// SPDX-License-Identifier: GPL-2.0-only /* * OMAP Voltage Controller (VC) interface * * Copyright (C) 2011 Texas Instruments, Inc. */ #include <linux/kernel.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/bug.h> #include <linux/io.h> #include <asm/div64.h> #include "iomap.h" #include "soc.h" #include "voltage.h" #include "vc.h" #include "prm-regbits-34xx.h" #include "prm-regbits-44xx.h" #include "prm44xx.h" #include "pm.h" #include "scrm44xx.h" #include "control.h" #define OMAP4430_VDD_IVA_I2C_DISABLE BIT(14) #define OMAP4430_VDD_MPU_I2C_DISABLE BIT(13) #define OMAP4430_VDD_CORE_I2C_DISABLE BIT(12) #define OMAP4430_VDD_IVA_PRESENCE BIT(9) #define OMAP4430_VDD_MPU_PRESENCE BIT(8) #define OMAP4430_AUTO_CTRL_VDD_IVA(x) ((x) << 4) #define OMAP4430_AUTO_CTRL_VDD_MPU(x) ((x) << 2) #define OMAP4430_AUTO_CTRL_VDD_CORE(x) ((x) << 0) #define OMAP4430_AUTO_CTRL_VDD_RET 2 #define OMAP4430_VDD_I2C_DISABLE_MASK \ (OMAP4430_VDD_IVA_I2C_DISABLE | \ OMAP4430_VDD_MPU_I2C_DISABLE | \ OMAP4430_VDD_CORE_I2C_DISABLE) #define OMAP4_VDD_DEFAULT_VAL \ (OMAP4430_VDD_I2C_DISABLE_MASK | \ OMAP4430_VDD_IVA_PRESENCE | OMAP4430_VDD_MPU_PRESENCE | \ OMAP4430_AUTO_CTRL_VDD_IVA(OMAP4430_AUTO_CTRL_VDD_RET) | \ OMAP4430_AUTO_CTRL_VDD_MPU(OMAP4430_AUTO_CTRL_VDD_RET) | \ OMAP4430_AUTO_CTRL_VDD_CORE(OMAP4430_AUTO_CTRL_VDD_RET)) #define OMAP4_VDD_RET_VAL \ (OMAP4_VDD_DEFAULT_VAL & ~OMAP4430_VDD_I2C_DISABLE_MASK) /** * struct omap_vc_channel_cfg - describe the cfg_channel bitfield * @sa: bit for slave address * @rav: bit for voltage configuration register * @rac: bit for command configuration register * @racen: enable bit for RAC * @cmd: bit for command value set selection * * Channel configuration bits, common for OMAP3+ * OMAP3 register: PRM_VC_CH_CONF * OMAP4 register: PRM_VC_CFG_CHANNEL * OMAP5 register: PRM_VC_SMPS_<voltdm>_CONFIG */ struct omap_vc_channel_cfg { u8 sa; u8 rav; u8 rac; u8 racen; u8 cmd; }; static struct omap_vc_channel_cfg vc_default_channel_cfg = { .sa = BIT(0), .rav = BIT(1), .rac = BIT(2), .racen = BIT(3), .cmd = BIT(4), }; /* * On OMAP3+, all VC channels have the above default bitfield * configuration, except the OMAP4 MPU channel. This appears * to be a freak accident as every other VC channel has the * default configuration, thus creating a mutant channel config. */ static struct omap_vc_channel_cfg vc_mutant_channel_cfg = { .sa = BIT(0), .rav = BIT(2), .rac = BIT(3), .racen = BIT(4), .cmd = BIT(1), }; static struct omap_vc_channel_cfg *vc_cfg_bits; /* Default I2C trace length on pcb, 6.3cm. Used for capacitance calculations. */ static u32 sr_i2c_pcb_length = 63; #define CFG_CHANNEL_MASK 0x1f /** * omap_vc_config_channel - configure VC channel to PMIC mappings * @voltdm: pointer to voltagdomain defining the desired VC channel * * Configures the VC channel to PMIC mappings for the following * PMIC settings * - i2c slave address (SA) * - voltage configuration address (RAV) * - command configuration address (RAC) and enable bit (RACEN) * - command values for ON, ONLP, RET and OFF (CMD) * * This function currently only allows flexible configuration of the * non-default channel. Starting with OMAP4, there are more than 2 * channels, with one defined as the default (on OMAP4, it's MPU.) * Only the non-default channel can be configured. */ static int