit, that is called * after cmd_record() exits, but since record_options need to be accessible to * builtin-script, leave it here. * * At least we don't ouch it in all the other functions here directly. * * Just say no to tons of global variables, sigh. */ static struct record record = { .opts = { .sample_time = true, .mmap_pages = UINT_MAX, .user_freq = UINT_MAX, .user_interval = ULLONG_MAX, .freq = 4000, .target = { .uses_mmap = true, .default_per_cpu = true, }, .mmap_flush = MMAP_FLUSH_DEFAULT, .nr_threads_synthesize = 1, .ctl_fd = -1, .ctl_fd_ack = -1, .synth = PERF_SYNTH_ALL, }, .tool = { .sample = process_sample_event, .fork = perf_event__process_fork, .exit = perf_event__process_exit, .comm = perf_event__process_comm, .namespaces = perf_event__process_namespaces, .mmap = build_id__process_mmap, .mmap2 = build_id__process_mmap2, .itrace_start = process_timestamp_boundary, .aux = process_timestamp_boundary, .ordered_events = true, }, }; const char record_callchain_help[] = CALLCHAIN_RECORD_HELP "\n\t\t\t\tDefault: fp"; static bool dry_run; static struct parse_events_option_args parse_events_option_args = { .evlistp = &record.evlist, }; static struct parse_events_option_args switch_output_parse_events_option_args = { .evlistp = &record.sb_evlist, }; /* * XXX Will stay a global variable till we fix builtin-script.c to stop messing * with it and switch to use the library functions in perf_evlist that came * from builtin-record.c, i.e. use record_opts, * evlist__prepare_workload, etc instead of fork+exec'in 'perf record', * using pipes, etc. */ static struct option __record_options[] = { OPT_CALLBACK('e', "event", &parse_events_option_args, "event", "event selector. use 'perf list' to list available events", parse_events_option), OPT_CALLBACK(0, "filter", &record.evlist, "filter", "event filter", parse_filter), OPT_CALLBACK_NOOPT(0, "exclude-perf", &record.evlist, NULL, "don't record events from perf itself", exclude_perf), OPT_STRING('p', "pid", &record.opts.target.pid, "pid", "record events on existing process id"), OPT_STRING('t', "tid", &record.opts.target.tid, "tid", "record events on existing thread id"), OPT_INTEGER('r', "realtime", &record.realtime_prio, "collect data with this RT SCHED_FIFO priority"), OPT_BOOLEAN(0, "no-buffering", &record.opts.no_buffering, "collect data without buffering"), OPT_BOOLEAN('R', "raw-samples", &record.opts.raw_samples, "collect raw sample records from all opened counters"), OPT_BOOLEAN('a', "all-cpus", &record.opts.target.system_wide, "system-wide collection from all CPUs"), OPT_STRING('C', "cpu", &record.opts.target.cpu_list, "cpu", "list of cpus to monitor"), OPT_U64('c', "count", &record.opts.user_interval, "event period to sample"), OPT_STRING('o', "output", &record.data.path, "file", "output file name"), OPT_BOOLEAN_SET('i', "no-inherit", &record.opts.no_inherit, &record.opts.no_inherit_set, "child tasks do not inherit counters"), OPT_BOOLEAN(0, "tail-synthesize", &record.opts.tail_synthesize, "synthesize non-sample events at the end of output"), OPT_BOOLEAN(0, "overwrite", &record.opts.overwrite, "use overwrite mode"), OPT_BOOLEAN(0, "no-bpf-event", &record.opts.no_bpf_event, "do not record bpf events"), OPT_BOOLEAN(0, "strict-freq", &record.opts.strict_freq, "Fail if the specified frequency can't be used"), OPT_CALLBACK('F', "freq", &record.opts, "freq or 'max'", "profile at this frequency", record__parse_freq), OPT_CALLBACK('m', "mmap-pages", &record.opts, "pages[,pages]", "number of mmap data pages and AUX area tracing mmap