// SPDX-License-Identifier: GPL-2.0-only /* * imr.c -- Intel Isolated Memory Region driver * * Copyright(c) 2013 Intel Corporation. * Copyright(c) 2015 Bryan O'Donoghue <pure.logic@nexus-software.ie> * * IMR registers define an isolated region of memory that can * be masked to prohibit certain system agents from accessing memory. * When a device behind a masked port performs an access - snooped or * not, an IMR may optionally prevent that transaction from changing * the state of memory or from getting correct data in response to the * operation. * * Write data will be dropped and reads will return 0xFFFFFFFF, the * system will reset and system BIOS will print out an error message to * inform the user that an IMR has been violated. * * This code is based on the Linux MTRR code and reference code from * Intel's Quark BSP EFI, Linux and grub code. * * See quark-x1000-datasheet.pdf for register definitions. * http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/quark-x1000-datasheet.pdf */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <asm-generic/sections.h> #include <asm/cpu_device_id.h> #include <asm/imr.h> #include <asm/iosf_mbi.h> #include <asm/io.h> #include <linux/debugfs.h> #include <linux/init.h> #include <linux/mm.h> #include <linux/types.h> struct imr_device { bool init; struct mutex lock; int max_imr; int reg_base; }; static struct imr_device imr_dev; /* * IMR read/write mask control registers. * See quark-x1000-datasheet.pdf sections 12.7.4.5 and 12.7.4.6 for * bit definitions. * * addr_hi * 31 Lock bit * 30:24 Reserved * 23:2 1 KiB aligned lo address * 1:0 Reserved * * addr_hi * 31:24 Reserved * 23:2 1 KiB aligned hi address * 1:0 Reserved */ #define IMR_LOCK BIT(31) struct imr_regs { u32 addr_lo; u32 addr_hi; u32 rmask; u32 wmask; }; #define IMR_NUM_REGS (sizeof(struct imr_regs)/sizeof(u32)) #define IMR_SHIFT 8 #define imr_to_phys(x) ((x) << IMR_SHIFT) #define phys_to_imr(x) ((x) >> IMR_SHIFT) /** * imr_is_enabled - true if an IMR is enabled false otherwise. * * Determines if an IMR is enabled based on address range and read/write * mask. An IMR set with an address range set to zero and a read/write * access mask set to all is considered to be disabled. An IMR in any * other state - for example set to zero but without read/write access * all is considered to be enabled. This definition of disabled is how * firmware switches off an IMR and is maintained in kernel for * consistency. * * @imr: pointer to IMR descriptor. * @return: true if IMR enabled false if disabled. */ static inline int imr_is_enabled(struct imr_regs *imr) { return !(imr->rmask == IMR_READ_ACCESS_ALL && imr->wmask == IMR_WRITE_ACCESS_ALL && imr_to_phys(imr->addr_lo) == 0 && imr_to_phys(imr->addr_hi) == 0); } /** * imr_read - read an IMR at a given index. * * Requires caller to hold imr mutex. * * @idev: pointer to imr_device structure. * @imr_id: IMR entry to read. * @imr: IMR structure representing address and access masks. * @return: 0 on success or error code passed from mbi_iosf on failure. */ static int imr_read(struct imr_device *idev, u32 imr_id, struct imr_regs *imr) { u32 reg = imr_id * IMR_NUM_REGS + idev->reg_base; int ret; ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->addr_lo); if (ret) return ret; ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->addr_hi); if (ret) return ret; ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->rmask); if (ret) return ret; return iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->wmask); } /** * imr_write - write an IMR at a given index. * * Requires caller to hold imr mutex. * Note lock bits need to be written independently of address bits. * * @idev: pointer to imr_device structure. * @imr_id: IMR entry to write. * @imr: IMR structure representing address