// SPDX-License-Identifier: GPL-2.0-only /* * linux/arch/arm/lib/uaccess_with_memcpy.c * * Written by: Lennert Buytenhek and Nicolas Pitre * Copyright (C) 2009 Marvell Semiconductor */ #include <linux/kernel.h> #include <linux/ctype.h> #include <linux/uaccess.h> #include <linux/rwsem.h> #include <linux/mm.h> #include <linux/sched.h> #include <linux/hardirq.h> /* for in_atomic() */ #include <linux/gfp.h> #include <linux/highmem.h> #include <linux/hugetlb.h> #include <asm/current.h> #include <asm/page.h> static int pin_page_for_write(const void __user *_addr, pte_t **ptep, spinlock_t **ptlp) { unsigned long addr = (unsigned long)_addr; pgd_t *pgd; p4d_t *p4d; pmd_t *pmd; pte_t *pte; pud_t *pud; spinlock_t *ptl; pgd = pgd_offset(current->mm, addr); if (unlikely(pgd_none(*pgd) || pgd_bad(*pgd))) return 0; p4d = p4d_offset(pgd, addr); if (unlikely(p4d_none(*p4d) || p4d_bad(*p4d))) return 0; pud = pud_offset(p4d, addr); if (unlikely(pud_none(*pud) || pud_bad(*pud))) return 0; pmd = pmd_offset(pud, addr); if (unlikely(pmd_none(*pmd))) return 0; /* * A pmd can be bad if it refers to a HugeTLB or THP page. * * Both THP and HugeTLB pages have the same pmd layout * and should not be manipulated by the pte functions. * * Lock the page table for the destination and check * to see that it's still huge and whether or not we will * need to fault on write. */ if (unlikely(pmd_thp_or_huge(*pmd))) { ptl = ¤t->mm->page_table_lock; spin_lock(ptl); if (unlikely(!pmd_thp_or_huge(*pmd) || pmd_hugewillfault(*pmd))) { spin_unlock(ptl); return 0; } *ptep = NULL; *ptlp = ptl; return 1; } if (unlikely(pmd_bad(*pmd))) return 0; pte = pte_offset_map_lock(current->mm, pmd, addr, &ptl); if (unlikely(!pte)) return 0; if (unlikely(!pte_present(*pte) || !pte_young(*pte) || !pte_write(*pte) || !pte_dirty(*pte))) { pte_unmap_unlock(pte, ptl); return 0; } *ptep = pte; *ptlp = ptl; return 1; } static unsigned long noinline __copy_to_user_memcpy(void __user *to, const void *from, unsigned long n) { unsigned long ua_flags; int atomic; /* the mmap semaphore is taken only if not in an atomic context */ atomic = faulthandler_disabled(); if (!atomic) mmap_read_lock(current->mm); while (n) { pte_t *pte; spinlock_t *ptl; int tocopy; while (!pin_page_for_write(to, &pte, &ptl)) { if (!atomic) mmap_read_unlock(current->mm); if (__put_user(0, (char __user *)to)) goto out; if (!atomic) mmap_read_lock(current->mm); } tocopy = (~(unsigned long)to & ~PAGE_MASK) + 1; if (tocopy > n) tocopy = n; ua_flags = uaccess_save_and_enable(); __memcpy((void *)to, from, tocopy); uaccess_restore(ua_flags); to += tocopy; from += tocopy; n -= tocopy; if (pte) pte_unmap_unlock(pte, ptl); else spin_unlock(ptl); } if (!atomic) mmap_read_unlock(current->mm); out: return n; } unsigned long arm_copy_to_user(void __user *to, const void *from, unsigned long n) { /* * This test is stubbed out of the main function above to keep * the overhead for small copies low by avoiding a large * register dump on the stack just to reload them right away. * With frame pointer disabled, tail call optimization kicks in * as well making this test almost invisible. */ if (n < 64) { unsigned long ua_flags = uaccess_save_and_enable(); n = __copy_to_user_std(to, from, n); uaccess_restore(ua_flags); } else { n = __copy_to_user_memcpy(uaccess_mask_range_ptr(to, n), from, n); } return n; } static unsigned long noinline __clear_user_memset(void __user *addr, unsigned long n) { unsigned long ua_flags; mmap_read_lock(current->mm); while (n) { pte_t *pte; spinlock_t *ptl; int tocopy; while (!pin_page_for_write(addr, &pte, &ptl)) { mmap_read_unlock(current->mm); if (__put_user(0, (char __user *)addr)) goto out; mmap_read_lock(current->mm); } tocopy = (~(unsigned long)addr & ~PAGE_MASK) + 1; if (tocopy > n) tocopy = n; ua_flags = uaccess_save_and_enable(); __memset((void *)addr, 0, tocopy); uaccess_restore(ua_flags); addr += tocopy; n -= tocopy; if (pte) pte_unmap_unlock(pte, ptl); else spin_unlock(ptl); } mmap_read_unlock(current->mm); out: return n; } unsigned long arm_clear_user(void __user *addr, unsigned long n) { /* See rational for this in __copy_to_user() above. */ if (n < 64) { unsigned long ua_flags = uaccess_save_and_enable(); n = __clear_user_std(addr, n); uaccess_restore(ua_flags); } else { n = __clear_user_memset(addr, n); } return n; } #if 0 /* * This code is disabled by default, but kept around in case the chosen * thresholds need to be revalidated. Some overhead (small but still) * would be implied by a runtime determined variable threshold, and * so far the measurement on concerned targets didn't show a worthwhile * variation. * * Note that a fairly precise sched_clock() implementation is needed * for results to make some sense. */ #include <linux/vmalloc.h> static int __init test_size_treshold(void) { struct page *src_page, *dst_page; void *user_ptr, *kernel_ptr; unsigned long long t0, t1, t2; int size, ret; ret = -ENOMEM; src_page = alloc_page(GFP_KERNEL); if (!src_page) goto no_src; dst_page = alloc_page(GFP_KERNEL); if (!dst_page) goto no_dst; kernel_ptr = page_address(src_page); user_ptr = vmap(&dst_page, 1, VM_IOREMAP, __pgprot(__PAGE_COPY)); if (!user_ptr) goto no_vmap; /* warm up the src page dcache */ ret = __copy_to_user_memcpy(user_ptr, kernel_ptr, PAGE_SIZE); for (size = PAGE_SIZE; size >= 4; size /= 2) { t0 = sched_clock(); ret |= __copy_to_user_memcpy(user_ptr, kernel_ptr, size); t1 = sched_clock(); ret |= __copy_to_user_std(user_ptr, kernel_ptr, size); t2 = sched_clock(); printk("copy_to_user: %d %llu %llu\n", size, t1 - t0, t2 - t1); } for (size = PAGE_SIZE; size >= 4; size /= 2) { t0 = sched_clock(); ret |= __clear_user_memset(user_ptr, size); t1 = sched_clock(); ret |= __clear_user_std(user_ptr, size); t2 = sched_clock(); printk("clear_user: %d %llu %llu\n", size, t1 - t0, t2 - t1); } if (ret) ret = -EFAULT; vunmap(user_ptr); no_vmap: put_page(dst_page); no_dst: put_page(src_page); no_src: return ret; } subsys_initcall(test_size_treshold); #endif