/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2005-2009, 2010 Cavium Networks */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/msi.h> #include <linux/spinlock.h> #include <linux/interrupt.h> #include <asm/octeon/octeon.h> #include <asm/octeon/cvmx-npi-defs.h> #include <asm/octeon/cvmx-pci-defs.h> #include <asm/octeon/cvmx-npei-defs.h> #include <asm/octeon/cvmx-sli-defs.h> #include <asm/octeon/cvmx-pexp-defs.h> #include <asm/octeon/pci-octeon.h> /* * Each bit in msi_free_irq_bitmask represents a MSI interrupt that is * in use. */ static u64 msi_free_irq_bitmask[4]; /* * Each bit in msi_multiple_irq_bitmask tells that the device using * this bit in msi_free_irq_bitmask is also using the next bit. This * is used so we can disable all of the MSI interrupts when a device * uses multiple. */ static u64 msi_multiple_irq_bitmask[4]; /* * This lock controls updates to msi_free_irq_bitmask and * msi_multiple_irq_bitmask. */ static DEFINE_SPINLOCK(msi_free_irq_bitmask_lock); /* * Number of MSI IRQs used. This variable is set up in * the module init time. */ static int msi_irq_size; /** * arch_setup_msi_irq() - setup MSI IRQs for a device * @dev: Device requesting MSI interrupts * @desc: MSI descriptor * * Called when a driver requests MSI interrupts instead of the * legacy INT A-D. This routine will allocate multiple interrupts * for MSI devices that support them. A device can override this by * programming the MSI control bits [6:4] before calling * pci_enable_msi(). * * Return: %0 on success, non-%0 on error. */ int arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc) { struct msi_msg msg; u16 control; int configured_private_bits; int request_private_bits; int irq = 0; int irq_step; u64 search_mask; int index; if (desc->pci.msi_attrib.is_msix) return -EINVAL; /* * Read the MSI config to figure out how many IRQs this device * wants. Most devices only want 1, which will give * configured_private_bits and request_private_bits equal 0. */ pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control); /* * If the number of private bits has been configured then use * that value instead of the requested number. This gives the * driver the chance to override the number of interrupts * before calling pci_enable_msi(). */ configured_private_bits = (control & PCI_MSI_FLAGS_QSIZE) >> 4; if (configured_private_bits == 0) { /* Nothing is configured, so use the hardware requested size */ request_private_bits = (control & PCI_MSI_FLAGS_QMASK) >> 1; } else { /* * Use the number of configured bits, assuming the * driver wanted to override the hardware request * value. */ request_private_bits = configured_private_bits; } /* * The PCI 2.3 spec mandates that there are at most 32 * interrupts. If this device asks for more, only give it one. */ if (request_private_bits > 5) request_private_bits = 0; try_only_one: /* * The IRQs have to be aligned on a power of two based on the * number being requested. */ irq_step = 1 << request_private_bits; /* Mask with one bit for each IRQ */ search_mask = (1 << irq_step) - 1; /* * We're going to search msi_free_irq_bitmask_lock for zero * bits. This represents an MSI interrupt number that isn't in * use. */ spin_lock(&msi_free_irq_bitmask_lock); for (index = 0; index < msi_irq_size/64; index++) { for (irq = 0; irq < 64; irq += irq_step) { if ((msi_free_irq_bitmask[index] & (search_mask << irq)) == 0) { msi_free_irq_bitmask[index] |= search_mask << irq; msi_multiple_irq_bitmask[index] |= (search_mask >> 1) << irq; goto msi_irq_allocated; } } } msi_irq_allocated: spin_unlock(&msi_free_irq_bitmask_lock); /* Make sure the search for available interrupts didn't fail */ if (irq >= 64) { if (request_private_bits) { pr_err("arch_setup_msi_irq: Unable to find %d free interrupts, trying just one", 1 << request_private_bits); request_private_bits = 0; goto try_only_one; } else panic("arch_setup_msi_irq: Unable to find a free MSI interrupt"); } /* MSI interrupts start at logical IRQ OCTEON_IRQ_MSI_BIT0 */ irq += index*64; irq += OCTEON_IRQ_MSI_BIT0; switch (octeon_dma_bar_type) { case OCTEON_DMA_BAR_TYPE_SMALL: /* When not using big bar, Bar 0 is based at 128MB */ msg.address_lo = ((128ul << 20) + CVMX_PCI_MSI_RCV) & 0xffffffff; msg.address_hi = ((128ul << 20) + CVMX_PCI_MSI_RCV) >> 32; break; case OCTEON_DMA_BAR_TYPE_BIG: /* When using big bar, Bar 0 is based at 0 */ msg.address_lo = (0 + CVMX_PCI_MSI_RCV) & 0xffffffff; msg.address_hi = (0 + CVMX_PCI_MSI_RCV) >> 32; break; case OCTEON_DMA_BAR_TYPE_PCIE: /* When using PCIe, Bar 0 is based at 0 */ /* FIXME CVMX_NPEI_MSI_RCV* other than 0? */ msg.address_lo = (0 + CVMX_NPEI_PCIE_MSI_RCV) & 0xffffffff; msg.address_hi = (0 + CVMX_NPEI_PCIE_MSI_RCV) >> 32; break; case OCTEON_DMA_BAR_TYPE_PCIE2: /* When using PCIe2, Bar 0 is based at 0 */ msg.address_lo = (0 + CVMX_SLI_PCIE_MSI_RCV) & 0xffffffff; msg.address_hi = (0 + CVMX_SLI_PCIE_MSI_RCV) >> 32; break; default: panic("arch_setup_msi_irq: Invalid octeon_dma_bar_type"); } msg.data = irq - OCTEON_IRQ_MSI_BIT0; /* Update the number of IRQs the device has available to it */ control &= ~PCI_MSI_FLAGS_QSIZE; control |= request_private_bits << 4; pci_write_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, control); irq_set_msi_desc(irq, desc); pci_write_msi_msg(irq, &msg); return 0; } /** * arch_teardown_msi_irq() - release MSI IRQs for a device * @irq: The devices first irq number. There may be multiple in sequence. * * Called when a device no longer needs its MSI interrupts. All * MSI interrupts for the device are freed. */ void arch_teardown_msi_irq(unsigned int irq) { int number_irqs; u64 bitmask; int index = 0; int irq0; if ((irq < OCTEON_IRQ_MSI_BIT0) || (irq > msi_irq_size + OCTEON_IRQ_MSI_BIT0)) panic("arch_teardown_msi_irq: Attempted to teardown illegal " "MSI interrupt (%d)", irq); irq -= OCTEON_IRQ_MSI_BIT0; index = irq / 64; irq0 = irq % 64; /* * Count the number of IRQs we need to free by looking at the * msi_multiple_irq_bitmask. Each bit set means that the next * IRQ is also owned by this device. */ number_irqs = 0; while ((irq0 + number_irqs < 64) && (msi_multiple_irq_bitmask[index] & (1ull << (irq0 + number_irqs)))) number_irqs++; number_irqs++; /* Mask with one bit for each IRQ */ bitmask = (1 << number_irqs) - 1; /* Shift the mask to the correct bit location */ bitmask <<= irq0; if ((msi_free_irq_bitmask[index] & bitmask) != bitmask) panic("arch_teardown_msi_irq: Attempted to teardown MSI " "interrupt (%d) not in use", irq); /* Checks are done, update the in use bitmask */ spin_lock(&msi_free_irq_bitmask_lock); msi_free_irq_bitmask[index] &= ~bitmask; msi_multiple_irq_bitmask[index] &= ~bitmask; spin_unlock(&msi_free_irq_bitmask_lock); } static DEFINE_RAW_SPINLOCK(octeon_irq_msi_lock); static u64 msi_rcv_reg[4]; static u64 mis_ena_reg[4]; static void octeon_irq_msi_enable_pcie(struct irq_data *data) { u64 en; unsigned long flags; int msi_number = data->irq - OCTEON_IRQ_MSI_BIT0; int irq_index = msi_number >> 6; int irq_bit = msi_number & 0x3f; raw_spin_lock_irqsave(&octeon_irq_msi_lock, flags); en = cvmx_read_csr(mis_ena_reg[irq_index]); en |= 1ull << irq_bit; cvmx_write_csr(mis_ena_reg[irq_index], en); cvmx_read_csr(mis_ena_reg[irq_index]); raw_spin_unlock_irqrestore(&octeon_irq_msi_lock, flags); } static void octeon_irq_msi_disable_pcie(struct irq_data *data) { u64 en; unsigned long flags; int msi_number = data->irq - OCTEON_IRQ_MSI_BIT0; int irq_index = msi_number >> 6; int irq_bit = msi_number & 0x3f; raw_spin_lock_irqsave(&octeon_irq_msi_lock, flags); en = cvmx_read_csr(mis_ena_reg[irq_index]); en &= ~(1ull << irq_bit); cvmx_write_csr(mis_ena_reg[irq_index], en); cvmx_read_csr(mis_ena_reg[irq_index]); raw_spin_unlock_irqrestore(&octeon_irq_msi_lock, flags); } static struct irq_chip octeon_irq_chip_msi_pcie = { .name = "MSI", .irq_enable = octeon_irq_msi_enable_pcie, .irq_disable = octeon_irq_msi_disable_pcie, }; static void octeon_irq_msi_enable_pci(struct irq_data *data) { /* * Octeon