// SPDX-License-Identifier: GPL-2.0 /* * Generic ASID allocator. * * Based on arch/arm/mm/context.c * * Copyright (C) 2002-2003 Deep Blue Solutions Ltd, all rights reserved. * Copyright (C) 2012 ARM Ltd. */ #include <linux/slab.h> #include <linux/mm_types.h> #include <asm/asid.h> #define reserved_asid(info, cpu) *per_cpu_ptr((info)->reserved, cpu) #define ASID_MASK(info) (~GENMASK((info)->bits - 1, 0)) #define ASID_FIRST_VERSION(info) (1UL << ((info)->bits)) #define asid2idx(info, asid) (((asid) & ~ASID_MASK(info)) >> (info)->ctxt_shift) #define idx2asid(info, idx) (((idx) << (info)->ctxt_shift) & ~ASID_MASK(info)) static void flush_context(struct asid_info *info) { int i; u64 asid; /* Update the list of reserved ASIDs and the ASID bitmap. */ bitmap_zero(info->map, NUM_CTXT_ASIDS(info)); for_each_possible_cpu(i) { asid = atomic64_xchg_relaxed(&active_asid(info, i), 0); /* * If this CPU has already been through a * rollover, but hasn't run another task in * the meantime, we must preserve its reserved * ASID, as this is the only trace we have of * the process it is still running. */ if (asid == 0) asid = reserved_asid(info, i); __set_bit(asid2idx(info, asid), info->map); reserved_asid(info, i) = asid; } /* * Queue a TLB invalidation for each CPU to perform on next * context-switch */ cpumask_setall(&info->flush_pending); } static bool check_update_reserved_asid(struct asid_info *info, u64 asid, u64 newasid) { int cpu; bool hit = false; /* * Iterate over the set of reserved ASIDs looking for a match. * If we find one, then we can update our mm to use newasid * (i.e. the same ASID in the current generation) but we can't * exit the loop early, since we need to ensure that all copies * of the old ASID are updated to reflect the mm. Failure to do * so could result in us missing the reserved ASID in a future * generation. */ for_each_possible_cpu(cpu) { if (reserved_asid(info, cpu) == asid) { hit = true; reserved_asid(info, cpu) = newasid; } } return hit; } static u64 new_context(struct asid_info *info, atomic64_t *pasid, struct mm_struct *mm) { static u32 cur_idx = 1; u64 asid = atomic64_read(pasid); u64 generation = atomic64_read(&info->generation); if (asid != 0) { u64 newasid = generation | (asid & ~ASID_MASK(info)); /* * If our current ASID was active during a rollover, we * can continue to use it and this was just a false alarm. */ if (check_update_reserved_asid(info, asid, newasid)) return newasid; /* * We had a valid ASID in a previous life, so try to re-use * it if possible. */ if (!__test_and_set_bit(asid2idx(info, asid), info->map)) return newasid; } /* * Allocate a free ASID. If we can't find one, take a note of the * currently active ASIDs and mark the TLBs as requiring flushes. We * always count from ASID #2 (index 1), as we use ASID #0 when setting * a reserved TTBR0 for the init_mm and we allocate ASIDs in even/odd * pairs. */ asid = find_next_zero_bit(info->map, NUM_CTXT_ASIDS(info), cur_idx); if (asid != NUM_CTXT_ASIDS(info)) goto set_asid; /* We're out of ASIDs, so increment the global generation count */ generation = atomic64_add_return_relaxed(ASID_FIRST_VERSION(info), &info->generation); flush_context(info); /* We have more ASIDs than CPUs, so this will always succeed */ asid = find_next_zero_bit(info->map, NUM_CTXT_ASIDS(info), 1); set_asid: __set_bit(asid, info->map); cur_idx = asid; cpumask_clear(mm_cpumask(mm)); return idx2asid(info, asid) | generation; } /* * Generate a new ASID for the context. * * @pasid: Pointer to the current ASID batch allocated. It will be updated * with the new ASID batch. * @cpu: current CPU ID. Must have been acquired through get_cpu() */ void asid_new_context(struct asid_info *info, atomic64_t *pasid, unsigned int cpu, struct mm_struct *mm) { unsigned long flags; u64 asid; raw_spin_lock_irqsave(&info->lock, flags); /* Check that our ASID belongs to the current generation. */ asid = atomic64_read(pasid); if ((asid ^ atomic64_read(&info->generation)) >> info->bits) { asid = new_context(info, pasid, mm); atomic64_set(pasid, asid); } if (cpumask_test_and_clear_cpu(cpu, &info->flush_pending)) info->flush_cpu_ctxt_cb(); atomic64_set(&active_asid(info, cpu), asid); cpumask_set_cpu(cpu, mm_cpumask(mm)); raw_spin_unlock_irqrestore(&info->lock, flags); } /* * Initialize the ASID allocator * * @info: Pointer to the asid allocator structure * @bits: Number of ASIDs available * @asid_per_ctxt: Number of ASIDs to allocate per-context. ASIDs are * allocated contiguously for a given context. This value should be a power of * 2. */ int asid_allocator_init(struct asid_info *info, u32 bits, unsigned int asid_per_ctxt, void (*flush_cpu_ctxt_cb)(void)) { info->bits = bits; info->ctxt_shift = ilog2(asid_per_ctxt); info->flush_cpu_ctxt_cb = flush_cpu_ctxt_cb; /* * Expect allocation after rollover to fail if we don't have at least * one more ASID than CPUs. ASID #0 is always reserved. */ WARN_ON(NUM_CTXT_ASIDS(info) - 1 <= num_possible_cpus()); atomic64_set(&info->generation, ASID_FIRST_VERSION(info)); info->map = bitmap_zalloc(NUM_CTXT_ASIDS(info), GFP_KERNEL); if (!info->map) return -ENOMEM; raw_spin_lock_init(&info->lock); return 0; }