// SPDX-License-Identifier: GPL-2.0 #include <linux/moduleloader.h> #include <linux/workqueue.h> #include <linux/netdevice.h> #include <linux/filter.h> #include <linux/cache.h> #include <linux/if_vlan.h> #include <asm/cacheflush.h> #include <asm/ptrace.h> #include "bpf_jit_32.h" static inline bool is_simm13(unsigned int value) { return value + 0x1000 < 0x2000; } #define SEEN_DATAREF 1 /* might call external helpers */ #define SEEN_XREG 2 /* ebx is used */ #define SEEN_MEM 4 /* use mem[] for temporary storage */ #define S13(X) ((X) & 0x1fff) #define IMMED 0x00002000 #define RD(X) ((X) << 25) #define RS1(X) ((X) << 14) #define RS2(X) ((X)) #define OP(X) ((X) << 30) #define OP2(X) ((X) << 22) #define OP3(X) ((X) << 19) #define COND(X) ((X) << 25) #define F1(X) OP(X) #define F2(X, Y) (OP(X) | OP2(Y)) #define F3(X, Y) (OP(X) | OP3(Y)) #define CONDN COND(0x0) #define CONDE COND(0x1) #define CONDLE COND(0x2) #define CONDL COND(0x3) #define CONDLEU COND(0x4) #define CONDCS COND(0x5) #define CONDNEG COND(0x6) #define CONDVC COND(0x7) #define CONDA COND(0x8) #define CONDNE COND(0x9) #define CONDG COND(0xa) #define CONDGE COND(0xb) #define CONDGU COND(0xc) #define CONDCC COND(0xd) #define CONDPOS COND(0xe) #define CONDVS COND(0xf) #define CONDGEU CONDCC #define CONDLU CONDCS #define WDISP22(X) (((X) >> 2) & 0x3fffff) #define BA (F2(0, 2) | CONDA) #define BGU (F2(0, 2) | CONDGU) #define BLEU (F2(0, 2) | CONDLEU) #define BGEU (F2(0, 2) | CONDGEU) #define BLU (F2(0, 2) | CONDLU) #define BE (F2(0, 2) | CONDE) #define BNE (F2(0, 2) | CONDNE) #define BE_PTR BE #define SETHI(K, REG) \ (F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff)) #define OR_LO(K, REG) \ (F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG)) #define ADD F3(2, 0x00) #define AND F3(2, 0x01) #define ANDCC F3(2, 0x11) #define OR F3(2, 0x02) #define XOR F3(2, 0x03) #define SUB F3(2, 0x04) #define SUBCC F3(2, 0x14) #define MUL F3(2, 0x0a) /* umul */ #define DIV F3(2, 0x0e) /* udiv */ #define SLL F3(2, 0x25) #define SRL F3(2, 0x26) #define JMPL F3(2, 0x38) #define CALL F1(1) #define BR F2(0, 0x01) #define RD_Y F3(2, 0x28) #define WR_Y F3(2, 0x30) #define LD32 F3(3, 0x00) #define LD8 F3(3, 0x01) #define LD16 F3(3, 0x02) #define LD64 F3(3, 0x0b) #define ST32 F3(3, 0x04) #define LDPTR LD32 #define BASE_STACKFRAME 96 #define LD32I (LD32 | IMMED) #define LD8I (LD8 | IMMED) #define LD16I (LD16 | IMMED) #define LD64I (LD64 | IMMED) #define LDPTRI (LDPTR | IMMED) #define ST32I (ST32 | IMMED) #define emit_nop() \ do { \ *prog++ = SETHI(0, G0); \ } while (0) #define emit_neg() \ do { /* sub %g0, r_A, r_A */ \ *prog++ = SUB | RS1(G0) | RS2(r_A) | RD(r_A); \ } while (0) #define emit_reg_move(FROM, TO) \ do { /* or %g0, FROM, TO */ \ *prog++ = OR | RS1(G0) | RS2(FROM) | RD(TO); \ } while (0) #define emit_clear(REG) \ do { /* or %g0, %g0, REG */ \ *prog++ = OR | RS1(G0) | RS2(G0) | RD(REG); \ } while (0) #define emit_set_const(K, REG) \ do { /* sethi %hi(K), REG */ \ *prog++ = SETHI(K, REG); \ /* or REG, %lo(K), REG */ \ *prog++ = OR_LO(K, REG); \ } while (0) /* Emit * * OP r_A, r_X, r_A */ #define emit_alu_X(OPCODE) \ do { \ seen |= SEEN_XREG; \ *prog++ = OPCODE | RS1(r_A) | RS2(r_X) | RD(r_A); \ } while (0) /* Emit either: * * OP r_A, K, r_A * * or * * sethi %hi(K), r_TMP * or r_TMP, %lo(K), r_TMP * OP r_A, r_TMP, r_A * * depending upon whether K fits in a signed 13-bit * immediate instruction field. Emit nothing if K * is zero. */ #define emit_alu_K(OPCODE, K) \ do { \ if (K || OPCODE == AND || OPCODE == MUL) { \ unsigned int _insn = OPCODE; \ _insn |= RS1(r_A) | RD(r_A); \ if (is_simm13(K)) { \ *prog++ = _insn | IMMED | S13(K); \ } else { \ emit_set_const(K, r_TMP); \ *prog++ = _insn | RS2(r_TMP); \ } \ } \ } while (0) #define emit_loadimm(K, DEST) \ do { \ if (is_simm13(K)) { \ /* or %g0, K, DEST */ \ *prog++ = OR | IMMED | RS1(G0) | S13(K) | RD(DEST); \ } else { \ emit_set_const(K, DEST); \ } \ } while (0) #define emit_loadptr(BASE, STRUCT, FIELD, DEST) \ do { unsigned int _off = offsetof(STRUCT, FIELD); \ BUILD_BUG_ON(sizeof_field(STRUCT, FIELD) != sizeof(void *)); \ *prog++ = LDPTRI | RS1(BASE) | S13(_off) | RD(DEST); \ } while (0) #define emit_load32(BASE, STRUCT, FIELD, DEST) \ do { unsigned int _off = offsetof(STRUCT, FIELD); \ BUILD_BUG_ON(sizeof_field(STRUCT, FIELD) != sizeof(u32)); \ *prog++ = LD32I | RS1(BASE) | S13(_off) | RD(DEST); \ } while (0) #define emit_load16(BASE, STRUCT, FIELD, DEST) \ do { unsigned int _off = offsetof(STRUCT, FIELD); \ BUILD_BUG_ON(sizeof_field(STRUCT, FIELD) != sizeof(u16)); \ *prog++ = LD16I | RS1(BASE) | S13(_off) | RD(DEST); \ } while (0) #define __emit_load8(BASE, STRUCT, FIELD, DEST) \ do { unsigned int _off = offsetof(STRUCT, FIELD); \ *prog++ = LD8I | RS1(BASE) | S13(_off) | RD(DEST); \ } while (0) #define emit_load8(BASE, STRUCT, FIELD, DEST) \ do { BUILD_BUG_ON(sizeof_field(STRUCT, FIELD) != sizeof(u8)); \ __emit_load8(BASE, STRUCT, FIELD, DEST); \ } while (0) #define BIAS (-4) #define emit_ldmem(OFF, DEST) \ do { *prog++ = LD32I | RS1(SP) | S13(BIAS - (OFF)) | RD(DEST); \ } while (0) #define emit_stmem(OFF, SRC) \ do { *prog++ = ST32I | RS1(SP) | S13(BIAS - (OFF)) | RD(SRC); \ } while (0) #ifdef CONFIG_SMP #define emit_load_cpu(REG) \ emit_load32(G6, struct thread_info, cpu, REG) #else #define emit_load_cpu(REG) emit_clear(REG) #endif #define emit_skb_loadptr(FIELD, DEST) \ emit_loadptr(r_SKB, struct sk_buff, FIELD, DEST) #define emit_skb_load32(FIELD, DEST) \ emit_load32(r_SKB, struct sk_buff, FIELD, DEST) #define emit_skb_load16(FIELD, DEST) \ emit_load16(r_SKB, struct sk_buff, FIELD, DEST) #define __emit_skb_load8(FIELD, DEST) \ __emit_load8(r_SKB, struct sk_buff, FIELD, DEST) #define emit_skb_load8(FIELD, DEST) \ emit_load8(r_SKB, struct sk_buff, FIELD, DEST) #define emit_jmpl(BASE, IMM_OFF, LREG) \ *prog++ = (JMPL | IMMED | RS1(BASE) | S13(IMM_OFF) | RD(LREG)) #define emit_call(FUNC) \ do { void *_here = image + addrs[i] - 8; \ unsigned int _off = (void *)(FUNC) - _here; \ *prog++ = CALL | (((_off) >> 2) & 0x3fffffff); \ emit_nop(); \ } while (0) #define emit_branch(BR_OPC, DEST) \ do { unsigned int _here = addrs[i] - 8; \ *prog++ = BR_OPC | WDISP22((DEST) - _here); \ } while (0) #define emit_branch_off(BR_OPC, OFF) \ do { *prog++ = BR_OPC | WDISP22(OFF); \ } while (0) #define emit_jump(DEST) emit_branch(BA, DEST) #define emit_read_y(REG) *prog++ = RD_Y | RD(REG) #define emit_write_y(REG) *prog++ = WR_Y | IMMED | RS1(REG) | S13(0) #define emit_cmp(R1, R2) \ *prog++ = (SUBCC | RS1(R1) | RS2(R2) | RD(G0)) #define emit_cmpi(R1, IMM) \ *prog++ = (SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0)); #define emit_btst(R1, R2) \ *prog++ = (ANDCC | RS1(R1) | RS2(R2) | RD(G0)) #define emit_btsti(R1, IMM) \ *prog++ = (ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0)); #define emit_sub(R1, R2, R3) \ *prog++ = (SUB | RS1(R1) | RS2(R2) | RD(R3)) #define emit_subi(R1, IMM, R3) \ *prog++ = (SUB | IMMED | RS1(R1) | S13(IMM) | RD(R3)) #define emit_add(R1, R2, R3) \ *prog++ = (ADD | RS1(R1) | RS2(R2) | RD(R3)) #define emit_addi(R1, IMM, R3) \ *prog++ = (ADD | IMMED | RS1(R1) | S13(IMM) | RD(R3)) #define emit_and(R1, R2, R3) \ *prog++ = (AND | RS1(R1) | RS2(R2) | RD(R3)) #define emit_andi(R1, IMM, R3) \ *prog++ = (AND | IMMED | RS1(R1) | S13(IMM) | RD(R3)) #define emit_alloc_stack(SZ) \ *prog++ = (SUB | IMMED | RS1(SP) | S13(SZ) | RD(SP)) #define emit_release_stack(SZ) \ *prog++ = (ADD | IMMED | RS1(SP) | S13(SZ) | RD(SP)) /* A note about branch offset calculations. The addrs[] array, * indexed by BPF instruction, records the address after all the * sparc instructions emitted for that BPF instruction. * * The most common case is to emit a branch at the end of such * a code sequence. So this would be two instructions, the * branch and it's delay slot. * * Therefore by default the branch emitters calculate the branch * offset field as: * * destination - (addrs[i] - 8) * * This "addrs[i] - 8" is the address of the branch itself or * what "." would be in assembler notation. The "8" part is * how we take into consideration the branch and it's delay * slot mentioned above. * * Sometimes we need to emit a branch earlier in the code * sequence. And in these situations we adjust "destination" * to accommodate this difference. For example, if we needed * to emit a branch (and it's delay slot) right before the * final instruction emitted for a BPF opcode, we'd use * "destination + 4" instead of just plain "destination" above. * * This is why you see all of these funny emit_branch() and * emit_jump() calls with adjusted offsets. */ void bpf_jit_compile(struct bpf_prog *fp) { unsigned int cleanup_addr, proglen, oldproglen = 0; u32 temp[8], *prog, *func, seen = 0, pass; const struct sock_filter *filter = fp->insns; int i, flen = fp->len, pc_ret0 = -1; unsigned int *addrs; void *image; if (!bpf_jit_enable) return; addrs = kmalloc_array(flen, sizeof(*addrs), GFP_KERNEL); if (addrs == NULL) return; /* Before first pass, make a rough estimation of addrs[] * each bpf instruction is translated to less than 64 bytes */ for (proglen = 0, i = 0; i < flen; i++) { proglen += 64; addrs[i] = proglen; } cleanup_addr = proglen; /* epilogue address */ image = NULL; for (pass = 0; pass < 10; pass++) { u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen; /* no prologue/epilogue for trivial filters (RET something) */ proglen = 0; prog = temp; /* Prologue */ if (seen_or_pass0) { if (seen_or_pass0 & SEEN_MEM) { unsigned int sz = BASE_STACKFRAME; sz += BPF_MEMWORDS * sizeof(u32); emit_alloc_stack(sz); } /* Make sure we dont leek kernel memory. */ if (seen_or_pass0 & SEEN_XREG) emit_clear(r_X); /* If this filter needs to access skb data, * load %o4 and %o5 with: * %o4 = skb->len - skb->data_len * %o5 = skb->data * And also back up %o7 into r_saved_O7 so we can * invoke the stubs using 'call'. */ if (seen_or_pass0 & SEEN_DATAREF) { emit_load32(r_SKB, struct sk_buff, len, r_HEADLEN); emit_load32(r_SKB, struct sk_buff, data_len, r_TMP); emit_sub(r_HEADLEN, r_TMP, r_HEADLEN); emit_loadptr(r_SKB, struct sk_buff, data, r_SKB_DATA); } } emit_reg_move(O7, r_saved_O7); /* Make sure we dont leak kernel information to the user. */ if (bpf_needs_clear_a(&filter[0])) emit_clear(r_A); /* A = 0 */ for (i = 0; i < flen; i++) { unsigned int K = filter[i].k; unsigned int t_offset; unsigned int f_offset; u32 t_op, f_op; u16 code = bpf_anc_helper(&filter[i]); int ilen; switch (code) { case BPF_ALU | BPF_ADD | BPF_X: /* A += X; */ emit_alu_X(ADD); break; case BPF_ALU | BPF_ADD | BPF_K: /* A += K; */ emit_alu_K(ADD, K); break; case BPF_ALU | BPF_SUB | BPF_X: /* A -= X; */ emit_alu_X(SUB); break; case BPF_ALU | BPF_SUB | BPF_K: /* A -= K */ emit_alu_K(SUB, K); break; case BPF_ALU | BPF_AND | BPF_X: /* A &= X */ emit_alu_X(AND); break; case BPF_ALU | BPF_AND | BPF_K: /* A &= K */ emit_alu_K(AND, K); break; case BPF_ALU | BPF_OR | BPF_X: /* A |= X */ emit_alu_X(OR); break; case BPF_ALU | BPF_OR | BPF_K: /* A |= K */ emit_alu_K(OR, K); break; case BPF_ANC | SKF_AD_ALU_XOR_X: /* A ^= X; */ case BPF_ALU | BPF_XOR | BPF_X: emit_alu_X(XOR); break; case BPF_ALU | BPF_XOR | BPF_K: /* A ^= K */ emit_alu_K(XOR, K); break; case BPF_ALU | BPF_LSH | BPF_X: /* A <<= X */ emit_alu_X(SLL); break; case BPF_ALU | BPF_LSH | BPF_K: /* A <<= K */ emit_alu_K(SLL, K); break; case BPF_ALU | BPF_RSH | BPF_X: /* A >>= X */ emit_alu_X(SRL); break; case BPF_ALU | BPF_RSH | BPF_K: /* A >>= K */ emit_alu_K(SRL, K); break; case BPF_ALU | BPF_MUL | BPF_X: /* A *= X; */ emit_alu_X(MUL); break; case BPF_ALU | BPF_MUL | BPF_K: /* A *= K */ emit_alu_K(MUL, K); break; case BPF_ALU | BPF_DIV | BPF_K: /* A /= K with K != 0*/ if (K == 1) break; emit_write_y(G0); /* The Sparc v8 architecture requires * three instructions between a %y * register write and the first use. */ emit_nop(); emit_nop(); emit_nop(); emit_alu_K(DIV, K); break; case BPF_ALU | BPF_DIV | BPF_X: /* A /= X; */ emit_cmpi(r_X, 0); if (pc_ret0 > 0) { t_offset = addrs[pc_ret0 - 1]; emit_branch(BE, t_offset + 20); emit_nop(); /* delay slot */ } else { emit_branch_off(BNE, 16); emit_nop(); emit_jump(cleanup_addr + 20); emit_clear(r_A); } emit_write_y(G0); /* The Sparc v8 architecture requires * three instructions