// SPDX-License-Identifier: GPL-2.0 /* * srmmu.c: SRMMU specific routines for memory management. * * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com) * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be) * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org) */ #include <linux/seq_file.h> #include <linux/spinlock.h> #include <linux/memblock.h> #include <linux/pagemap.h> #include <linux/vmalloc.h> #include <linux/kdebug.h> #include <linux/export.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/log2.h> #include <linux/gfp.h> #include <linux/fs.h> #include <linux/mm.h> #include <asm/mmu_context.h> #include <asm/cacheflush.h> #include <asm/tlbflush.h> #include <asm/io-unit.h> #include <asm/pgalloc.h> #include <asm/pgtable.h> #include <asm/bitext.h> #include <asm/vaddrs.h> #include <asm/cache.h> #include <asm/traps.h> #include <asm/oplib.h> #include <asm/mbus.h> #include <asm/page.h> #include <asm/asi.h> #include <asm/smp.h> #include <asm/io.h> /* Now the cpu specific definitions. */ #include <asm/turbosparc.h> #include <asm/tsunami.h> #include <asm/viking.h> #include <asm/swift.h> #include <asm/leon.h> #include <asm/mxcc.h> #include <asm/ross.h> #include "mm_32.h" enum mbus_module srmmu_modtype; static unsigned int hwbug_bitmask; int vac_cache_size; EXPORT_SYMBOL(vac_cache_size); int vac_line_size; extern struct resource sparc_iomap; extern unsigned long last_valid_pfn; static pgd_t *srmmu_swapper_pg_dir; const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops; EXPORT_SYMBOL(sparc32_cachetlb_ops); #ifdef CONFIG_SMP const struct sparc32_cachetlb_ops *local_ops; #define FLUSH_BEGIN(mm) #define FLUSH_END #else #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) { #define FLUSH_END } #endif int flush_page_for_dma_global = 1; char *srmmu_name; ctxd_t *srmmu_ctx_table_phys; static ctxd_t *srmmu_context_table; int viking_mxcc_present; static DEFINE_SPINLOCK(srmmu_context_spinlock); static int is_hypersparc; static int srmmu_cache_pagetables; /* these will be initialized in srmmu_nocache_calcsize() */ static unsigned long srmmu_nocache_size; static unsigned long srmmu_nocache_end; /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */ #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4) /* The context table is a nocache user with the biggest alignment needs. */ #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS) void *srmmu_nocache_pool; static struct bit_map srmmu_nocache_map; static inline int srmmu_pmd_none(pmd_t pmd) { return !(pmd_val(pmd) & 0xFFFFFFF); } /* XXX should we hyper_flush_whole_icache here - Anton */ static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp) { pte_t pte; pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4))); set_pte((pte_t *)ctxp, pte); } /* * Locations of MSI Registers. */ #define MSI_MBUS_ARBEN 0xe0001008 /* MBus Arbiter Enable register */ /* * Useful bits in the MSI Registers. */ #define MSI_ASYNC_MODE 0x80000000 /* Operate the MSI asynchronously */ static void msi_set_sync(void) { __asm__ __volatile__ ("lda [%0] %1, %%g3\n\t" "andn %%g3, %2, %%g3\n\t" "sta %%g3, [%0] %1\n\t" : : "r" (MSI_MBUS_ARBEN), "i" (ASI_M_CTL), "r" (MSI_ASYNC_MODE) : "g3"); } void pmd_set(pmd_t *pmdp, pte_t *ptep) { unsigned long ptp = __nocache_pa(ptep) >> 4; set_pte((pte_t *)&pmd_val(*pmdp), __pte(SRMMU_ET_PTD | ptp)); } /* * size: bytes to allocate in the nocache area. * align: bytes, number to align at. * Returns the virtual address of the allocated area. */ static void *__srmmu_get_nocache(int size, int align) { int offset, minsz = 1 << SRMMU_NOCACHE_BITMAP_SHIFT; unsigned long addr; if (size < minsz) { printk(KERN_ERR "Size 0x%x too small for nocache request\n", size); size = minsz; } if (size & (minsz - 1)) { printk(KERN_ERR "Size 0x%x unaligned in nocache request\n", size); size += minsz - 1; } BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX); offset = bit_map_string_get(&srmmu_nocache_map, size >> SRMMU_NOCACHE_BITMAP_SHIFT, align >> SRMMU_NOCACHE_BITMAP_SHIFT); if (offset == -1) { printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n", size, (int) srmmu_nocache_size, srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT); return NULL; } addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT); return (void *)addr; } void *srmmu_get_nocache(int size, int align) { void *tmp; tmp = __srmmu_get_nocache(size, align); if (tmp) memset(tmp, 0, size); return tmp; } void srmmu_free_nocache(void *addr, int size) { unsigned long vaddr; int offset; vaddr = (unsigned long)addr; if (vaddr < SRMMU_NOCACHE_VADDR) { printk("Vaddr %lx is smaller than nocache base 0x%lx\n", vaddr, (unsigned long)SRMMU_NOCACHE_VADDR); BUG(); } if (vaddr + size > srmmu_nocache_end) { printk("Vaddr %lx is bigger than nocache end 0x%lx\n", vaddr, srmmu_nocache_end); BUG(); } if (!is_power_of_2(size)) { printk("Size 0x%x is not a power of 2\n", size); BUG(); } if (size < SRMMU_NOCACHE_BITMAP_SHIFT) { printk("Size 0x%x is too small\n", size); BUG(); } if (vaddr & (size - 1)) { printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size); BUG(); } offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT; size = size >> SRMMU_NOCACHE_BITMAP_SHIFT; bit_map_clear(&srmmu_nocache_map, offset, size); } static void srmmu_early_allocate_ptable_skeleton(unsigned long start, unsigned long end); /* Return how much physical memory we have. */ static unsigned long __init probe_memory(void) { unsigned long total = 0; int i; for (i = 0; sp_banks[i].num_bytes; i++) total += sp_banks[i].num_bytes; return total; } /* * Reserve nocache dynamically proportionally to the amount of * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002 */ static void __init srmmu_nocache_calcsize(void) { unsigned long sysmemavail = probe_memory() / 1024; int srmmu_nocache_npages; srmmu_nocache_npages = sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256; /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */ // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256; if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES) srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES; /* anything above 1280 blows up */ if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES) srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES; srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE; srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size; } static void __init srmmu_nocache_init(void) { void *srmmu_nocache_bitmap; unsigned int bitmap_bits; pgd_t *pgd; p4d_t *p4d; pud_t *pud; pmd_t *pmd; pte_t *pte; unsigned long paddr, vaddr; unsigned long pteval; bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT; srmmu_nocache_pool = memblock_alloc(srmmu_nocache_size, SRMMU_NOCACHE_ALIGN_MAX); if (!srmmu_nocache_pool) panic("%s: Failed to allocate %lu bytes align=0x%x\n", __func__, srmmu_nocache_size, SRMMU_NOCACHE_ALIGN_MAX); memset(srmmu_nocache_pool, 0, srmmu_nocache_size); srmmu_nocache_bitmap = memblock_alloc(BITS_TO_LONGS(bitmap_bits) * sizeof(long), SMP_CACHE_BYTES); if (!srmmu_nocache_bitmap) panic("%s: Failed to allocate %zu bytes\n", __func__, BITS_TO_LONGS(bitmap_bits) * sizeof(long)); bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits); srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE); memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE); init_mm.pgd = srmmu_swapper_pg_dir; srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end); paddr = __pa((unsigned long)srmmu_nocache_pool); vaddr = SRMMU_NOCACHE_VADDR; while (vaddr < srmmu_nocache_end) { pgd = pgd_offset_k(vaddr); p4d = p4d_offset(pgd, vaddr); pud = pud_offset(p4d, vaddr); pmd = pmd_offset(__nocache_fix(pud), vaddr); pte = pte_offset_kernel(__nocache_fix(pmd), vaddr); pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV); if (srmmu_cache_pagetables) pteval |= SRMMU_CACHE; set_pte(__nocache_fix(pte), __pte(pteval)); vaddr += PAGE_SIZE; paddr += PAGE_SIZE; } flush_cache_all(); flush_tlb_all(); } pgd_t *get_pgd_fast(void) { pgd_t *pgd = NULL; pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE); if (pgd) { pgd_t *init = pgd_offset_k(0); memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t)); memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD, (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t)); } return pgd; } /* * Hardware needs alignment to 256 only, but we align to whole page size * to reduce fragmentation problems due to the buddy principle. * XXX Provide actual fragmentation statistics in /proc. * * Alignments up to the page size are the same for physical and virtual * addresses of the nocache area. */ pgtable_t pte_alloc_one(struct mm_struct *mm) { pte_t *ptep; struct page *page; if (!(ptep = pte_alloc_one_kernel(mm))) return NULL; page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT); spin_lock(&mm->page_table_lock); if (page_ref_inc_return(page) == 2 && !pagetable_pte_ctor(page_ptdesc(page))) { page_ref_dec(page); ptep = NULL; } spin_unlock(&mm->page_table_lock); return ptep; } void pte_free(struct mm_struct *mm, pgtable_t ptep) { struct page *page; page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT); spin_lock(&mm->page_table_lock); if (page_ref_dec_return(page) == 1) pagetable_pte_dtor(page_ptdesc(page)); spin_unlock(&mm->page_table_lock); srmmu_free_nocache(ptep, SRMMU_PTE_TABLE_SIZE); } /* context handling - a dynamically sized pool is used */ #define NO_CONTEXT -1 struct ctx_list { struct ctx_list *next; struct ctx_list *prev; unsigned int ctx_number; struct mm_struct *ctx_mm; }; static struct ctx_list *ctx_list_pool; static struct ctx_list ctx_free; static struct ctx_list ctx_used; /* At boot time we determine the number of contexts */ static int num_contexts; static inline void remove_from_ctx_list(struct ctx_list *entry) { entry->next->prev = entry->prev; entry->prev->next = entry->next; } static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry) { entry->next = head; (entry->prev = head->prev)->next = entry; head->prev = entry; } #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry) #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry) static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm) { struct ctx_list *ctxp; ctxp = ctx_free.next; if (ctxp != &ctx_free) { remove_from_ctx_list(ctxp); add_to_used_ctxlist(ctxp); mm->context = ctxp->ctx_number; ctxp->ctx_mm = mm; return; } ctxp = ctx_used.next; if (ctxp->ctx_mm == old_mm) ctxp = ctxp->next; if (ctxp == &ctx_used) panic("out of mmu contexts"); flush_cache_mm(ctxp->ctx_mm); flush_tlb_mm(ctxp->ctx_mm); remove_from_ctx_list(ctxp); add_to_used_ctxlist(ctxp); ctxp->ctx_mm->context = NO_CONTEXT; ctxp->ctx_mm = mm; mm->context = ctxp->ctx_number; } static inline void free_context(int context) { struct ctx_list *ctx_old; ctx_old = ctx_list_pool + context; remove_from_ctx_list(ctx_old); add_to_free_ctxlist(ctx_old); } static void __init sparc_context_init(int numctx) { int ctx; unsigned long size; size = numctx * sizeof(struct ctx_list); ctx_list_pool = memblock_alloc(size, SMP_CACHE_BYTES); if (!ctx_list_pool) panic("%s: Failed to allocate %lu bytes\n", __func__, size); for (ctx = 0; ctx < numctx; ctx++) { struct ctx_list *clist; clist = (ctx_list_pool + ctx); clist->ctx_number = ctx; clist->ctx_mm = NULL; } ctx_free.next = ctx_free.prev = &ctx_free; ctx_used.next = ctx_used.prev = &ctx_used; for (ctx = 0; ctx < numctx; ctx++) add_to_free_ctxlist(ctx_list_pool + ctx); } void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm, struct