and access masks. * @return: 0 on success or error code passed from mbi_iosf on failure. */ static int imr_write(struct imr_device *idev, u32 imr_id, struct imr_regs *imr) { unsigned long flags; u32 reg = imr_id * IMR_NUM_REGS + idev->reg_base; int ret; local_irq_save(flags); ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->addr_lo); if (ret) goto failed; ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->addr_hi); if (ret) goto failed; ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->rmask); if (ret) goto failed; ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->wmask); if (ret) goto failed; local_irq_restore(flags); return 0; failed: /* * If writing to the IOSF failed then we're in an unknown state, * likely a very bad state. An IMR in an invalid state will almost * certainly lead to a memory access violation. */ local_irq_restore(flags); WARN(ret, "IOSF-MBI write fail range 0x%08x-0x%08x unreliable\n", imr_to_phys(imr->addr_lo), imr_to_phys(imr->addr_hi) + IMR_MASK); return ret; } /** * imr_dbgfs_state_show - print state of IMR registers. * * @s: pointer to seq_file for output. * @unused: unused parameter. * @return: 0 on success or error code passed from mbi_iosf on failure. */ static int imr_dbgfs_state_show(struct seq_file *s, void *unused) { phys_addr_t base; phys_addr_t end; int i; struct imr_device *idev = s->private; struct imr_regs imr; size_t size; int ret = -ENODEV; mutex_lock(&idev->lock); for (i = 0; i < idev->max_imr; i++) { ret = imr_read(idev, i, &imr); if (ret) break; /* * Remember to add IMR_ALIGN bytes to size to indicate the * inherent IMR_ALIGN size bytes contained in the masked away * lower ten bits. */ if (imr_is_enabled(&imr)) { base = imr_to_phys(imr.addr_lo); end = imr_to_phys(imr.addr_hi) + IMR_MASK; size = end - base + 1; } else { base = 0; end = 0; size = 0; } seq_printf(s, "imr%02i: base=%pa, end=%pa, size=0x%08zx " "rmask=0x%08x, wmask=0x%08x, %s, %s\n", i, &base, &end, size, imr.rmask, imr.wmask, imr_is_enabled(&imr) ? "enabled " : "disabled", imr.addr_lo & IMR_LOCK ? "locked" : "unlocked"); } mutex_unlock(&idev->lock); return ret; } DEFINE_SHOW_ATTRIBUTE(imr_dbgfs_state); /** * imr_debugfs_register - register debugfs hooks. * * @idev: pointer to imr_device structure. */ static void imr_debugfs_register(struct imr_device *idev) { debugfs_create_file("imr_state", 0444, NULL, idev, &imr_dbgfs_state_fops); } /** * imr_check_params - check passed address range IMR alignment and non-zero size * * @base: base address of intended IMR. * @size: size of intended IMR. * @return: zero on valid range -EINVAL on unaligned base/size. */ static int imr_check_params(phys_addr_t base, size_t size) { if ((base & IMR_MASK) || (size & IMR_MASK)) { pr_err("base %pa size 0x%08zx must align to 1KiB\n", &base, size); return -EINVAL; } if (size == 0) return -EINVAL; return 0; } /** * imr_raw_size - account for the IMR_ALIGN bytes that addr_hi appends. * * IMR addr_hi has a built in offset of plus IMR_ALIGN (0x400) bytes from the * value in the register. We need to subtract IMR_ALIGN bytes from input sizes * as a result. * * @size: input size bytes. * @return: reduced size. */ static inline size_t imr_raw_size(size_t size) { return size - IMR_ALIGN; } /** * imr_address_overlap - detects an address overlap. * * @addr: address to check against an existing IMR. * @imr: imr being checked. * @return: true for overlap false for no overlap. */ static inline int imr_address_overlap(phys_addr_t addr, struct imr_regs *imr) { return addr >= imr_to_phys(imr->addr_lo) && addr <= imr_to_phys(imr->addr_hi); } /** * imr_add_range - add an Isolated Memory Region. * * @base: physical base address of region aligned to 1KiB. * @size: physical size of region in bytes must be aligned to 1KiB. * @read_mask: read access mask. * @write_mask: write access mask. * @return: zero on success or negative value indicating error. */ int imr_add_range(phys_addr_t base, size_t size, unsigned int rmask, unsigned int wmask) { phys_addr_t end; unsigned int i; struct imr_device *idev = &imr_dev; struct imr_regs imr; size_t raw_size; int reg; int ret; if (WARN_ONCE(idev->init == false, "driver not initialized")) return -ENODEV; ret = imr_check_params(base, size); if (ret) return ret; /* Tweak the size value. */ raw_size = imr_raw_size(size); end = base + raw_size; /* * Check for reserved IMR value common to firmware, kernel and grub * indicating a disabled IMR. */ imr.addr_lo = phys_to_imr(base); imr.addr_hi = phys_to_imr(end); imr.rmask = rmask; imr.wmask = wmask; if (!imr_is_enabled(&imr)) return -ENOTSUPP; mutex_lock(&idev->lock); /* * Find a free IMR while checking for an existing overlapping range. * Note there's no restriction in silicon to prevent IMR overlaps. * For the sake of simplicity and ease in defining/debugging an IMR * memory map we exclude IMR overlaps. */ reg = -1; for (i = 0; i < idev->max_imr; i++) { ret = imr_read(idev, i, &imr); if (ret) goto failed; /* Find overlap @ base or end of requested range. */ ret = -EINVAL; if (imr_is_enabled(&imr)) { if (imr_address_overlap(base, &imr)) goto failed; if (imr_address_overlap(end, &imr)) goto failed; } else { reg = i; } } /* Error out if we have no free IMR entries. */ if (reg == -1) { ret = -ENOMEM; goto failed; } pr_debug("add %d phys %pa-%pa size %zx mask 0x%08x wmask 0x%08x\n", reg, &base, &end, raw_size, rmask, wmask); /* Enable IMR at specified range and access mask. */ imr.addr_lo = phys_to_imr(base); imr.addr_hi = phys_to_imr(end); imr.rmask = rmask; imr.wmask = wmask; ret = imr_write(idev, reg, &imr); if (ret < 0) { /* * In the highly unlikely event iosf_mbi_write failed * attempt to rollback the IMR setup skipping the trapping * of further IOSF write failures. */ imr.addr_lo = 0; imr.addr_hi = 0; imr.rmask = IMR_READ_ACCESS_ALL; imr.wmask = IMR_WRITE_ACCESS_ALL; imr_write(idev, reg, &imr); } failed: mutex_unlock(&idev->lock); return ret; } EXPORT_SYMBOL_GPL(imr_add_range); /** * __imr_remove_range - delete an Isolated Memory Region. * * This function allows you to delete an IMR by its index specified by reg or * by address range specified by base and size respectively. If you specify an * index on its own the base and size parameters are ignored. * imr_remove_range(0, base, size); delete IMR at index 0 base/size ignored. * imr_remove_range(-1, base, size); delete IMR from base to base+size. * * @reg: imr index to remove. * @base: physical base address of region aligned to 1 KiB. * @size: physical size of region in bytes aligned to 1 KiB. * @return: -EINVAL on invalid range or out or range id * -ENODEV if reg is valid but no IMR exists or is locked * 0 on success. */ static int __imr_remove_range(int reg, phys_addr_t base, size_t size) { phys_addr_t end; bool found = false; unsigned int i; struct imr_device *idev = &imr_dev; struct imr_regs imr; size_t raw_size; int ret = 0; if (WARN_ONCE(idev->init == false, "driver not initialized")) return -ENODEV; /* * Validate address range if deleting by address, else we are * deleting by index where base and size will be ignored. */ if (reg == -1) { ret = imr_check_params(base, size); if (ret) return ret; } /* Tweak the size value. */ raw_size = imr_raw_size(size); end = base + raw_size; mutex_lock(&idev->lock); if (reg >= 0) { /* If a specific IMR is given try to use it. */ ret = imr_read(idev, reg, &imr); if (ret) goto failed; if (!imr_is_enabled(&imr) || imr.addr_lo & IMR_LOCK) { ret = -ENODEV; goto failed; } found = true; } else { /* Search for match based on address range. */ for (i = 0; i < idev->max_imr; i++) { ret = imr_read(idev, i, &imr); if (ret) goto failed; if (!imr_is_enabled(&imr) || imr.addr_lo & IMR_LOCK) continue; if ((imr_to_phys(imr.addr_lo) == base) && (imr_to_phys(imr.addr_hi) == end)) { found = true; reg = i; break; } } } if (!found) { ret = -ENODEV; goto failed; } pr_debug("remove %d phys %pa-%pa size %zx\n", reg, &base, &end, raw_size); /* Tear down the IMR. */ imr.addr_lo = 0; imr.addr_hi = 0; imr.rmask = IMR_READ_ACCESS_ALL; imr.wmask = IMR_WRITE_ACCESS_ALL; ret = imr_write(idev, reg, &imr); failed: mutex_unlock(&idev->lock); return ret; } /** * imr_remove_range - delete an Isolated Memory Region by address * * This function allows you to delete an IMR by an address range specified * by base and size respectively. * imr_remove_range(base, size); delete IMR from base to base+size. * * @base: physical base address of region aligned to 1 KiB. * @size: physical size of region in bytes aligned to 1 KiB. * @return: -EINVAL on invalid range or out or range id * -ENODEV if reg is valid but no IMR exists or is locked * 0 on success. */ int imr_remove_range(phys_addr_t base, size_t size) { return __imr_remove_range(-1, base, size); } EXPORT_SYMBOL_GPL(imr_remove_range); /** * imr_clear - delete an Isolated Memory Region by index * * This function allows you to delete an IMR by an address range specified * by the index of the IMR. Useful for initial sanitization of the IMR * address map. * imr_ge(base, size); delete IMR from base to base+size. * * @reg: imr index to remove. * @return: -EINVAL on invalid range or out or range id * -ENODEV if reg is valid but no IMR exists or is locked * 0 on success. */ static inline int imr_clear(int reg) { return __imr_remove_range(reg, 0, 0); } /** * imr_fixup_memmap - Tear down IMRs used during bootup. * * BIOS and Grub both setup IMRs around compressed kernel, initrd memory * that need to be removed before the kernel hands out one of the IMR * encased addresses to a downstream DMA agent such as the SD or Ethernet. * IMRs on Galileo are setup to immediately reset the system on violation. * As a result if you're running a root filesystem from SD - you'll need * the boot-time IMRs torn down or you'll find seemingly random resets when * using your filesystem. * * @idev: pointer to imr_device structure. * @return: */ static void __init imr_fixup_memmap(struct imr_device *idev) { phys_addr_t base = virt_to_phys(&_text); size_t size = virt_to_phys(&__end_rodata) - base; unsigned long start, end; int i; int ret; /* Tear down all existing unlocked IMRs. */ for (i = 0; i < idev->max_imr; i++) imr_clear(i); start = (unsigned long)_text; end = (unsigned long)__end_rodata - 1; /* * Setup an unlocked IMR around the physical extent of the kernel * from the beginning of the .text section to the end of the * .rodata section as one physically contiguous block. * * We don't round up @size since it is already PAGE_SIZE aligned. * See vmlinux.lds.S for details. */ ret = imr_add_range(base, size, IMR_CPU, IMR_CPU); if (ret < 0) { pr_err("unable to setup IMR for kernel: %zu KiB (%lx - %lx)\n", size / 1024, start, end); } else { pr_info("protecting kernel .text - .rodata: %zu KiB (%lx - %lx)\n", size / 1024, start, end); } } static const struct x86_cpu_id imr_ids[] __initconst = { X86_MATCH_VENDOR_FAM_MODEL(INTEL, 5, INTEL_FAM5_QUARK_X1000, NULL), {} }; /** * imr_init - entry point for IMR driver. * * return: -ENODEV for no IMR support 0 if good to go. */ static int __init imr_init(void) { struct imr_device *idev = &imr_dev; if (!x86_match_cpu(imr_ids) || !iosf_mbi_available()) return -ENODEV; idev->max_imr = QUARK_X1000_IMR_MAX; idev->reg_base = QUARK_X1000_IMR_REGBASE; idev->init = true; mutex_init(&idev->lock); imr_debugfs_register(idev); imr_fixup_memmap(idev); return 0; } device_initcall(imr_init);