omap_vc_config_channel(struct voltagedomain *voltdm) { struct omap_vc_channel *vc = voltdm->vc; /* * For default channel, the only configurable bit is RACEN. * All others must stay at zero (see function comment above.) */ if (vc->flags & OMAP_VC_CHANNEL_DEFAULT) vc->cfg_channel &= vc_cfg_bits->racen; voltdm->rmw(CFG_CHANNEL_MASK << vc->cfg_channel_sa_shift, vc->cfg_channel << vc->cfg_channel_sa_shift, vc->cfg_channel_reg); return 0; } /* Voltage scale and accessory APIs */ int omap_vc_pre_scale(struct voltagedomain *voltdm, unsigned long target_volt, u8 *target_vsel, u8 *current_vsel) { struct omap_vc_channel *vc = voltdm->vc; u32 vc_cmdval; /* Check if sufficient pmic info is available for this vdd */ if (!voltdm->pmic) { pr_err("%s: Insufficient pmic info to scale the vdd_%s\n", __func__, voltdm->name); return -EINVAL; } if (!voltdm->pmic->uv_to_vsel) { pr_err("%s: PMIC function to convert voltage in uV to vsel not registered. Hence unable to scale voltage for vdd_%s\n", __func__, voltdm->name); return -ENODATA; } if (!voltdm->read || !voltdm->write) { pr_err("%s: No read/write API for accessing vdd_%s regs\n", __func__, voltdm->name); return -EINVAL; } *target_vsel = voltdm->pmic->uv_to_vsel(target_volt); *current_vsel = voltdm->pmic->uv_to_vsel(voltdm->nominal_volt); /* Setting the ON voltage to the new target voltage */ vc_cmdval = voltdm->read(vc->cmdval_reg); vc_cmdval &= ~vc->common->cmd_on_mask; vc_cmdval |= (*target_vsel << vc->common->cmd_on_shift); voltdm->write(vc_cmdval, vc->cmdval_reg); voltdm->vc_param->on = target_volt; omap_vp_update_errorgain(voltdm, target_volt); return 0; } void omap_vc_post_scale(struct voltagedomain *voltdm, unsigned long target_volt, u8 target_vsel, u8 current_vsel) { u32 smps_steps = 0, smps_delay = 0; smps_steps = abs(target_vsel - current_vsel); /* SMPS slew rate / step size. 2us added as buffer. */ smps_delay = ((smps_steps * voltdm->pmic->step_size) / voltdm->pmic->slew_rate) + 2; udelay(smps_delay); } /* vc_bypass_scale - VC bypass method of voltage scaling */ int omap_vc_bypass_scale(struct voltagedomain *voltdm, unsigned long target_volt) { struct omap_vc_channel *vc = voltdm->vc; u32 loop_cnt = 0, retries_cnt = 0; u32 vc_valid, vc_bypass_val_reg, vc_bypass_value; u8 target_vsel, current_vsel; int ret; ret = omap_vc_pre_scale(voltdm, target_volt, &target_vsel, ¤t_vsel); if (ret) return ret; vc_valid = vc->common->valid; vc_bypass_val_reg = vc->common->bypass_val_reg; vc_bypass_value = (target_vsel << vc->common->data_shift) | (vc->volt_reg_addr << vc->common->regaddr_shift) | (vc->i2c_slave_addr << vc->common->slaveaddr_shift); voltdm->write(vc_bypass_value, vc_bypass_val_reg); voltdm->write(vc_bypass_value | vc_valid, vc_bypass_val_reg); vc_bypass_value = voltdm->read(vc_bypass_val_reg); /* * Loop till the bypass command is acknowledged from the SMPS. * NOTE: This is legacy code. The loop count and retry count needs * to be revisited. */ while (!