between a %y * register write and the first use. */ emit_nop(); emit_nop(); emit_nop(); emit_alu_X(DIV); break; case BPF_ALU | BPF_NEG: emit_neg(); break; case BPF_RET | BPF_K: if (!K) { if (pc_ret0 == -1) pc_ret0 = i; emit_clear(r_A); } else { emit_loadimm(K, r_A); } fallthrough; case BPF_RET | BPF_A: if (seen_or_pass0) { if (i != flen - 1) { emit_jump(cleanup_addr); emit_nop(); break; } if (seen_or_pass0 & SEEN_MEM) { unsigned int sz = BASE_STACKFRAME; sz += BPF_MEMWORDS * sizeof(u32); emit_release_stack(sz); } } /* jmpl %r_saved_O7 + 8, %g0 */ emit_jmpl(r_saved_O7, 8, G0); emit_reg_move(r_A, O0); /* delay slot */ break; case BPF_MISC | BPF_TAX: seen |= SEEN_XREG; emit_reg_move(r_A, r_X); break; case BPF_MISC | BPF_TXA: seen |= SEEN_XREG; emit_reg_move(r_X, r_A); break; case BPF_ANC | SKF_AD_CPU: emit_load_cpu(r_A); break; case BPF_ANC | SKF_AD_PROTOCOL: emit_skb_load16(protocol, r_A); break; case BPF_ANC | SKF_AD_PKTTYPE: __emit_skb_load8(__pkt_type_offset, r_A); emit_andi(r_A, PKT_TYPE_MAX, r_A); emit_alu_K(SRL, 5); break; case BPF_ANC | SKF_AD_IFINDEX: emit_skb_loadptr(dev, r_A); emit_cmpi(r_A, 0); emit_branch(BE_PTR, cleanup_addr + 4); emit_nop(); emit_load32(r_A, struct net_device, ifindex, r_A); break; case BPF_ANC | SKF_AD_MARK: emit_skb_load32(mark, r_A); break; case BPF_ANC | SKF_AD_QUEUE: emit_skb_load16(queue_mapping, r_A); break; case BPF_ANC | SKF_AD_HATYPE: emit_skb_loadptr(dev, r_A); emit_cmpi(r_A, 0); emit_branch(BE_PTR, cleanup_addr + 4); emit_nop(); emit_load16(r_A, struct net_device, type, r_A); break; case BPF_ANC | SKF_AD_RXHASH: emit_skb_load32(hash, r_A); break; case BPF_ANC | SKF_AD_VLAN_TAG: emit_skb_load16(vlan_tci, r_A); break; case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT: emit_skb_load32(vlan_all, r_A); emit_cmpi(r_A, 0); emit_branch_off(BE, 12); emit_nop(); emit_loadimm(1, r_A); break; case BPF_LD | BPF_W | BPF_LEN: emit_skb_load32(len, r_A); break; case BPF_LDX | BPF_W | BPF_LEN: emit_skb_load32(len, r_X); break; case BPF_LD | BPF_IMM: emit_loadimm(K, r_A); break; case BPF_LDX | BPF_IMM: emit_loadimm(K, r_X); break; case BPF_LD | BPF_MEM: seen |= SEEN_MEM; emit_ldmem(K * 4, r_A); break; case BPF_LDX | BPF_MEM: seen |= SEEN_MEM | SEEN_XREG; emit_ldmem(K * 4, r_X); break; case BPF_ST: seen |= SEEN_MEM; emit_stmem(K * 4, r_A); break; case BPF_STX: seen |= SEEN_MEM | SEEN_XREG; emit_stmem(K * 4, r_X); break; #define CHOOSE_LOAD_FUNC(K, func) \ ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset) case BPF_LD | BPF_W | BPF_ABS: func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_word); common_load: seen |= SEEN_DATAREF; emit_loadimm(K, r_OFF); emit_call(func); break; case BPF_LD | BPF_H | BPF_ABS: func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_half); goto common_load; case BPF_LD | BPF_B | BPF_ABS: func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte); goto common_load; case BPF_LDX | BPF_B | BPF_MSH: func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte_msh); goto common_load; case BPF_LD | BPF_W | BPF_IND: func = bpf_jit_load_word; common_load_ind: seen |= SEEN_DATAREF | SEEN_XREG; if (K) { if (is_simm13(K)) { emit_addi(r_X, K, r_OFF); } else { emit_loadimm(K, r_TMP); emit_add(r_X, r_TMP, r_OFF); } } else { emit_reg_move(r_X, r_OFF); } emit_call(func); break; case BPF_LD | BPF_H | BPF_IND: func = bpf_jit_load_half; goto common_load_ind; case BPF_LD | BPF_B | BPF_IND: func = bpf_jit_load_byte; goto common_load_ind; case BPF_JMP | BPF_JA: emit_jump(addrs[i + K]); emit_nop(); break; #define COND_SEL(CODE, TOP, FOP) \ case CODE: \ t_op = TOP; \ f_op = FOP; \ goto cond_branch COND_SEL(BPF_JMP | BPF_JGT | BPF_K, BGU, BLEU); COND_SEL(BPF_JMP | BPF_JGE | BPF_K, BGEU, BLU); COND_SEL(BPF_JMP | BPF_JEQ | BPF_K, BE, BNE); COND_SEL(BPF_JMP | BPF_JSET | BPF_K, BNE, BE); COND_SEL(BPF_JMP | BPF_JGT | BPF_X, BGU, BLEU); COND_SEL(BPF_JMP | BPF_JGE | BPF_X, BGEU, BLU); COND_SEL(BPF_JMP | BPF_JEQ | BPF_X, BE, BNE); COND_SEL(BPF_JMP | BPF_JSET | BPF_X, BNE, BE); cond_branch: f_offset = addrs[i + filter[i].jf]; t_offset = addrs[i + filter[i].jt]; /* same targets, can avoid doing the test :) */ if (filter[i].jt == filter[i].jf) { emit_jump(t_offset); emit_nop(); break; } switch (code) { case BPF_JMP | BPF_JGT | BPF_X: case BPF_JMP | BPF_JGE | BPF_X: case BPF_JMP | BPF_JEQ | BPF_X: seen |= SEEN_XREG; emit_cmp(r_A, r_X); break; case BPF_JMP | BPF_JSET | BPF_X: seen |= SEEN_XREG; emit_btst(r_A, r_X); break; case BPF_JMP | BPF_JEQ | BPF_K: case BPF_JMP | BPF_JGT | BPF_K: case BPF_JMP | BPF_JGE | BPF_K: if (is_simm13(K)) { emit_cmpi(r_A, K); } else { emit_loadimm(K, r_TMP); emit_cmp(r_A, r_TMP); } break; case BPF_JMP | BPF_JSET | BPF_K: if (is_simm13(K)) { emit_btsti(r_A, K); } else { emit_loadimm(K, r_TMP); emit_btst(r_A, r_TMP); } break; } if (filter[i].jt != 0) { if (filter[i].jf) t_offset += 8; emit_branch(t_op, t_offset); emit_nop(); /* delay slot */ if (filter[i].jf) { emit_jump(f_offset); emit_nop(); } break; } emit_branch(f_op, f_offset); emit_nop(); /* delay slot */ break; default: /* hmm, too complex filter, give up with jit compiler */ goto out; } ilen = (void *) prog - (void *) temp; if (image) { if (unlikely(proglen + ilen > oldproglen)) { pr_err("bpb_jit_compile fatal error\n"); kfree(addrs); module_memfree(image); return; } memcpy(image + proglen, temp, ilen); } proglen += ilen; addrs[i] = proglen; prog = temp; } /* last bpf instruction is always a RET : * use it to give the cleanup instruction(s) addr */ cleanup_addr = proglen - 8; /* jmpl; mov r_A,%o0; */ if (seen_or_pass0 & SEEN_MEM) cleanup_addr -= 4; /* add %sp, X, %sp; */ if (image) { if (proglen != oldproglen) pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n", proglen, oldproglen); break; } if (proglen == oldproglen) { image = module_alloc(proglen); if (!image) goto out; } oldproglen = proglen; } if (bpf_jit_enable > 1) bpf_jit_dump(flen, proglen, pass + 1, image); if (image) { fp->bpf_func = (void *)image; fp->jited = 1; } out: kfree(addrs); return; } void bpf_jit_free(struct bpf_prog *fp) { if (fp->jited) module_memfree(fp->bpf_func); bpf_prog_unlock_free(fp); }