task_struct *tsk) { unsigned long flags; if (mm->context == NO_CONTEXT) { spin_lock_irqsave(&srmmu_context_spinlock, flags); alloc_context(old_mm, mm); spin_unlock_irqrestore(&srmmu_context_spinlock, flags); srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd); } if (sparc_cpu_model == sparc_leon) leon_switch_mm(); if (is_hypersparc) hyper_flush_whole_icache(); srmmu_set_context(mm->context); } /* Low level IO area allocation on the SRMMU. */ static inline void srmmu_mapioaddr(unsigned long physaddr, unsigned long virt_addr, int bus_type) { pgd_t *pgdp; p4d_t *p4dp; pud_t *pudp; pmd_t *pmdp; pte_t *ptep; unsigned long tmp; physaddr &= PAGE_MASK; pgdp = pgd_offset_k(virt_addr); p4dp = p4d_offset(pgdp, virt_addr); pudp = pud_offset(p4dp, virt_addr); pmdp = pmd_offset(pudp, virt_addr); ptep = pte_offset_kernel(pmdp, virt_addr); tmp = (physaddr >> 4) | SRMMU_ET_PTE; /* I need to test whether this is consistent over all * sun4m's. The bus_type represents the upper 4 bits of * 36-bit physical address on the I/O space lines... */ tmp |= (bus_type << 28); tmp |= SRMMU_PRIV; __flush_page_to_ram(virt_addr); set_pte(ptep, __pte(tmp)); } void srmmu_mapiorange(unsigned int bus, unsigned long xpa, unsigned long xva, unsigned int len) { while (len != 0) { len -= PAGE_SIZE; srmmu_mapioaddr(xpa, xva, bus); xva += PAGE_SIZE; xpa += PAGE_SIZE; } flush_tlb_all(); } static inline void srmmu_unmapioaddr(unsigned long virt_addr) { pgd_t *pgdp; p4d_t *p4dp; pud_t *pudp; pmd_t *pmdp; pte_t *ptep; pgdp = pgd_offset_k(virt_addr); p4dp = p4d_offset(pgdp, virt_addr); pudp = pud_offset(p4dp, virt_addr); pmdp = pmd_offset(pudp, virt_addr); ptep = pte_offset_kernel(pmdp, virt_addr); /* No need to flush uncacheable page. */ __pte_clear(ptep); } void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len) { while (len != 0) { len -= PAGE_SIZE; srmmu_unmapioaddr(virt_addr); virt_addr += PAGE_SIZE; } flush_tlb_all(); } /* tsunami.S */ extern void tsunami_flush_cache_all(void); extern void tsunami_flush_cache_mm(struct mm_struct *mm); extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page); extern void tsunami_flush_page_to_ram(unsigned long page); extern void tsunami_flush_page_for_dma(unsigned long page); extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); extern void tsunami_flush_tlb_all(void); extern void tsunami_flush_tlb_mm(struct mm_struct *mm); extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); extern void tsunami_setup_blockops(void); /* swift.S */ extern void swift_flush_cache_all(void); extern void swift_flush_cache_mm(struct mm_struct *mm); extern void swift_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page); extern void swift_flush_page_to_ram(unsigned long page); extern void swift_flush_page_for_dma(unsigned long page); extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); extern void swift_flush_tlb_all(void); extern void swift_flush_tlb_mm(struct mm_struct *mm); extern void swift_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); #if 0 /* P3: deadwood to debug precise flushes on Swift. */ void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) { int cctx, ctx1; page &= PAGE_MASK; if ((ctx1 = vma->vm_mm->context) != -1) { cctx = srmmu_get_context(); /* Is context # ever different from current context? P3 */ if (cctx != ctx1) { printk("flush ctx %02x curr %02x\n", ctx1, cctx); srmmu_set_context(ctx1); swift_flush_page(page); __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : : "r" (page), "i" (ASI_M_FLUSH_PROBE)); srmmu_set_context(cctx); } else { /* Rm. prot. bits from virt. c. */ /* swift_flush_cache_all(); */ /* swift_flush_cache_page(vma, page); */ swift_flush_page(page); __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : : "r" (page), "i" (ASI_M_FLUSH_PROBE)); /* same as above: srmmu_flush_tlb_page() */ } } } #endif /* * The following are all MBUS based SRMMU modules, and therefore could * be found in a multiprocessor configuration. On the whole, these * chips seems to be much more touchy about DVMA and page tables * with respect to cache coherency. */ /* viking.S */ extern void viking_flush_cache_all(void); extern void viking_flush_cache_mm(struct mm_struct *mm); extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page); extern void viking_flush_page_to_ram(unsigned long page); extern void viking_flush_page_for_dma(unsigned long page); extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr); extern void viking_flush_page(unsigned long page); extern void viking_mxcc_flush_page(unsigned long page); extern void viking_flush_tlb_all(void); extern void viking_flush_tlb_mm(struct mm_struct *mm); extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); extern void viking_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); extern void sun4dsmp_flush_tlb_all(void); extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm); extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); /* hypersparc.S */ extern void hypersparc_flush_cache_all(void); extern void hypersparc_flush_cache_mm(struct mm_struct *mm); extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page); extern void hypersparc_flush_page_to_ram(unsigned long page); extern void hypersparc_flush_page_for_dma(unsigned long page); extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); extern void hypersparc_flush_tlb_all(void); extern void hypersparc_flush_tlb_mm(struct mm_struct *mm); extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); extern void hypersparc_setup_blockops(void); /* * NOTE: All of this startup code assumes the low 16mb (approx.) of * kernel mappings are done with one single contiguous chunk of * ram. On small ram machines (classics mainly) we only get * around 8mb mapped for us. */ static void __init early_pgtable_allocfail(char *type) { prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type); prom_halt(); } static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start, unsigned long end) { pgd_t *pgdp; p4d_t *p4dp; pud_t *pudp; pmd_t *pmdp; pte_t *ptep; while (start < end) { pgdp = pgd_offset_k(start); p4dp = p4d_offset(pgdp, start); pudp = pud_offset(p4dp, start); if (pud_none(*__nocache_fix(pudp))) { pmdp = __srmmu_get_nocache( SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE); if (pmdp == NULL) early_pgtable_allocfail("pmd"); memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE); pud_set(__nocache_fix(pudp), pmdp); } pmdp = pmd_offset(__nocache_fix(pudp), start); if (srmmu_pmd_none(*__nocache_fix(pmdp))) { ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE); if (ptep == NULL) early_pgtable_allocfail("pte"); memset(__nocache_fix(ptep), 0, PTE_SIZE); pmd_set(__nocache_fix(pmdp), ptep); } if (start > (0xffffffffUL - PMD_SIZE)) break; start = (start + PMD_SIZE) & PMD_MASK; } } static void __init srmmu_allocate_ptable_skeleton(unsigned long start, unsigned long end) { pgd_t *pgdp; p4d_t *p4dp; pud_t *pudp; pmd_t *pmdp; pte_t *ptep; while (start < end) { pgdp = pgd_offset_k(start); p4dp = p4d_offset(pgdp, start); pudp = pud_offset(p4dp, start); if (pud_none(*pudp)) { pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE); if (pmdp == NULL) early_pgtable_allocfail("pmd"); memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE); pud_set((pud_t *)pgdp, pmdp); } pmdp = pmd_offset(pudp, start); if (srmmu_pmd_none(*pmdp)) { ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE); if (ptep == NULL) early_pgtable_allocfail("pte"); memset(ptep, 0, PTE_SIZE); pmd_set(pmdp, ptep); } if (start > (0xffffffffUL - PMD_SIZE)) break; start = (start + PMD_SIZE) & PMD_MASK; } } /* These flush types are not available on all chips... */ static inline unsigned long srmmu_probe(unsigned long vaddr) { unsigned long retval; if (sparc_cpu_model != sparc_leon) { vaddr &= PAGE_MASK; __asm__ __volatile__("lda [%1] %2, %0\n\t" : "=r" (retval) : "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE)); } else { retval = leon_swprobe(vaddr, NULL); } return retval; } /* * This is much cleaner than poking around physical address space * looking at the prom's page table directly which is what most * other OS's do. Yuck... this is much better. */ static void __init srmmu_inherit_prom_mappings(unsigned long start, unsigned long end) { unsigned long probed; unsigned long addr; pgd_t *pgdp; p4d_t *p4dp; pud_t *pudp; pmd_t *pmdp; pte_t *ptep; int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */ while (start <= end) { if (start == 0) break; /* probably wrap around */ if (start == 0xfef00000) start = KADB_DEBUGGER_BEGVM; probed = srmmu_probe(start); if (!probed) { /* continue probing until we find an entry */ start += PAGE_SIZE; continue; } /* A red snapper, see what it really is. */ what = 0; addr = start - PAGE_SIZE; if (!(start & ~(PMD_MASK))) { if (srmmu_probe(addr + PMD_SIZE) == probed) what = 1; } if (!(start & ~(PGDIR_MASK))) { if (srmmu_probe(addr + PGDIR_SIZE) == probed) what = 2; } pgdp = pgd_offset_k(start); p4dp = p4d_offset(pgdp, start); pudp = pud_offset(p4dp, start); if (what == 2) { *__nocache_fix(pgdp) = __pgd(probed); start += PGDIR_SIZE; continue; } if (pud_none(*__nocache_fix(pudp))) { pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE); if (pmdp == NULL) early_pgtable_allocfail("pmd"); memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE); pud_set(__nocache_fix(pudp), pmdp); } pmdp = pmd_offset(__nocache_fix(pudp), start); if (what == 1) { *(pmd_t *)__nocache_fix(pmdp) = __pmd(probed); start += PMD_SIZE; continue; } if (srmmu_pmd_none(*__nocache_fix(pmdp))) { ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE); if (ptep == NULL) early_pgtable_allocfail("pte"); memset(__nocache_fix(ptep), 0, PTE_SIZE); pmd_set(__nocache_fix(pmdp), ptep); } ptep = pte_offset_kernel(__nocache_fix(pmdp), start); *__nocache_fix(ptep) = __pte(probed); start += PAGE_SIZE; } } #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID) /* Create a third-level SRMMU 16MB page mapping. */ static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base) { pgd_t *pgdp = pgd_offset_k(vaddr); unsigned long big_pte; big_pte = KERNEL_PTE(phys_base >> 4); *__nocache_fix(pgdp) = __pgd(big_pte); } /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */ static unsigned long __init map_spbank(unsigned long vbase, int sp_entry) { unsigned long pstart = (sp_banks[sp_entry].base_addr & PGDIR_MASK); unsigned long vstart = (vbase & PGDIR_MASK); unsigned long vend = PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes); /* Map "low" memory only */ const unsigned long min_vaddr = PAGE_OFFSET; const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM; if (vstart < min_vaddr || vstart >= max_vaddr) return vstart; if (vend > max_vaddr || vend < min_vaddr) vend = max_vaddr; while (vstart < vend) { do_large_mapping(vstart, pstart); vstart += PGDIR_SIZE; pstart += PGDIR_SIZE; } return vstart; } static void __init map_kernel(void) { int i; if (phys_base > 0) { do_large_mapping(PAGE_OFFSET, phys_base); } for (i = 0; sp_banks[i].num_bytes != 0; i++) { map_spbank((unsigned long)__va(sp_banks[i].base_addr), i); } } void (*poke_srmmu)(void) = NULL; void __init srmmu_paging_init(void) { int i; phandle cpunode; char node_str[128]; pgd_t *pgd; p4d_t *p4d; pud_t *pud; pmd_t *pmd; pte_t *pte; unsigned long pages_avail; init_mm.context = (unsigned long) NO_CONTEXT; sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */ if (sparc_cpu_model == sun4d) num_contexts = 65536; /* We know it is Viking */ else { /* Find the number of contexts on the srmmu. */ cpunode = prom_getchild(prom_root_node); num_contexts = 0; while (cpunode != 0) { prom_getstring(cpunode, "device_type", node_str, sizeof(node_str)); if (!strcmp(node_str, "cpu")) { num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8); break; } cpunode = prom_getsibling(cpunode); } } if (!num_contexts) { prom_printf("Something wrong, can't find cpu node in paging_init.