pages", record__parse_mmap_pages), OPT_CALLBACK(0, "mmap-flush", &record.opts, "number", "Minimal number of bytes that is extracted from mmap data pages (default: 1)", record__mmap_flush_parse), OPT_CALLBACK_NOOPT('g', NULL, &callchain_param, NULL, "enables call-graph recording" , &record_callchain_opt), OPT_CALLBACK(0, "call-graph", &record.opts, "record_mode[,record_size]", record_callchain_help, &record_parse_callchain_opt), OPT_INCR('v', "verbose", &verbose, "be more verbose (show counter open errors, etc)"), OPT_BOOLEAN('q', "quiet", &quiet, "don't print any warnings or messages"), OPT_BOOLEAN('s', "stat", &record.opts.inherit_stat, "per thread counts"), OPT_BOOLEAN('d', "data", &record.opts.sample_address, "Record the sample addresses"), OPT_BOOLEAN(0, "phys-data", &record.opts.sample_phys_addr, "Record the sample physical addresses"), OPT_BOOLEAN(0, "data-page-size", &record.opts.sample_data_page_size, "Record the sampled data address data page size"), OPT_BOOLEAN(0, "code-page-size", &record.opts.sample_code_page_size, "Record the sampled code address (ip) page size"), OPT_BOOLEAN(0, "sample-cpu", &record.opts.sample_cpu, "Record the sample cpu"), OPT_BOOLEAN(0, "sample-identifier", &record.opts.sample_identifier, "Record the sample identifier"), OPT_BOOLEAN_SET('T', "timestamp", &record.opts.sample_time, &record.opts.sample_time_set, "Record the sample timestamps"), OPT_BOOLEAN_SET('P', "period", &record.opts.period, &record.opts.period_set, "Record the sample period"), OPT_BOOLEAN('n', "no-samples", &record.opts.no_samples, "don't sample"), OPT_BOOLEAN_SET('N', "no-buildid-cache", &record.no_buildid_cache, &record.no_buildid_cache_set, "do not update the buildid cache"), OPT_BOOLEAN_SET('B', "no-buildid", &record.no_buildid, &record.no_buildid_set, "do not collect buildids in perf.data"), OPT_CALLBACK('G', "cgroup", &record.evlist, "name", "monitor event in cgroup name only", parse_cgroups), OPT_CALLBACK('D', "delay", &record, "ms", "ms to wait before starting measurement after program start (-1: start with events disabled), " "or ranges of time to enable events e.g. '-D 10-20,30-40'", record__parse_event_enable_time), OPT_BOOLEAN(0, "kcore", &record.opts.kcore, "copy /proc/kcore"), OPT_STRING('u', "uid", &record.opts.target.uid_str, "user", "user to profile"), OPT_CALLBACK_NOOPT('b', "branch-any", &record.opts.branch_stack, "branch any", "sample any taken branches", parse_branch_stack), OPT_CALLBACK('j', "branch-filter", &record.opts.branch_stack, "branch filter mask", "branch stack filter modes", parse_branch_stack), OPT_BOOLEAN('W', "weight", &record.opts.sample_weight, "sample by weight (on special events only)"), OPT_BOOLEAN(0, "transaction", &record.opts.sample_transaction, "sample transaction flags (special events only)"), OPT_BOOLEAN(0, "per-thread", &record.opts.target.per_thread, "use per-thread mmaps"), OPT_CALLBACK_OPTARG('I', "intr-regs", &record.opts.sample_intr_regs, NULL, "any register", "sample selected machine registers on interrupt," " use '-I?' to list register names", parse_intr_regs), OPT_CALLBACK_OPTARG(0, "user-regs", &record.opts.sample_user_regs, NULL, "any register", "sample selected machine registers on interrupt," " use '--user-regs=?' to list register names", parse_user_regs), OPT_BOOLEAN(0, "running-time", &record.opts.running_time, "Record running/enabled time of read (:S) events"), OPT_CALLBACK('k', "clockid", &record.opts, "clockid", "clockid to use for events, see clock_gettime()", parse_clockid), OPT_STRING_OPTARG('S', "snapshot", &record.opts.auxtrace_snapshot_opts, "opts", "AUX