(vc_bypass_value & vc_valid)) { loop_cnt++; if (retries_cnt > 10) { pr_warn("%s: Retry count exceeded\n", __func__); return -ETIMEDOUT; } if (loop_cnt > 50) { retries_cnt++; loop_cnt = 0; udelay(10); } vc_bypass_value = voltdm->read(vc_bypass_val_reg); } omap_vc_post_scale(voltdm, target_volt, target_vsel, current_vsel); return 0; } /* Convert microsecond value to number of 32kHz clock cycles */ static inline u32 omap_usec_to_32k(u32 usec) { return DIV_ROUND_UP_ULL(32768ULL * (u64)usec, 1000000ULL); } struct omap3_vc_timings { u32 voltsetup1; u32 voltsetup2; }; struct omap3_vc { struct voltagedomain *vd; u32 voltctrl; u32 voltsetup1; u32 voltsetup2; struct omap3_vc_timings timings[2]; }; static struct omap3_vc vc; void omap3_vc_set_pmic_signaling(int core_next_state) { struct voltagedomain *vd = vc.vd; struct omap3_vc_timings *c = vc.timings; u32 voltctrl, voltsetup1, voltsetup2; voltctrl = vc.voltctrl; voltsetup1 = vc.voltsetup1; voltsetup2 = vc.voltsetup2; switch (core_next_state) { case PWRDM_POWER_OFF: voltctrl &= ~(OMAP3430_PRM_VOLTCTRL_AUTO_RET | OMAP3430_PRM_VOLTCTRL_AUTO_SLEEP); voltctrl |= OMAP3430_PRM_VOLTCTRL_AUTO_OFF; if (voltctrl & OMAP3430_PRM_VOLTCTRL_SEL_OFF) voltsetup2 = c->voltsetup2; else voltsetup1 = c->voltsetup1; break; case PWRDM_POWER_RET: default: c++; voltctrl &= ~(OMAP3430_PRM_VOLTCTRL_AUTO_OFF | OMAP3430_PRM_VOLTCTRL_AUTO_SLEEP); voltctrl |= OMAP3430_PRM_VOLTCTRL_AUTO_RET; voltsetup1 = c->voltsetup1; break; } if (voltctrl != vc.voltctrl) { vd->write(voltctrl, OMAP3_PRM_VOLTCTRL_OFFSET); vc.voltctrl = voltctrl; } if (voltsetup1 != vc.voltsetup1) { vd->write(c->voltsetup1, OMAP3_PRM_VOLTSETUP1_OFFSET); vc.voltsetup1 = voltsetup1; } if (voltsetup2 != vc.voltsetup2) { vd->write(c->voltsetup2, OMAP3_PRM_VOLTSETUP2_OFFSET); vc.voltsetup2 = voltsetup2; } } void omap4_vc_set_pmic_signaling(int core_next_state) { struct voltagedomain *vd = vc.vd; u32 val; if (!vd) return; switch (core_next_state) { case PWRDM_POWER_RET: val = OMAP4_VDD_RET_VAL; break; default: val = OMAP4_VDD_DEFAULT_VAL; break; } vd->write(val, OMAP4_PRM_VOLTCTRL_OFFSET); } /* * Configure signal polarity for sys_clkreq and sys_off_mode pins * as the default values are wrong and can cause the system to hang * if any twl4030 scripts are loaded. */ static void __init omap3_vc_init_pmic_signaling(struct voltagedomain *voltdm) { u32 val; if (vc.vd) return; vc.vd = voltdm; val = voltdm->read(OMAP3_PRM_POLCTRL_OFFSET); if (!(val & OMAP3430_PRM_POLCTRL_CLKREQ_POL) || (val & OMAP3430_PRM_POLCTRL_OFFMODE_POL)) { val |= OMAP3430_PRM_POLCTRL_CLKREQ_POL; val &= ~OMAP3430_PRM_POLCTRL_OFFMODE_POL; pr_debug("PM: fixing sys_clkreq and sys_off_mode polarity to 0x%x\n", val); voltdm->write(val, OMAP3_PRM_POLCTRL_OFFSET); } /* * By default let's use I2C4 signaling for retention idle * and sys_off_mode pin signaling for off idle. This way we * have sys_clk_req pin go down for retention and both * sys_clk_req and sys_off_mode pins will go down for off * idle. And we can also scale voltages to zero for off-idle. * Note that no actual voltage scaling during off-idle will * happen unless the board specific twl4030 PMIC scripts are * loaded. See also omap_vc_i2c_init for comments regarding * erratum i531. */ val = voltdm->read(OMAP3_PRM_VOLTCTRL_OFFSET); if (!