\n"); prom_halt(); } pages_avail = 0; last_valid_pfn = bootmem_init(&pages_avail); srmmu_nocache_calcsize(); srmmu_nocache_init(); srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE)); map_kernel(); /* ctx table has to be physically aligned to its size */ srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t)); srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table); for (i = 0; i < num_contexts; i++) srmmu_ctxd_set(__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir); flush_cache_all(); srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys); #ifdef CONFIG_SMP /* Stop from hanging here... */ local_ops->tlb_all(); #else flush_tlb_all(); #endif poke_srmmu(); srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END); srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END); srmmu_allocate_ptable_skeleton( __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP); srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END); pgd = pgd_offset_k(PKMAP_BASE); p4d = p4d_offset(pgd, PKMAP_BASE); pud = pud_offset(p4d, PKMAP_BASE); pmd = pmd_offset(pud, PKMAP_BASE); pte = pte_offset_kernel(pmd, PKMAP_BASE); pkmap_page_table = pte; flush_cache_all(); flush_tlb_all(); sparc_context_init(num_contexts); { unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0 }; max_zone_pfn[ZONE_DMA] = max_low_pfn; max_zone_pfn[ZONE_NORMAL] = max_low_pfn; max_zone_pfn[ZONE_HIGHMEM] = highend_pfn; free_area_init(max_zone_pfn); } } void mmu_info(struct seq_file *m) { seq_printf(m, "MMU type\t: %s\n" "contexts\t: %d\n" "nocache total\t: %ld\n" "nocache used\t: %d\n", srmmu_name, num_contexts, srmmu_nocache_size, srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT); } int init_new_context(struct task_struct *tsk, struct mm_struct *mm) { mm->context = NO_CONTEXT; return 0; } void destroy_context(struct mm_struct *mm) { unsigned long flags; if (mm->context != NO_CONTEXT) { flush_cache_mm(mm); srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir); flush_tlb_mm(mm); spin_lock_irqsave(&srmmu_context_spinlock, flags); free_context(mm->context); spin_unlock_irqrestore(&srmmu_context_spinlock, flags); mm->context = NO_CONTEXT; } } /* Init various srmmu chip types. */ static void __init srmmu_is_bad(void) { prom_printf("Could not determine SRMMU chip type.\n"); prom_halt(); } static void __init init_vac_layout(void) { phandle nd; int cache_lines; char node_str[128]; #ifdef CONFIG_SMP int cpu = 0; unsigned long max_size = 0; unsigned long min_line_size = 0x10000000; #endif nd = prom_getchild(prom_root_node); while ((nd = prom_getsibling(nd)) != 0) { prom_getstring(nd, "device_type", node_str, sizeof(node_str)); if (!strcmp(node_str, "cpu")) { vac_line_size = prom_getint(nd, "cache-line-size"); if (vac_line_size == -1) { prom_printf("can't determine cache-line-size, halting.\n"); prom_halt(); } cache_lines = prom_getint(nd, "cache-nlines"); if (cache_lines == -1) { prom_printf("can't determine cache-nlines, halting.\n"); prom_halt(); } vac_cache_size = cache_lines * vac_line_size; #ifdef CONFIG_SMP if (vac_cache_size > max_size) max_size = vac_cache_size; if (vac_line_size < min_line_size) min_line_size = vac_line_size; //FIXME: cpus not contiguous!! cpu++; if (cpu >= nr_cpu_ids || !cpu_online(cpu)) break; #else break; #endif } } if (nd == 0) { prom_printf("No CPU nodes found, halting.\n"); prom_halt(); } #ifdef CONFIG_SMP vac_cache_size = max_size; vac_line_size = min_line_size; #endif printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n", (int)vac_cache_size, (int)vac_line_size); } static void poke_hypersparc(void) { volatile unsigned long clear; unsigned long mreg = srmmu_get_mmureg(); hyper_flush_unconditional_combined(); mreg &= ~(HYPERSPARC_CWENABLE); mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE); mreg |= (HYPERSPARC_CMODE); srmmu_set_mmureg(mreg); #if 0 /* XXX I think this is bad news... -DaveM */ hyper_clear_all_tags(); #endif put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE); hyper_flush_whole_icache(); clear = srmmu_get_faddr(); clear = srmmu_get_fstatus(); } static const struct sparc32_cachetlb_ops hypersparc_ops = { .cache_all = hypersparc_flush_cache_all, .cache_mm = hypersparc_flush_cache_mm, .cache_page = hypersparc_flush_cache_page, .cache_range = hypersparc_flush_cache_range, .tlb_all = hypersparc_flush_tlb_all, .tlb_mm = hypersparc_flush_tlb_mm, .tlb_page = hypersparc_flush_tlb_page, .tlb_range = hypersparc_flush_tlb_range, .page_to_ram = hypersparc_flush_page_to_ram, .sig_insns = hypersparc_flush_sig_insns, .page_for_dma = hypersparc_flush_page_for_dma, }; static void __init init_hypersparc(void) { srmmu_name = "ROSS HyperSparc"; srmmu_modtype = HyperSparc; init_vac_layout(); is_hypersparc = 1; sparc32_cachetlb_ops = &hypersparc_ops; poke_srmmu = poke_hypersparc; hypersparc_setup_blockops(); } static void poke_swift(void) { unsigned long mreg; /* Clear any crap from the cache or else... */ swift_flush_cache_all(); /* Enable I & D caches */ mreg = srmmu_get_mmureg(); mreg |= (SWIFT_IE | SWIFT_DE); /* * The Swift branch folding logic is completely broken. At * trap time, if things are just right, if can mistakenly * think that a trap is coming from kernel mode when in fact * it is coming from user mode (it mis-executes the branch in * the trap code). So you see things like crashme completely * hosing your machine which