area tracing Snapshot Mode", ""), OPT_STRING_OPTARG(0, "aux-sample", &record.opts.auxtrace_sample_opts, "opts", "sample AUX area", ""), OPT_UINTEGER(0, "proc-map-timeout", &proc_map_timeout, "per thread proc mmap processing timeout in ms"), OPT_BOOLEAN(0, "namespaces", &record.opts.record_namespaces, "Record namespaces events"), OPT_BOOLEAN(0, "all-cgroups", &record.opts.record_cgroup, "Record cgroup events"), OPT_BOOLEAN_SET(0, "switch-events", &record.opts.record_switch_events, &record.opts.record_switch_events_set, "Record context switch events"), OPT_BOOLEAN_FLAG(0, "all-kernel", &record.opts.all_kernel, "Configure all used events to run in kernel space.", PARSE_OPT_EXCLUSIVE), OPT_BOOLEAN_FLAG(0, "all-user", &record.opts.all_user, "Configure all used events to run in user space.", PARSE_OPT_EXCLUSIVE), OPT_BOOLEAN(0, "kernel-callchains", &record.opts.kernel_callchains, "collect kernel callchains"), OPT_BOOLEAN(0, "user-callchains", &record.opts.user_callchains, "collect user callchains"), OPT_STRING(0, "vmlinux", &symbol_conf.vmlinux_name, "file", "vmlinux pathname"), OPT_BOOLEAN(0, "buildid-all", &record.buildid_all, "Record build-id of all DSOs regardless of hits"), OPT_BOOLEAN(0, "buildid-mmap", &record.buildid_mmap, "Record build-id in map events"), OPT_BOOLEAN(0, "timestamp-filename", &record.timestamp_filename, "append timestamp to output filename"), OPT_BOOLEAN(0, "timestamp-boundary", &record.timestamp_boundary, "Record timestamp boundary (time of first/last samples)"), OPT_STRING_OPTARG_SET(0, "switch-output", &record.switch_output.str, &record.switch_output.set, "signal or size[BKMG] or time[smhd]", "Switch output when receiving SIGUSR2 (signal) or cross a size or time threshold", "signal"), OPT_CALLBACK_SET(0, "switch-output-event", &switch_output_parse_events_option_args, &record.switch_output_event_set, "switch output event", "switch output event selector. use 'perf list' to list available events", parse_events_option_new_evlist), OPT_INTEGER(0, "switch-max-files", &record.switch_output.num_files, "Limit number of switch output generated files"), OPT_BOOLEAN(0, "dry-run", &dry_run, "Parse options then exit"), #ifdef HAVE_AIO_SUPPORT OPT_CALLBACK_OPTARG(0, "aio", &record.opts, &nr_cblocks_default, "n", "Use <n> control blocks in asynchronous trace writing mode (default: 1, max: 4)", record__aio_parse), #endif OPT_CALLBACK(0, "affinity", &record.opts, "node|cpu", "Set affinity mask of trace reading thread to NUMA node cpu mask or cpu of processed mmap buffer", record__parse_affinity), #ifdef HAVE_ZSTD_SUPPORT OPT_CALLBACK_OPTARG('z', "compression-level", &record.opts, &comp_level_default, "n", "Compress records using specified level (default: 1 - fastest compression, 22 - greatest compression)", record__parse_comp_level), #endif OPT_CALLBACK(0, "max-size", &record.output_max_size, "size", "Limit the maximum size of the output file", parse_output_max_size), OPT_UINTEGER(0, "num-thread-synthesize", &record.opts.nr_threads_synthesize, "number of threads to run for event synthesis"), #ifdef HAVE_LIBPFM OPT_CALLBACK(0, "pfm-events", &record.evlist, "event", "libpfm4 event selector. use 'perf list' to list available events", parse_libpfm_events_option), #endif OPT_CALLBACK(0, "control", &record.opts, "fd:ctl-fd[,ack-fd] or fifo:ctl-fifo[,ack-fifo]", "Listen on ctl-fd descriptor for command to control measurement ('enable': enable events, 'disable': disable events,\n" "\t\t\t 'snapshot': AUX area tracing snapshot).