(val & OMAP3430_PRM_VOLTCTRL_SEL_OFF)) { val |= OMAP3430_PRM_VOLTCTRL_SEL_OFF; pr_debug("PM: setting voltctrl sys_off_mode signaling to 0x%x\n", val); voltdm->write(val, OMAP3_PRM_VOLTCTRL_OFFSET); } vc.voltctrl = val; omap3_vc_set_pmic_signaling(PWRDM_POWER_ON); } static void omap3_init_voltsetup1(struct voltagedomain *voltdm, struct omap3_vc_timings *c, u32 idle) { unsigned long val; val = (voltdm->vc_param->on - idle) / voltdm->pmic->slew_rate; val *= voltdm->sys_clk.rate / 8 / 1000000 + 1; val <<= __ffs(voltdm->vfsm->voltsetup_mask); c->voltsetup1 &= ~voltdm->vfsm->voltsetup_mask; c->voltsetup1 |= val; } /** * omap3_set_i2c_timings - sets i2c sleep timings for a channel * @voltdm: channel to configure * @off_mode: select whether retention or off mode values used * * Calculates and sets up voltage controller to use I2C based * voltage scaling for sleep modes. This can be used for either off mode * or retention. Off mode has additionally an option to use sys_off_mode * pad, which uses a global signal to program the whole power IC to * off-mode. * * Note that pmic is not controlling the voltage scaling during * retention signaled over I2C4, so we can keep voltsetup2 as 0. * And the oscillator is not shut off over I2C4, so no need to * set clksetup. */ static void omap3_set_i2c_timings(struct voltagedomain *voltdm) { struct omap3_vc_timings *c = vc.timings; /* Configure PRWDM_POWER_OFF over I2C4 */ omap3_init_voltsetup1(voltdm, c, voltdm->vc_param->off); c++; /* Configure PRWDM_POWER_RET over I2C4 */ omap3_init_voltsetup1(voltdm, c, voltdm->vc_param->ret); } /** * omap3_set_off_timings - sets off-mode timings for a channel * @voltdm: channel to configure * * Calculates and sets up off-mode timings for a channel. Off-mode * can use either I2C based voltage scaling, or alternatively * sys_off_mode pad can be used to send a global command to power IC.n, * sys_off_mode has the additional benefit that voltages can be * scaled to zero volt level with TWL4030 / TWL5030, I2C can only * scale to 600mV. * * Note that omap is not controlling the voltage scaling during * off idle signaled by sys_off_mode, so we can keep voltsetup1 * as 0. */ static void omap3_set_off_timings(struct voltagedomain *voltdm) { struct omap3_vc_timings *c = vc.timings; u32 tstart, tshut, clksetup, voltoffset; if (c->voltsetup2) return; omap_pm_get_oscillator(&tstart, &tshut); if (tstart == ULONG_MAX) { pr_debug("PM: oscillator start-up time not initialized, using 10ms\n"); clksetup = omap_usec_to_32k(10000); } else { clksetup = omap_usec_to_32k(tstart); } /* * For twl4030 errata 27, we need to allow minimum ~488.32 us wait to * switch from HFCLKIN to internal oscillator. That means timings * have voltoffset fixed to 0xa in rounded up 32 KiHz cycles. And * that means we can calculate the value based on the oscillator * start-up time since voltoffset2 = clksetup - voltoffset. */ voltoffset = omap_usec_to_32k(488); c->voltsetup2 = clksetup - voltoffset; voltdm->write(clksetup, OMAP3_PRM_CLKSETUP_OFFSET); voltdm->write(voltoffset, OMAP3_PRM_VOLTOFFSET_OFFSET); } static void __init omap3_vc_init_channel(struct voltagedomain *voltdm) { omap3_vc_init_pmic_signaling(voltdm); omap3_set_off_timings(voltdm); omap3_set_i2c_timings(voltdm); } /** * omap4_calc_volt_ramp - calculates voltage ramping delays on omap4 * @voltdm: channel to calculate values for * @voltage_diff: voltage difference in microvolts * * Calculates voltage ramp prescaler + counter values for a voltage * difference on omap4. Returns a field value suitable for writing to * VOLTSETUP register for a channel in following format: * bits[8:9] prescaler ... bits[0:5] counter. See OMAP4 TRM for reference. */ static u32 omap4_calc_volt_ramp(struct voltagedomain *voltdm, u32 voltage_diff) { u32 prescaler; u32 cycles; u32 time; time = voltage_diff / voltdm->pmic->slew_rate; cycles = voltdm->sys_clk.rate / 1000 * time / 1000; cycles /= 64; prescaler = 0; /* shift to next prescaler until no overflow */ /* scale for div 256 = 64 * 4 */ if (cycles > 63) { cycles /= 4; prescaler++; } /* scale for div 512 = 256 * 2 */ if (cycles > 63) { cycles /= 2; prescaler++; } /* scale for div 2048 = 512 * 4 */ if (cycles > 63) { cycles /= 4; prescaler++; } /* check for overflow => invalid ramp time */ if (cycles > 63) { pr_warn("%s: invalid setuptime for vdd_%s\n", __func__, voltdm->name); return 0; } cycles++; return (prescaler << OMAP4430_RAMP_UP_PRESCAL_SHIFT) | (cycles << OMAP4430_RAMP_UP_COUNT_SHIFT); } /** * omap4_usec_to_val_scrm - convert microsecond value to SCRM module bitfield * @usec: microseconds * @shift: number of bits to shift left * @mask: bitfield mask * * Converts microsecond value to OMAP4 SCRM bitfield. Bitfield is * shifted to requested position, and checked agains the mask value. * If larger, forced to the max value of the field (i.e. the mask itself.) * Returns the SCRM bitfield value. */ static u32 omap4_usec_to_val_scrm(u32 usec, int shift, u32 mask) { u32 val; val = omap_usec_to_32k(usec) << shift; /* Check for overflow, if yes, force to max value */ if (val > mask) val = mask; return val; } /** * omap4_set_timings - set voltage ramp timings for a channel * @voltdm: channel to configure * @off_mode: whether off-mode values are used * * Calculates and sets the voltage ramp up / down values for a channel. */ static void omap4_set_timings(struct voltagedomain *voltdm, bool off_mode) { u32 val; u32 ramp; int offset; u32 tstart, tshut; if (off_mode) { ramp = omap4_calc_volt_ramp(voltdm, voltdm->vc_param->on - voltdm->vc_param->off); offset = voltdm->vfsm->voltsetup_off_reg; } else { ramp = omap4_calc_volt_ramp(voltdm, voltdm->vc_param->on - voltdm->vc_param->ret); offset = voltdm->vfsm->voltsetup_reg; } if (!ramp) return; val = voltdm->read(offset); val |= ramp << OMAP4430_RAMP_DOWN_COUNT_SHIFT; val |= ramp << OMAP4430_RAMP_UP_COUNT_SHIFT; voltdm->write(val, offset); omap_pm_get_oscillator(&tstart, &tshut); val = omap4_usec_to_val_scrm(tstart, OMAP4_SETUPTIME_SHIFT, OMAP4_SETUPTIME_MASK); val |= omap4_usec_to_val_scrm(tshut, OMAP4_DOWNTIME_SHIFT, OMAP4_DOWNTIME_MASK); writel_relaxed(val, OMAP4_SCRM_CLKSETUPTIME); } static void __init omap4_vc_init_pmic_signaling(struct voltagedomain *voltdm) { if (vc.vd) return; vc.vd = voltdm; voltdm->write(OMAP4_VDD_DEFAULT_VAL, OMAP4_PRM_VOLTCTRL_OFFSET); } /* OMAP4 specific voltage init functions */ static void __init omap4_vc_init_channel(struct voltagedomain *voltdm) { omap4_vc_init_pmic_signaling(voltdm); omap4_set_timings(voltdm, true); omap4_set_timings(voltdm, false); } struct i2c_init_data { u8 loadbits; u8 load; u8 hsscll_38_4; u8 hsscll_26; u8 hsscll_19_2; u8 hsscll_16_8; u8 hsscll_12; }; static const struct i2c_init_data omap4_i2c_timing_data[] __initconst = { { .load = 50, .loadbits = 0x3, .hsscll_38_4 = 13, .hsscll_26 = 11, .hsscll_19_2 = 9, .hsscll_16_8 = 9, .hsscll_12 = 8, }, { .load = 25, .loadbits = 0x2, .hsscll_38_4 = 13, .hsscll_26 = 11, .hsscll_19_2 = 9, .hsscll_16_8 = 9, .hsscll_12 = 8, }, { .load = 12, .loadbits = 0x1, .hsscll_38_4 = 11, .hsscll_26 = 10, .hsscll_19_2 = 9, .hsscll_16_8 = 9, .hsscll_12 = 8, }, { .load = 0, .loadbits = 0x0, .hsscll_38_4 = 12, .hsscll_26 = 10, .hsscll_19_2 = 9, .hsscll_16_8 = 8, .hsscll_12 = 8, }, }; /** * omap4_vc_i2c_timing_init - sets up board I2C timing parameters * @voltdm: voltagedomain pointer to get data from * * Use PMIC + board supplied settings for calculating the total I2C * channel capacitance and set the timing parameters based on this. * Pre-calculated values are provided in data tables, as it is not * too straightforward to calculate these runtime. */ static void __init omap4_vc_i2c_timing_init(struct voltagedomain *voltdm) { u32 capacitance; u32 val; u16 hsscll; const struct i2c_init_data *i2c_data; if (!voltdm->pmic->i2c_high_speed) { pr_info("%s: using bootloader low-speed timings\n", __func__); return; } /* PCB trace capacitance, 0.125pF / mm => mm / 8 */ capacitance = DIV_ROUND_UP(sr_i2c_pcb_length, 8); /* OMAP pad capacitance */ capacitance += 4; /* PMIC pad capacitance */ capacitance += voltdm->pmic->i2c_pad_load; /* Search for capacitance match in the table */ i2c_data = omap4_i2c_timing_data; while (i2c_data->load > capacitance) i2c_data++; /* Select proper values based on sysclk frequency */ switch (voltdm->sys_clk.rate) { case 38400000: hsscll = i2c_data->hsscll_38_4; break; case 26000000: hsscll = i2c_data->hsscll_26; break; case 19200000: hsscll = i2c_data->hsscll_19_2; break; case 16800000: hsscll = i2c_data->hsscll_16_8; break; case 12000000: hsscll = i2c_data->hsscll_12; break; default: pr_warn("%s: unsupported sysclk rate: %d!\n", __func__, voltdm->sys_clk.rate); return; } /* Loadbits define pull setup for the I2C channels */ val = i2c_data->loadbits << 25 | i2c_data->loadbits << 29; /* Write to SYSCTRL_PADCONF_WKUP_CTRL_I2C_2 to setup I2C pull */ writel_relaxed(val, OMAP2_L4_IO_ADDRESS(OMAP4_CTRL_MODULE_PAD_WKUP + OMAP4_CTRL_MODULE_PAD_WKUP_CONTROL_I2C_2)); /* HSSCLH can always be zero */ val = hsscll << OMAP4430_HSSCLL_SHIFT; val |= (0x28 << OMAP4430_SCLL_SHIFT | 0x2c << OMAP4430_SCLH_SHIFT); /* Write setup times to I2C config register */ voltdm->write(val, OMAP4_PRM_VC_CFG_I2C_CLK_OFFSET); } /** * omap_vc_i2c_init - initialize I2C interface to PMIC * @voltdm: voltage domain containing VC data * * Use PMIC supplied settings for I2C high-speed mode and * master code (if set) and program the VC I2C configuration * register. * * The VC I2C configuration is common to all VC channels, * so this function only configures I2C for the first VC * channel registers. All other VC channels will use the * same configuration. */ static void __init omap_vc_i2c_init(struct voltagedomain *voltdm) { struct omap_vc_channel *vc = voltdm->vc; static bool initialized; static bool i2c_high_speed; u8 mcode; if (initialized) { if (voltdm->pmic->i2c_high_speed != i2c_high_speed) pr_warn("%s: I2C config for vdd_%s does not match other channels (%u).