is completely unacceptable. Turn * this shit off... nice job Fujitsu. */ mreg &= ~(SWIFT_BF); srmmu_set_mmureg(mreg); } static const struct sparc32_cachetlb_ops swift_ops = { .cache_all = swift_flush_cache_all, .cache_mm = swift_flush_cache_mm, .cache_page = swift_flush_cache_page, .cache_range = swift_flush_cache_range, .tlb_all = swift_flush_tlb_all, .tlb_mm = swift_flush_tlb_mm, .tlb_page = swift_flush_tlb_page, .tlb_range = swift_flush_tlb_range, .page_to_ram = swift_flush_page_to_ram, .sig_insns = swift_flush_sig_insns, .page_for_dma = swift_flush_page_for_dma, }; #define SWIFT_MASKID_ADDR 0x10003018 static void __init init_swift(void) { unsigned long swift_rev; __asm__ __volatile__("lda [%1] %2, %0\n\t" "srl %0, 0x18, %0\n\t" : "=r" (swift_rev) : "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS)); srmmu_name = "Fujitsu Swift"; switch (swift_rev) { case 0x11: case 0x20: case 0x23: case 0x30: srmmu_modtype = Swift_lots_o_bugs; hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN); /* * Gee george, I wonder why Sun is so hush hush about * this hardware bug... really braindamage stuff going * on here. However I think we can find a way to avoid * all of the workaround overhead under Linux. Basically, * any page fault can cause kernel pages to become user * accessible (the mmu gets confused and clears some of * the ACC bits in kernel ptes). Aha, sounds pretty * horrible eh? But wait, after extensive testing it appears * that if you use pgd_t level large kernel pte's (like the * 4MB pages on the Pentium) the bug does not get tripped * at all. This avoids almost all of the major overhead. * Welcome to a world where your vendor tells you to, * "apply this kernel patch" instead of "sorry for the * broken hardware, send it back and we'll give you * properly functioning parts" */ break; case 0x25: case 0x31: srmmu_modtype = Swift_bad_c; hwbug_bitmask |= HWBUG_KERN_CBITBROKEN; /* * You see Sun allude to this hardware bug but never * admit things directly, they'll say things like, * "the Swift chip cache problems" or similar. */ break; default: srmmu_modtype = Swift_ok; break; } sparc32_cachetlb_ops = &swift_ops; flush_page_for_dma_global = 0; /* * Are you now convinced that the Swift is one of the * biggest VLSI abortions of all time? Bravo Fujitsu! * Fujitsu, the !#?!%$'d up processor people. I bet if * you examined the microcode of the Swift you'd find * XXX's all over the place. */ poke_srmmu = poke_swift; } static void turbosparc_flush_cache_all(void) { flush_user_windows(); turbosparc_idflash_clear(); } static void turbosparc_flush_cache_mm(struct mm_struct *mm) { FLUSH_BEGIN(mm) flush_user_windows(); turbosparc_idflash_clear(); FLUSH_END } static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { FLUSH_BEGIN(vma->vm_mm) flush_user_windows(); turbosparc_idflash_clear(); FLUSH_END } static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page) { FLUSH_BEGIN(vma->vm_mm) flush_user_windows(); if (vma->vm_flags & VM_EXEC) turbosparc_flush_icache(); turbosparc_flush_dcache(); FLUSH_END } /* TurboSparc is copy-back, if we turn it on, but this does not work. */ static void turbosparc_flush_page_to_ram(unsigned long page) { #ifdef TURBOSPARC_WRITEBACK volatile unsigned long clear; if (srmmu_probe(page)) turbosparc_flush_page_cache(page); clear = srmmu_get_fstatus(); #endif } static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr) { } static void turbosparc_flush_page_for_dma(unsigned long page) { turbosparc_flush_dcache(); } static void turbosparc_flush_tlb_all(void) { srmmu_flush_whole_tlb(); } static void turbosparc_flush_tlb_mm(struct mm_struct *mm) { FLUSH_BEGIN(mm) srmmu_flush_whole_tlb(); FLUSH_END } static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { FLUSH_BEGIN(vma->vm_mm) srmmu_flush_whole_tlb(); FLUSH_END } static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) { FLUSH_BEGIN(vma->vm_mm) srmmu_flush_whole_tlb(); FLUSH_END } static void poke_turbosparc(void) { unsigned long mreg = srmmu_get_mmureg(); unsigned long ccreg; /* Clear any crap from the cache or else... */ turbosparc_flush_cache_all(); /* Temporarily disable I & D caches */ mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */ srmmu_set_mmureg(mreg); ccreg = turbosparc_get_ccreg(); #ifdef TURBOSPARC_WRITEBACK ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */ ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE); /* Write-back D-cache, emulate VLSI * abortion number three, not number one */ #else /* For now let's play safe, optimize later */ ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE); /* Do DVMA snooping in Dcache, Write-thru D-cache */ ccreg &= ~(TURBOSPARC_uS2); /* Emulate VLSI abortion number three, not number one */ #endif switch (ccreg & 7) { case 0: /* No SE cache */ case 7: /* Test mode */ break; default: ccreg |= (TURBOSPARC_SCENABLE); } turbosparc_set_ccreg(ccreg); mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */ mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */ srmmu_set_mmureg(mreg); } static const struct sparc32_cachetlb_ops turbosparc_ops = { .cache_all = turbosparc_flush_cache_all, .cache_mm = turbosparc_flush_cache_mm, .cache_page = turbosparc_flush_cache_page, .cache_range = turbosparc_flush_cache_range, .tlb_all = turbosparc_flush_tlb_all, .tlb_mm = turbosparc_flush_tlb_mm, .tlb_page = turbosparc_flush_tlb_page, .tlb_range = turbosparc_flush_tlb_range, .page_to_ram = turbosparc_flush_page_to_ram, .sig_insns = turbosparc_flush_sig_insns, .page_for_dma = turbosparc_flush_page_for_dma, }; static void __init init_turbosparc(void) { srmmu_name = "Fujitsu TurboSparc"; srmmu_modtype = TurboSparc; sparc32_cachetlb_ops = &turbosparc_ops; poke_srmmu = poke_turbosparc; } static void