\n" "\t\t\t Optionally send control command completion ('ack\\n') to ack-fd descriptor.\n" "\t\t\t Alternatively, ctl-fifo / ack-fifo will be opened and used as ctl-fd / ack-fd.", parse_control_option), OPT_CALLBACK(0, "synth", &record.opts, "no|all|task|mmap|cgroup", "Fine-tune event synthesis: default=all", parse_record_synth_option), OPT_STRING_OPTARG_SET(0, "debuginfod", &record.debuginfod.urls, &record.debuginfod.set, "debuginfod urls", "Enable debuginfod data retrieval from DEBUGINFOD_URLS or specified urls", "system"), OPT_CALLBACK_OPTARG(0, "threads", &record.opts, NULL, "spec", "write collected trace data into several data files using parallel threads", record__parse_threads), OPT_BOOLEAN(0, "off-cpu", &record.off_cpu, "Enable off-cpu analysis"), OPT_END() }; struct option *record_options = __record_options; static int record__mmap_cpu_mask_init(struct mmap_cpu_mask *mask, struct perf_cpu_map *cpus) { struct perf_cpu cpu; int idx; if (cpu_map__is_dummy(cpus)) return 0; perf_cpu_map__for_each_cpu(cpu, idx, cpus) { if (cpu.cpu == -1) continue; /* Return ENODEV is input cpu is greater than max cpu */ if ((unsigned long)cpu.cpu > mask->nbits) return -ENODEV; __set_bit(cpu.cpu, mask->bits); } return 0; } static int record__mmap_cpu_mask_init_spec(struct mmap_cpu_mask *mask, const char *mask_spec) { struct perf_cpu_map *cpus; cpus = perf_cpu_map__new(mask_spec); if (!cpus) return -ENOMEM; bitmap_zero(mask->bits, mask->nbits); if (record__mmap_cpu_mask_init(mask, cpus)) return -ENODEV; perf_cpu_map__put(cpus); return 0; } static void record__free_thread_masks(struct record *rec, int nr_threads) { int t; if (rec->thread_masks) for (t = 0; t < nr_threads; t++) record__thread_mask_free(&rec->thread_masks[t]); zfree(&rec->thread_masks); } static int record__alloc_thread_masks(struct record *rec, int nr_threads, int nr_bits) { int t, ret; rec->thread_masks = zalloc(nr_threads * sizeof(*(rec->thread_masks))); if (!rec->thread_masks) { pr_err("Failed to allocate thread masks\n"); return -ENOMEM; } for (t = 0; t < nr_threads; t++) { ret = record__thread_mask_alloc(&rec->thread_masks[t], nr_bits); if (ret) { pr_err("Failed to allocate thread masks[%d]\n", t); goto out_free; } } return 0; out_free: record__free_thread_masks(rec, nr_threads); return ret; } static int record__init_thread_cpu_masks(struct record *rec, struct perf_cpu_map *cpus) { int t, ret, nr_cpus = perf_cpu_map__nr(cpus); ret = record__alloc_thread_masks(rec, nr_cpus, cpu__max_cpu().cpu); if (ret) return ret; rec->nr_threads = nr_cpus; pr_debug("nr_threads: %d\n", rec->nr_threads); for (t = 0; t < rec->nr_threads; t++) { __set_bit(perf_cpu_map__cpu(cpus, t).cpu, rec->thread_masks[t].maps.bits); __set_bit(perf_cpu_map__cpu(cpus, t).cpu, rec->thread_masks[t].affinity.bits); if (verbose > 0) { pr_debug("thread_masks[%d]: ", t); mmap_cpu_mask__scnprintf(&rec->thread_masks[t].maps, "maps"); pr_debug("thread_masks[%d]: ", t); mmap_cpu_mask__scnprintf(&rec->thread_masks[t].affinity, "affinity"); } } return 0; } static int record__init_thread_masks_spec(struct record *rec, struct perf_cpu_map *cpus, const char **maps_spec, const char **affinity_spec, u32 nr_spec) { u32 s; int ret = 0, t = 0; struct mmap_cpu_mask cpus_mask; struct thread_mask thread_mask, full_mask, *thread_masks; ret = record__mmap_cpu_mask_alloc(&cpus_mask, cpu__max_cpu().cpu); if (ret) { pr_err("Failed to allocate CPUs mask\n"); return ret; } ret = record__mmap_cpu_mask_init(&cpus_mask, cpus); if (ret) { pr_err("Failed to init cpu mask\n"); goto out_free_cpu_mask; } ret = record__thread_mask_alloc(&full_mask, cpu__max_cpu().cpu); if (ret) { pr_err("Failed to allocate full mask\n"); goto out_free_cpu_mask; } ret = record__thread_mask_alloc(&thread_mask, cpu__max_cpu().cpu); if (ret) { pr_err("Failed to allocate thread mask\n"); goto out_free_full_and_cpu_masks; } for (s = 0; s < nr_spec; s++) { ret = record__mmap_cpu_mask_init_spec(&thread_mask.maps, maps_spec[s]); if (ret) { pr_err("Failed to initialize maps thread mask\n"); goto out_free; } ret = record__mmap_cpu_mask_init_spec(&thread_mask.affinity, affinity_spec[s]); if (ret) { pr_err("Failed to initialize affinity thread mask\n"); goto out_free; } /* ignore invalid CPUs but do not allow empty masks */ if (!bitmap_and(thread_mask.maps.bits, thread_mask.maps.bits, cpus_mask.bits, thread_mask.maps.nbits)) { pr_err("Empty maps mask: %s\n", maps_spec[s]); ret = -EINVAL; goto out_free; } if (!bitmap_and(thread_mask.affinity.bits, thread_mask.affinity.bits, cpus_mask.bits, thread_mask.affinity.nbits)) { pr_err("Empty affinity mask: %s\n", affinity_spec[s]); ret = -EINVAL; goto out_free; } /* do not allow intersection with other masks (full_mask) */ if (bitmap_intersects(thread_mask.maps.bits, full_mask.maps.bits, thread_mask.maps.nbits)) { pr_err("Intersecting maps mask: %s\n", maps_spec[s]); ret = -EINVAL; goto out_free; } if (bitmap_intersects(thread_mask.affinity.bits, full_mask.affinity.bits, thread_mask.affinity.nbits)) { pr_err("Intersecting affinity mask: %s\n", affinity_spec[s]); ret = -EINVAL; goto out_free; } bitmap_or(full_mask.maps.bits, full_mask.maps.bits, thread_mask.maps.bits, full_mask.maps.nbits); bitmap_or(full_mask.affinity.bits, full_mask.affinity.bits, thread_mask.affinity.bits, full_mask.maps.nbits); thread_masks = realloc(rec->thread_masks, (t + 1) * sizeof(struct thread_mask)); if (!thread_masks) { pr_err("Failed to reallocate thread masks\n"); ret = -ENOMEM; goto out_free; } rec->thread_masks = thread_masks; rec->thread_masks[t] = thread_mask; if (verbose > 0) { pr_debug("thread_masks[%d]: ", t); mmap_cpu_mask__scnprintf(&rec->thread_masks[t].maps, "maps"); pr_debug("thread_masks[%d]: ", t); mmap_cpu_mask__scnprintf(&rec->thread_masks[t].affinity, "affinity"); } t++; ret = record__thread_mask_alloc(&thread_mask, cpu__max_cpu().cpu); if (ret) { pr_err("Failed to allocate thread mask\n"); goto out_free_full_and_cpu_masks; } } rec->nr_threads = t; pr_debug("nr_threads: %d\n", rec->nr_threads); if (!rec->nr_threads) ret = -EINVAL; out_free: record__thread_mask_free(&thread_mask); out_free_full_and_cpu_masks: record__thread_mask_free(&full_mask); out_free_cpu_mask: record__mmap_cpu_mask_free(&cpus_mask); return ret; } static int record__init_thread_core_masks(struct record *rec, struct perf_cpu_map *cpus) { int ret; struct cpu_topology *topo; topo = cpu_topology__new(); if (!topo) { pr_err("Failed to allocate CPU topology\n"); return -ENOMEM; } ret = record__init_thread_masks_spec(rec, cpus, topo->core_cpus_list, topo->core_cpus_list, topo->core_cpus_lists); cpu_topology__delete(topo); return ret; } static int record__init_thread_package_masks(struct record *rec, struct perf_cpu_map *cpus) { int ret; struct cpu_topology *topo; topo = cpu_topology__new(); if (!topo) { pr_err("Failed to allocate CPU topology\n"); return -ENOMEM; } ret = record__init_thread_masks_spec(rec, cpus, topo->package_cpus_list, topo->package_cpus_list, topo->package_cpus_lists); cpu_topology__delete(topo); return ret; } static int record__init_thread_numa_masks(struct record *rec, struct perf_cpu_map *cpus) { u32 s; int ret; const char **spec; struct