\n", __func__, voltdm->name, i2c_high_speed); return; } /* * Note that for omap3 OMAP3430_SREN_MASK clears SREN to work around * erratum i531 "Extra Power Consumed When Repeated Start Operation * Mode Is Enabled on I2C Interface Dedicated for Smart Reflex (I2C4)". * Otherwise I2C4 eventually leads into about 23mW extra power being * consumed even during off idle using VMODE. */ i2c_high_speed = voltdm->pmic->i2c_high_speed; if (i2c_high_speed) voltdm->rmw(vc->common->i2c_cfg_clear_mask, vc->common->i2c_cfg_hsen_mask, vc->common->i2c_cfg_reg); mcode = voltdm->pmic->i2c_mcode; if (mcode) voltdm->rmw(vc->common->i2c_mcode_mask, mcode << __ffs(vc->common->i2c_mcode_mask), vc->common->i2c_cfg_reg); if (cpu_is_omap44xx()) omap4_vc_i2c_timing_init(voltdm); initialized = true; } /** * omap_vc_calc_vsel - calculate vsel value for a channel * @voltdm: channel to calculate value for * @uvolt: microvolt value to convert to vsel * * Converts a microvolt value to vsel value for the used PMIC. * This checks whether the microvolt value is out of bounds, and * adjusts the value accordingly. If unsupported value detected, * warning is thrown. */ static u8 omap_vc_calc_vsel(struct voltagedomain *voltdm, u32 uvolt) { if (voltdm->pmic->vddmin > uvolt) uvolt = voltdm->pmic->vddmin; if (voltdm->pmic->vddmax < uvolt) { WARN(1, "%s: voltage not supported by pmic: %u vs max %u\n", __func__, uvolt, voltdm->pmic->vddmax); /* Lets try maximum value anyway */ uvolt = voltdm->pmic->vddmax; } return voltdm->pmic->uv_to_vsel(uvolt); } void __init omap_vc_init_channel(struct voltagedomain *voltdm) { struct omap_vc_channel *vc = voltdm->vc; u8 on_vsel, onlp_vsel, ret_vsel, off_vsel; u32 val; if (!voltdm->pmic || !voltdm->pmic->uv_to_vsel) { pr_err("%s: No PMIC info for vdd_%s\n", __func__, voltdm->name); return; } if (!voltdm->read || !voltdm->write) { pr_err("%s: No read/write API for accessing vdd_%s regs\n", __func__, voltdm->name); return; } vc->cfg_channel = 0; if (vc->flags & OMAP_VC_CHANNEL_CFG_MUTANT) vc_cfg_bits = &vc_mutant_channel_cfg; else vc_cfg_bits = &vc_default_channel_cfg; /* get PMIC/board specific settings */ vc->i2c_slave_addr = voltdm->pmic->i2c_slave_addr; vc->volt_reg_addr = voltdm->pmic->volt_reg_addr; vc->cmd_reg_addr = voltdm->pmic->cmd_reg_addr; /* Configure the i2c slave address for this VC */ voltdm->rmw(vc->smps_sa_mask, vc->i2c_slave_addr << __ffs(vc->smps_sa_mask), vc->smps_sa_reg); vc->cfg_channel |= vc_cfg_bits->sa; /* * Configure the PMIC register addresses. */ voltdm->rmw(vc->smps_volra_mask, vc->volt_reg_addr << __ffs(vc->smps_volra_mask), vc->smps_volra_reg); vc->cfg_channel |= vc_cfg_bits->rav; if (vc->cmd_reg_addr) { voltdm->rmw(vc->smps_cmdra_mask, vc->cmd_reg_addr << __ffs(vc->smps_cmdra_mask), vc->smps_cmdra_reg); vc->cfg_channel |= vc_cfg_bits->rac; } if (vc->cmd_reg_addr == vc->volt_reg_addr) vc->cfg_channel |= vc_cfg_bits->racen; /* Set up the on, inactive, retention and off voltage */ on_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->on); onlp_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->onlp); ret_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->ret); off_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->off); val = ((on_vsel << vc->common->cmd_on_shift) | (onlp_vsel << vc->common->cmd_onlp_shift) | (ret_vsel << vc->common->cmd_ret_shift) | (off_vsel << vc->common->cmd_off_shift)); voltdm->write(val, vc->cmdval_reg); vc->cfg_channel |= vc_cfg_bits->cmd; /* Channel configuration */ omap_vc_config_channel(voltdm); omap_vc_i2c_init(voltdm); if (cpu_is_omap34xx()) omap3_vc_init_channel(voltdm); else if (cpu_is_omap44xx()) omap4_vc_init_channel(voltdm); }