poke_tsunami(void) { unsigned long mreg = srmmu_get_mmureg(); tsunami_flush_icache(); tsunami_flush_dcache(); mreg &= ~TSUNAMI_ITD; mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB); srmmu_set_mmureg(mreg); } static const struct sparc32_cachetlb_ops tsunami_ops = { .cache_all = tsunami_flush_cache_all, .cache_mm = tsunami_flush_cache_mm, .cache_page = tsunami_flush_cache_page, .cache_range = tsunami_flush_cache_range, .tlb_all = tsunami_flush_tlb_all, .tlb_mm = tsunami_flush_tlb_mm, .tlb_page = tsunami_flush_tlb_page, .tlb_range = tsunami_flush_tlb_range, .page_to_ram = tsunami_flush_page_to_ram, .sig_insns = tsunami_flush_sig_insns, .page_for_dma = tsunami_flush_page_for_dma, }; static void __init init_tsunami(void) { /* * Tsunami's pretty sane, Sun and TI actually got it * somewhat right this time. Fujitsu should have * taken some lessons from them. */ srmmu_name = "TI Tsunami"; srmmu_modtype = Tsunami; sparc32_cachetlb_ops = &tsunami_ops; poke_srmmu = poke_tsunami; tsunami_setup_blockops(); } static void poke_viking(void) { unsigned long mreg = srmmu_get_mmureg(); static int smp_catch; if (viking_mxcc_present) { unsigned long mxcc_control = mxcc_get_creg(); mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE); mxcc_control &= ~(MXCC_CTL_RRC); mxcc_set_creg(mxcc_control); /* * We don't need memory parity checks. * XXX This is a mess, have to dig out later. ecd. viking_mxcc_turn_off_parity(&mreg, &mxcc_control); */ /* We do cache ptables on MXCC. */ mreg |= VIKING_TCENABLE; } else { unsigned long bpreg; mreg &= ~(VIKING_TCENABLE); if (smp_catch++) { /* Must disable mixed-cmd mode here for other cpu's. */ bpreg = viking_get_bpreg(); bpreg &= ~(VIKING_ACTION_MIX); viking_set_bpreg(bpreg); /* Just in case PROM does something funny. */ msi_set_sync(); } } mreg |= VIKING_SPENABLE; mreg |= (VIKING_ICENABLE | VIKING_DCENABLE); mreg |= VIKING_SBENABLE; mreg &= ~(VIKING_ACENABLE); srmmu_set_mmureg(mreg); } static struct sparc32_cachetlb_ops viking_ops __ro_after_init = { .cache_all = viking_flush_cache_all, .cache_mm = viking_flush_cache_mm, .cache_page = viking_flush_cache_page, .cache_range = viking_flush_cache_range, .tlb_all = viking_flush_tlb_all, .tlb_mm = viking_flush_tlb_mm, .tlb_page = viking_flush_tlb_page, .tlb_range = viking_flush_tlb_range, .page_to_ram = viking_flush_page_to_ram, .sig_insns = viking_flush_sig_insns, .page_for_dma = viking_flush_page_for_dma, }; #ifdef CONFIG_SMP /* On sun4d the cpu broadcasts local TLB flushes, so we can just * perform the local TLB flush and all the other cpus will see it. * But, unfortunately, there is a bug in the sun4d XBUS backplane * that requires that we add some synchronization to these flushes. * * The bug is that the fifo which keeps track of all the pending TLB * broadcasts in the system is an entry or two too small, so if we * have too many going at once we'll overflow that fifo and lose a TLB * flush resulting in corruption. * * Our workaround is to take a global spinlock around the TLB flushes, * which guarentees we won't ever have too many pending. It's a big * hammer, but a semaphore like system to make sure we only have N TLB * flushes going at once will require SMP locking anyways so there's * no real value in trying any harder than this. */ static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = { .cache_all = viking_flush_cache_all, .cache_mm = viking_flush_cache_mm, .cache_page = viking_flush_cache_page, .cache_range = viking_flush_cache_range, .tlb_all = sun4dsmp_flush_tlb_all, .tlb_mm = sun4dsmp_flush_tlb_mm, .tlb_page = sun4dsmp_flush_tlb_page, .tlb_range = sun4dsmp_flush_tlb_range, .page_to_ram = viking_flush_page_to_ram, .sig_insns = viking_flush_sig_insns, .page_for_dma = viking_flush_page_for_dma, }; #endif static void __init init_viking(void) { unsigned long mreg = srmmu_get_mmureg(); /* Ahhh, the viking. SRMMU VLSI abortion number two... */ if (mreg & VIKING_MMODE) { srmmu_name = "TI Viking"; viking_mxcc_present = 0; msi_set_sync(); /* * We need this to make sure old viking takes no hits * on it's cache for dma snoops to workaround the * "load from non-cacheable memory" interrupt bug. * This is only necessary because of the new way in * which we use the IOMMU. */ viking_ops.page_for_dma = viking_flush_page; #ifdef CONFIG_SMP viking_sun4d_smp_ops.page_for_dma = viking_flush_page; #endif flush_page_for_dma_global = 0; } else { srmmu_name = "TI Viking/MXCC"; viking_mxcc_present = 1; srmmu_cache_pagetables = 1; } sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *) &viking_ops; #ifdef CONFIG_SMP if (sparc_cpu_model == sun4d) sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *) &viking_sun4d_smp_ops; #endif poke_srmmu = poke_viking; } /* Probe for the srmmu chip version. */ static void __init get_srmmu_type(void) { unsigned long mreg, psr; unsigned long mod_typ, mod_rev, psr_typ, psr_vers; srmmu_modtype = SRMMU_INVAL_MOD; hwbug_bitmask = 0; mreg = srmmu_get_mmureg(); psr = get_psr(); mod_typ = (mreg & 0xf0000000) >> 28; mod_rev = (mreg & 0x0f000000) >> 24; psr_typ = (psr >> 28) & 0xf; psr_vers = (psr >> 24) & 0xf; /* First, check for sparc-leon. */ if (sparc_cpu_model == sparc_leon) { init_leon(); return; } /* Second, check for HyperSparc or Cypress. */ if (mod_typ == 1) { switch (mod_rev) { case 7: /* UP or MP Hypersparc */ init_hypersparc(); break; case 0: case 2: case 10: case 11: case 12: case 13: case 14: case 15: default: prom_printf("Sparc-Linux Cypress support does not longer exit.