numa_topology *topo; topo = numa_topology__new(); if (!topo) { pr_err("Failed to allocate NUMA topology\n"); return -ENOMEM; } spec = zalloc(topo->nr * sizeof(char *)); if (!spec) { pr_err("Failed to allocate NUMA spec\n"); ret = -ENOMEM; goto out_delete_topo; } for (s = 0; s < topo->nr; s++) spec[s] = topo->nodes[s].cpus; ret = record__init_thread_masks_spec(rec, cpus, spec, spec, topo->nr); zfree(&spec); out_delete_topo: numa_topology__delete(topo); return ret; } static int record__init_thread_user_masks(struct record *rec, struct perf_cpu_map *cpus) { int t, ret; u32 s, nr_spec = 0; char **maps_spec = NULL, **affinity_spec = NULL, **tmp_spec; char *user_spec, *spec, *spec_ptr, *mask, *mask_ptr, *dup_mask = NULL; for (t = 0, user_spec = (char *)rec->opts.threads_user_spec; ; t++, user_spec = NULL) { spec = strtok_r(user_spec, ":", &spec_ptr); if (spec == NULL) break; pr_debug2("threads_spec[%d]: %s\n", t, spec); mask = strtok_r(spec, "/", &mask_ptr); if (mask == NULL) break; pr_debug2(" maps mask: %s\n", mask); tmp_spec = realloc(maps_spec, (nr_spec + 1) * sizeof(char *)); if (!tmp_spec) { pr_err("Failed to reallocate maps spec\n"); ret = -ENOMEM; goto out_free; } maps_spec = tmp_spec; maps_spec[nr_spec] = dup_mask = strdup(mask); if (!maps_spec[nr_spec]) { pr_err("Failed to allocate maps spec[%d]\n", nr_spec); ret = -ENOMEM; goto out_free; } mask = strtok_r(NULL, "/", &mask_ptr); if (mask == NULL) { pr_err("Invalid thread maps or affinity specs\n"); ret = -EINVAL; goto out_free; } pr_debug2(" affinity mask: %s\n", mask); tmp_spec = realloc(affinity_spec, (nr_spec + 1) * sizeof(char *)); if (!tmp_spec) { pr_err("Failed to reallocate affinity spec\n"); ret = -ENOMEM; goto out_free; } affinity_spec = tmp_spec; affinity_spec[nr_spec] = strdup(mask); if (!affinity_spec[nr_spec]) { pr_err("Failed to allocate affinity spec[%d]\n", nr_spec); ret = -ENOMEM; goto out_free; } dup_mask = NULL; nr_spec++; } ret = record__init_thread_masks_spec(rec, cpus, (const char **)maps_spec, (const char **)affinity_spec, nr_spec); out_free: free(dup_mask); for (s = 0; s < nr_spec; s++) { if (maps_spec) free(maps_spec[s]); if (affinity_spec) free(affinity_spec[s]); } free(affinity_spec); free(maps_spec); return ret; } static int record__init_thread_default_masks(struct record *rec, struct perf_cpu_map *cpus) { int ret; ret = record__alloc_thread_masks(rec, 1, cpu__max_cpu().cpu); if (ret) return ret; if (record__mmap_cpu_mask_init(&rec->thread_masks->maps, cpus)) return -ENODEV; rec->nr_threads = 1; return 0; } static int record__init_thread_masks(struct record *rec) { int ret = 0; struct perf_cpu_map *cpus = rec->evlist->core.all_cpus; if (!record__threads_enabled(rec)) return record__init_thread_default_masks(rec, cpus); if (evlist__per_thread(rec->evlist)) { pr_err("--per-thread option is mutually exclusive to parallel streaming mode.\n"); return -EINVAL; } switch (rec->opts.threads_spec) { case THREAD_SPEC__CPU: ret = record__init_thread_cpu_masks(rec, cpus); break; case THREAD_SPEC__CORE: ret = record__init_thread_core_masks(rec, cpus); break; case THREAD_SPEC__PACKAGE: ret = record__init_thread_package_masks(rec, cpus); break; case THREAD_SPEC__NUMA: ret = record__init_thread_numa_masks(rec, cpus); break; case THREAD_SPEC__USER: ret = record__init_thread_user_masks(rec, cpus); break; default: break; } return ret; } int cmd_record(int argc, const char **argv) { int err; struct record *rec = &record; char errbuf[BUFSIZ]; setlocale(LC_ALL, ""); #ifndef HAVE_BPF_SKEL # define