PCI doesn't have the ability to mask/unmask MSI * interrupts individually. Instead of masking/unmasking them * in groups of 16, we simple assume MSI devices are well * behaved. MSI interrupts are always enable and the ACK is * assumed to be enough */ } static void octeon_irq_msi_disable_pci(struct irq_data *data) { /* See comment in enable */ } static struct irq_chip octeon_irq_chip_msi_pci = { .name = "MSI", .irq_enable = octeon_irq_msi_enable_pci, .irq_disable = octeon_irq_msi_disable_pci, }; /* * Called by the interrupt handling code when an MSI interrupt * occurs. */ static irqreturn_t __octeon_msi_do_interrupt(int index, u64 msi_bits) { int irq; int bit; bit = fls64(msi_bits); if (bit) { bit--; /* Acknowledge it first. */ cvmx_write_csr(msi_rcv_reg[index], 1ull << bit); irq = bit + OCTEON_IRQ_MSI_BIT0 + 64 * index; do_IRQ(irq); return IRQ_HANDLED; } return IRQ_NONE; } #define OCTEON_MSI_INT_HANDLER_X(x) \ static irqreturn_t octeon_msi_interrupt##x(int cpl, void *dev_id) \ { \ u64 msi_bits = cvmx_read_csr(msi_rcv_reg[(x)]); \ return __octeon_msi_do_interrupt((x), msi_bits); \ } /* * Create octeon_msi_interrupt{0-3} function body */ OCTEON_MSI_INT_HANDLER_X(0); OCTEON_MSI_INT_HANDLER_X(1); OCTEON_MSI_INT_HANDLER_X(2); OCTEON_MSI_INT_HANDLER_X(3); /* * Initializes the MSI interrupt handling code */ int __init octeon_msi_initialize(void) { int irq; struct irq_chip *msi; if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_INVALID) { return 0; } else if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_PCIE) { msi_rcv_reg[0] = CVMX_PEXP_NPEI_MSI_RCV0; msi_rcv_reg[1] = CVMX_PEXP_NPEI_MSI_RCV1; msi_rcv_reg[2] = CVMX_PEXP_NPEI_MSI_RCV2; msi_rcv_reg[3] = CVMX_PEXP_NPEI_MSI_RCV3; mis_ena_reg[0] = CVMX_PEXP_NPEI_MSI_ENB0; mis_ena_reg[1] = CVMX_PEXP_NPEI_MSI_ENB1; mis_ena_reg[2] = CVMX_PEXP_NPEI_MSI_ENB2; mis_ena_reg[3] = CVMX_PEXP_NPEI_MSI_ENB3; msi = &octeon_irq_chip_msi_pcie; } else { msi_rcv_reg[0] = CVMX_NPI_NPI_MSI_RCV; #define INVALID_GENERATE_ADE 0x8700000000000000ULL; msi_rcv_reg[1] = INVALID_GENERATE_ADE; msi_rcv_reg[2] = INVALID_GENERATE_ADE; msi_rcv_reg[3] = INVALID_GENERATE_ADE; mis_ena_reg[0] = INVALID_GENERATE_ADE; mis_ena_reg[1] = INVALID_GENERATE_ADE; mis_ena_reg[2] = INVALID_GENERATE_ADE; mis_ena_reg[3] = INVALID_GENERATE_ADE; msi = &octeon_irq_chip_msi_pci; } for (irq = OCTEON_IRQ_MSI_BIT0; irq <= OCTEON_IRQ_MSI_LAST; irq++) irq_set_chip_and_handler(irq, msi, handle_simple_irq); if (octeon_has_feature(OCTEON_FEATURE_PCIE)) { if (request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt0, 0, "MSI[0:63]", octeon_msi_interrupt0)) panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed"); if (request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt1, 0, "MSI[64:127]", octeon_msi_interrupt1)) panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed"); if (request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt2, 0, "MSI[127:191]", octeon_msi_interrupt2)) panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed"); if (request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt3, 0, "MSI[192:255]", octeon_msi_interrupt3)) panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed"); msi_irq_size = 256; } else if (octeon_is_pci_host()) { if (request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt0, 0, "MSI[0:15]", octeon_msi_interrupt0)) panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed"); if (request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt0, 0, "MSI[16:31]", octeon_msi_interrupt0)) panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed"); if (request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt0, 0, "MSI[32:47]", octeon_msi_interrupt0)) panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed"); if (request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt0, 0, "MSI[48:63]", octeon_msi_interrupt0)) panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed"); msi_irq_size = 64; } return 0; } subsys_initcall(octeon_msi_initialize);