\n"); prom_halt(); break; } return; } /* Now Fujitsu TurboSparc. It might happen that it is * in Swift emulation mode, so we will check later... */ if (psr_typ == 0 && psr_vers == 5) { init_turbosparc(); return; } /* Next check for Fujitsu Swift. */ if (psr_typ == 0 && psr_vers == 4) { phandle cpunode; char node_str[128]; /* Look if it is not a TurboSparc emulating Swift... */ cpunode = prom_getchild(prom_root_node); while ((cpunode = prom_getsibling(cpunode)) != 0) { prom_getstring(cpunode, "device_type", node_str, sizeof(node_str)); if (!strcmp(node_str, "cpu")) { if (!prom_getintdefault(cpunode, "psr-implementation", 1) && prom_getintdefault(cpunode, "psr-version", 1) == 5) { init_turbosparc(); return; } break; } } init_swift(); return; } /* Now the Viking family of srmmu. */ if (psr_typ == 4 && ((psr_vers == 0) || ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) { init_viking(); return; } /* Finally the Tsunami. */ if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) { init_tsunami(); return; } /* Oh well */ srmmu_is_bad(); } #ifdef CONFIG_SMP /* Local cross-calls. */ static void smp_flush_page_for_dma(unsigned long page) { xc1(local_ops->page_for_dma, page); local_ops->page_for_dma(page); } static void smp_flush_cache_all(void) { xc0(local_ops->cache_all); local_ops->cache_all(); } static void smp_flush_tlb_all(void) { xc0(local_ops->tlb_all); local_ops->tlb_all(); } static void smp_flush_cache_mm(struct mm_struct *mm) { if (mm->context != NO_CONTEXT) { cpumask_t cpu_mask; cpumask_copy(&cpu_mask, mm_cpumask(mm)); cpumask_clear_cpu(smp_processor_id(), &cpu_mask); if (!cpumask_empty(&cpu_mask)) xc1(local_ops->cache_mm, (unsigned long)mm); local_ops->cache_mm(mm); } } static void smp_flush_tlb_mm(struct mm_struct *mm) { if (mm->context != NO_CONTEXT) { cpumask_t cpu_mask; cpumask_copy(&cpu_mask, mm_cpumask(mm)); cpumask_clear_cpu(smp_processor_id(), &cpu_mask); if (!cpumask_empty(&cpu_mask)) { xc1(local_ops->tlb_mm, (unsigned long)mm); if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm) cpumask_copy(mm_cpumask(mm), cpumask_of(smp_processor_id())); } local_ops->tlb_mm(mm); } } static void smp_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { struct mm_struct *mm = vma->vm_mm; if (mm->context != NO_CONTEXT) { cpumask_t cpu_mask; cpumask_copy(&cpu_mask, mm_cpumask(mm)); cpumask_clear_cpu(smp_processor_id(), &cpu_mask); if (!cpumask_empty(&cpu_mask)) xc3(local_ops->cache_range, (unsigned long)vma, start, end); local_ops->cache_range(vma, start, end); } } static void smp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { struct mm_struct *mm = vma->vm_mm; if (mm->context != NO_CONTEXT) { cpumask_t cpu_mask; cpumask_copy(&cpu_mask, mm_cpumask(mm)); cpumask_clear_cpu(smp_processor_id(), &cpu_mask); if (!cpumask_empty(&cpu_mask)) xc3(local_ops->tlb_range, (unsigned long)vma, start, end); local_ops->tlb_range(vma, start, end); } } static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page) { struct mm_struct *mm = vma->vm_mm; if (mm->context != NO_CONTEXT) { cpumask_t cpu_mask; cpumask_copy(&cpu_mask, mm_cpumask(mm)); cpumask_clear_cpu(smp_processor_id(), &cpu_mask); if (!cpumask_empty(&cpu_mask)) xc2(local_ops->cache_page, (unsigned long)vma, page); local_ops->cache_page(vma, page); } } static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) { struct mm_struct *mm = vma->vm_mm; if (mm->context != NO_CONTEXT) { cpumask_t cpu_mask; cpumask_copy(&cpu_mask, mm_cpumask(mm)); cpumask_clear_cpu(smp_processor_id(), &cpu_mask); if (!cpumask_empty(&cpu_mask)) xc2(local_ops->tlb_page, (unsigned long)vma, page); local_ops->tlb_page(vma, page); } } static void smp_flush_page_to_ram(unsigned long page) { /* Current theory is that those who call this are the one's * who have just dirtied their cache with the pages contents * in kernel space, therefore we only run this on local cpu. * * XXX This experiment failed, research further... -DaveM */ #if 1 xc1(local_ops->page_to_ram, page); #endif local_ops->page_to_ram(page); } static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr) { cpumask_t cpu_mask; cpumask_copy(&cpu_mask, mm_cpumask(mm)); cpumask_clear_cpu(smp_processor_id(), &cpu_mask); if (!cpumask_empty(&cpu_mask)) xc2(local_ops->sig_insns, (unsigned long)mm, insn_addr); local_ops->sig_insns(mm, insn_addr); } static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = { .cache_all = smp_flush_cache_all, .cache_mm = smp_flush_cache_mm, .cache_page = smp_flush_cache_page, .cache_range = smp_flush_cache_range, .tlb_all = smp_flush_tlb_all, .tlb_mm = smp_flush_tlb_mm, .tlb_page = smp_flush_tlb_page, .tlb_range = smp_flush_tlb_range, .page_to_ram = smp_flush_page_to_ram, .sig_insns = smp_flush_sig_insns, .page_for_dma = smp_flush_page_for_dma, }; #endif /* Load up routines and constants for sun4m and sun4d mmu */ void __init load_mmu(void) { /* Functions */ get_srmmu_type(); #ifdef CONFIG_SMP /* El switcheroo... */ local_ops = sparc32_cachetlb_ops; if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) { smp_cachetlb_ops.tlb_all = local_ops->tlb_all; smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm; smp_cachetlb_ops.tlb_range = local_ops->tlb_range; smp_cachetlb_ops.tlb_page = local_ops->tlb_page; } if (poke_srmmu == poke_viking) { /* Avoid unnecessary cross calls. */ smp_cachetlb_ops.cache_all = local_ops->cache_all; smp_cachetlb_ops.cache_mm = local_ops->cache_mm; smp_cachetlb_ops.cache_range = local_ops->cache_range; smp_cachetlb_ops.cache_page = local_ops->cache_page; smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram; smp_cachetlb_ops.sig_insns = local_ops->sig_insns; smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma; } /* It really is const after this point. */ sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *) &smp_cachetlb_ops; #endif if (sparc_cpu_model != sun4d) ld_mmu_iommu(); #ifdef CONFIG_SMP if (sparc_cpu_model == sun4d) sun4d_init_smp(); else if (sparc_cpu_model == sparc_leon) leon_init_smp(); else sun4m_init_smp(); #endif }