set_nobuild(s, l, m, c) set_option_nobuild(record_options, s, l, m, c) set_nobuild('\0', "off-cpu", "no BUILD_BPF_SKEL=1", true); # undef set_nobuild #endif rec->opts.affinity = PERF_AFFINITY_SYS; rec->evlist = evlist__new(); if (rec->evlist == NULL) return -ENOMEM; err = perf_config(perf_record_config, rec); if (err) return err; argc = parse_options(argc, argv, record_options, record_usage, PARSE_OPT_STOP_AT_NON_OPTION); if (quiet) perf_quiet_option(); err = symbol__validate_sym_arguments(); if (err) return err; perf_debuginfod_setup(&record.debuginfod); /* Make system wide (-a) the default target. */ if (!argc && target__none(&rec->opts.target)) rec->opts.target.system_wide = true; if (nr_cgroups && !rec->opts.target.system_wide) { usage_with_options_msg(record_usage, record_options, "cgroup monitoring only available in system-wide mode"); } if (rec->buildid_mmap) { if (!perf_can_record_build_id()) { pr_err("Failed: no support to record build id in mmap events, update your kernel.\n"); err = -EINVAL; goto out_opts; } pr_debug("Enabling build id in mmap2 events.\n"); /* Enable mmap build id synthesizing. */ symbol_conf.buildid_mmap2 = true; /* Enable perf_event_attr::build_id bit. */ rec->opts.build_id = true; /* Disable build id cache. */ rec->no_buildid = true; } if (rec->opts.record_cgroup && !perf_can_record_cgroup()) { pr_err("Kernel has no cgroup sampling support.\n"); err = -EINVAL; goto out_opts; } if (rec->opts.kcore) rec->opts.text_poke = true; if (rec->opts.kcore || record__threads_enabled(rec)) rec->data.is_dir = true; if (record__threads_enabled(rec)) { if (rec->opts.affinity != PERF_AFFINITY_SYS) { pr_err("--affinity option is mutually exclusive to parallel streaming mode.\n"); goto out_opts; } if (record__aio_enabled(rec)) { pr_err("Asynchronous streaming mode (--aio) is mutually exclusive to parallel streaming mode.\n"); goto out_opts; } } if (rec->opts.comp_level != 0) { pr_debug("Compression enabled, disabling build id collection at the end of the session.\n"); rec->no_buildid = true; } if (rec->opts.record_switch_events && !perf_can_record_switch_events()) { ui__error("kernel does not support recording context switch events\n"); parse_options_usage(record_usage, record_options, "switch-events", 0); err = -EINVAL; goto out_opts; } if (switch_output_setup(rec)) { parse_options_usage(record_usage, record_options, "switch-output", 0); err = -EINVAL; goto out_opts; } if (rec->switch_output.time) { signal(SIGALRM, alarm_sig_handler); alarm(rec->switch_output.time); } if (rec->switch_output.num_files) { rec->switch_output.filenames = calloc(sizeof(char *), rec->switch_output.num_files); if (!rec->switch_output.filenames) { err = -EINVAL; goto out_opts; } } if (rec->timestamp_filename && record__threads_enabled(rec)) { rec->timestamp_filename = false; pr_warning("WARNING: --timestamp-filename option is not available in parallel streaming mode.\n"); } /* * Allow aliases to facilitate the lookup of symbols for address * filters. Refer to auxtrace_parse_filters(). */ symbol_conf.allow_aliases = true; symbol__init(NULL); err = record__auxtrace_init(rec); if (err) goto out; if (dry_run) goto out; err = -ENOMEM; if (rec->no_buildid_cache || rec->no_buildid) { disable_buildid_cache(); } else if (rec->switch_output.enabled) { /* * In 'perf record --switch-output', disable buildid * generation by default to reduce data file switching * overhead. Still generate buildid if they are required * explicitly using * * perf record --switch-output --no-no-buildid \ * --no-no-buildid-cache * * Following code equals to: * * if ((rec->no_buildid || !rec->no_buildid_set) && * (rec->no_buildid_cache || !rec->no_buildid_cache_set)) * disable_buildid_cache(); */ bool disable = true; if (rec->no_buildid_set && !rec->no_buildid) disable = false; if (rec->no_buildid_cache_set && !rec->no_buildid_cache) disable = false; if (disable) { rec->no_buildid = true; rec->no_buildid_cache = true; disable_buildid_cache(); } } if (record.opts.overwrite) record.opts.tail_synthesize = true; if (rec->evlist->core.nr_entries == 0) { bool can_profile_kernel = perf_event_paranoid_check(1); err = parse_event(rec->evlist, can_profile_kernel ? "cycles:P" : "cycles:Pu"); if (err) goto out; } if (rec->opts.target.tid && !rec->opts.no_inherit_set) rec->opts.no_inherit = true; err = target__validate(&rec->opts.target); if (err) { target__strerror(&rec->opts.target, err, errbuf, BUFSIZ); ui__warning("%s\n", errbuf); } err = target__parse_uid(&rec->opts.target); if (err) { int saved_errno = errno; target__strerror(&rec->opts.target, err, errbuf, BUFSIZ); ui__error("%s", errbuf); err = -saved_errno; goto out; } /* Enable ignoring missing threads when -u/-p option is defined. */ rec->opts.ignore_missing_thread = rec->opts.target.uid != UINT_MAX || rec->opts.target.pid; evlist__warn_user_requested_cpus(rec->evlist, rec->opts.target.cpu_list); if (callchain_param.enabled && callchain_param.record_mode == CALLCHAIN_FP) arch__add_leaf_frame_record_opts(&rec->opts); err = -ENOMEM; if (evlist__create_maps(rec->evlist, &rec->opts.target) < 0) { if (rec->opts.target.pid != NULL) { pr_err("Couldn't create thread/CPU maps: %s\n", errno == ENOENT ? "No such process" : str_error_r(errno, errbuf, sizeof(errbuf))); goto out; } else usage_with_options(record_usage, record_options); } err = auxtrace_record__options(rec->itr, rec->evlist, &rec->opts); if (err) goto out; /* * We take all buildids when the file contains * AUX area tracing data because we do not decode the * trace because it would take too long. */ if (rec->opts.full_auxtrace) rec->buildid_all = true; if (rec->opts.text_poke) { err = record__config_text_poke(rec->evlist); if (err) { pr_err("record__config_text_poke failed, error %d\n", err); goto out; } } if (rec->off_cpu) { err = record__config_off_cpu(rec); if (err) { pr_err("record__config_off_cpu failed, error %d\n", err); goto out; } } if (record_opts__config(&rec->opts)) { err = -EINVAL; goto out; } err = record__init_thread_masks(rec); if (err) { pr_err("Failed to initialize parallel data streaming masks\n"); goto out; } if (rec->opts.nr_cblocks > nr_cblocks_max) rec->opts.nr_cblocks = nr_cblocks_max; pr_debug("nr_cblocks: %d\n", rec->opts.nr_cblocks); pr_debug("affinity: %s\n", affinity_tags[rec->opts.affinity]); pr_debug("mmap flush: %d\n", rec->opts.mmap_flush); if (rec->opts.comp_level > comp_level_max) rec->opts.comp_level = comp_level_max; pr_debug("comp level: %d\n", rec->opts.comp_level); err = __cmd_record(&record, argc, argv); out: evlist__delete(rec->evlist); symbol__exit(); auxtrace_record__free(rec->itr); out_opts: record__free_thread_masks(rec, rec->nr_threads); rec->nr_threads = 0; evlist__close_control(rec->opts.ctl_fd, rec->opts.ctl_fd_ack, &rec->opts.ctl_fd_close); return err; } static void snapshot_sig_handler(int sig __maybe_unused) { struct record *rec = &record; hit_auxtrace_snapshot_trigger(rec); if (switch_output_signal(rec)) trigger_hit(&switch_output_trigger); } static void alarm_sig_handler(int sig __maybe_unused) { struct record *rec = &record; if (switch_output_time(rec)) trigger_hit(&switch_output_trigger); }